Torsten Enßlin

Cosmologist, Astrophysicist, Scientist, and Curious Person

I am a scientist at the Max-Planck-Institut für Astrophysik (MPA), Garching (near Munich), and lecturer at the Ludwig Maximilians University, Munich in Germany. I am interested in Information Theory, especially Information Field Theory (IFT), Artificial and Other Intelligence, Cosmology, and High Energy Astrophysics.

Recent Research Highlights

This mathematical tool could improve how fast information is shared

Researchers develop "relative attention entropy" to optimize data transmission, aiding AI learning and communication systems. (text by Andrey Feldman, image by Rene Böhmer on Unsplash)

  • Learn more
  • Our Neighborhood in the Milky Way in 3D

    High-resolution three-dimensional maps of the Milky Way have previously been limited to the immediate vicinity of the Sun. In a collaboration led by the Max Planck Institute for Astrophysics with researchers from Harvard, the Space Telescope Science Institute, and the University of Toronto, we were now able to build a high-resolution map of the Milky Way in 3D out to more than 4,000 light-years. The produced 3D map will be highly useful for a wide range of applications from star formation to cosmological foreground correction.

    • Learn more
    • Radiation biology, radio astronomy and cosmic rays using information field theory

      What do radiation biology, radio astronomy and cosmic ray measurements have in common? For one thing, radiation occurs in all of them. For another, all of these fields are explored using large-scale research facilities and require intelligent algorithms to visualize the quantities that occur in the process. In order to advance this imaging in an interdisciplinary way, the Federal Ministry of Education and Research (BMBF) is now funding the project "Information Field Theory for Experiments at Large-scale Research Facilities". Seven German universities, the Max Planck Institute for Astrophysics (MPA) and Erium GmbH, founded by former MPA students, are involved.

      • Learn more
      • Manipulative communication in humans and machines

        A universal sign of higher intelligence is communication. However, not all communications are well-intentioned. How can an intelligent system recognise the truthfulness of information and defend against attempts to deceive? How can a egoistic intelligence subvert such defences? What phenomena arise in the interplay of deception and defence? To answer such questions, researchers at the Max Planck Institute for Astrophysics in Garching, the University of Sydney and the Leibniz-Institut für Wissensmedien in Tübingen have studied the social interaction of artificial intelligences and observed very human behaviour.


Information Field Theory

Information field theory (IFT) is information theory, the logic of reasoning under uncertainty, applied to fields. A field can be any quantity defined over some space, e.g. the air temperature over Europe, the magnetic field strength in the Milky Way, or the matter density in the Universe. IFT describes how data and knowledge can be used to infer field properties. Mathematically it is a statistical field theory and exploits many of the tools developed for such. Practically, it is a framework for signal processing and image reconstruction.

Learning Machines, Extended Logic, & Intelligence

Loosly connected research lines on machine learning, information theory, as well as artificial and other intelligence. Learning Machines better reason according to logic. If uncertainties are involved, this should be extended, probabilistic, or Bayesian logic. The same is true for any form of intelligence, whether of human, artificial, or other nature.

Galactic Cartography

Accurate maps of the Milky Way in all its spatial, spectral and other dimensions are required for precision astrophysics. Here a collection of reconstructions of various galactic components in 2D and 3D are provided, which were obtained with information field theory.


The temperature fluctuations in the cosmic microwave background (CMB) and the cosmic matter distribution in the large-scale structure (LSS) are both tracers of the primordial quantum fluctuations. Those are believed to have happened during the very first moments of the Universe in the inflationary epoch. CMB and LSS are therefore our primary information sources on cosmology. Their detailed studies provide us insight into the history, geometry and composition of the Universe. IFT permits us to construct optimal methods to analyse and interpret CMB and LSS data, and to image with high fidelity the cosmic structures imprinted in those data sets.

High Energy Astrophysics

The Universe is permeated by high-energy particles and magnetic fields. Charged particles with nearly the speed of light spiraling around in the magnetic fields, which themselves are bound to the cosmic plasma. The particles and fields are important ingredients of the interstellar and intergalactic media. They transport energy, they push and heat the thermal gas, and they trace violent processes in cosmic plasmas. A number of observational windows in basically all electromagnetic wavebands, ranging from the radio to the gamma ray regime, provide us with direct and indirect vision into the high energy Universe. The IFT group develops special purpose methods to better imagine relativistic particles, magnetic fields, and even to tomographically reconstruct their distributions within the Milkey Way.

Lecture on Information Theory & Information Field Theory

Imaging in astronomy, geology and medicine require intelligent methods to obtain high fidelity images from noisy, incomplete data. The theoretical and mathematical framework in which imaging and data analysis methods are derived should be information theory to which these lectures will introduce first (first 1/3 semester, suited for Bachelor and Master students, 3 ETCS). Based on this, information theory for fields will be developed, which can be used to reconstruct signals from data (remaining 2/3 semester, more targeted at Master students, 6 ETCS).

Seminar Information Theory & Information Field Theory

The seminar is intended for participants of the lecture on Information Theory (1/3 semester) & Information Field Theory (2/3 semester), the content of which will be assumed to be known by all participants. The main seminar goal is to extend the participants' knowledge beyond the material covered in the lecture, especially with respect to concrete measurement situations, imaging, and existing algorithms. A second goal is to practice presentations and open discussions.

Past & current Software Projects

About Me

Active Group



Recorded Talks and Interviews


  • Address

    Karl-Schwarzschild-Str. 1
    85748 Garching
    Office: 010
  • Email
  • Phone

    +49 (0) 89 30000 2243