Max Planck Institute for Astrophysics

The Garching Core-Collapse Supernova Archive

Using the data in this archive is permitted for non-commercial purposes under the condition of citing this WWW page and the corresponding publication where one exists. If these data are used for a scientific publication, we appreciate a short notification. All efforts have been made to eliminate errors, but no warranty whatsoever is provided. Please inform us of any errors or inconsistencies that you may detect.

Some of the archives are password protected. Please get in touch if you need to use these data. We ask users of our archive not to provide their access key or data from the Garching Core-Collapse Supernova Archive to third persons without requesting permission.

When using data from this website, for example in publications, please mention the weblink https://wwwmpa.mpa-garching.mpg.de/ccsnarchive/ and any journal reference that may be given in connection to the data.

Contact address and responsibility: Hans-Thomas Janka (thjmpa-garching.mpg.de)

Supplementary Data for Gravitational Wave Analysis
Global properties of 3D ALCAR and VERTEX CCSN models; for some of these, gravitational wave signals are available.
Gravitational-wave Signals From Three-dimensional Supernova Simulations With Different Neutrino-Transport Methods (2021)
Andresen, H., Glas, R., & Janka, H.-T., MNRAS 503, 3552 (2021), arXiv eprint 2011.10499
Gravitational waves from 3D core-collapse supernova models: The impact of moderate progenitor rotation (2019)
Andresen, H., Müller, E., Janka, H.-T., Summa, A., Gill, K., Zanolin, M., MNRAS 486, 2238 (2019), arXiv eprint 1810.07638
Three-Dimensional Core-Collapse Supernova Simulations with Multi-Dimensional Neutrino Transport:
Space Dependent Hydrodynamic and Neutrino Data for Temporal Snapshots
Glas, R., Just, O., Janka, H.-T., & Obergaulinger, M. (2018), ADS, ApJ 873, 45, arXiv eprint 1809.10146
Glas, R., Janka, H.-T., Melson, T., Stockinger, G., & Just, O. (2018), ADS, ApJ 881, 36, arXiv eprint 1809.10150
Glas, R., Janka, H.-T., Capozzi, F., Sen, M., Dasgupta, B., Mirizzi, A., & Sigl, G. (2020), ADS, Phys. Rev. D 101, 063001, arXiv eprint 1912.00274
Gravitational wave signals from 3D neutrino hydrodynamics simulations of core-collapse supernovae (2016)
Andresen, H., Müller, B., Müller, E., Janka, H.-T., MNRAS 468, 2032 (2017), arXiv eprint 1607.05199
Two- and three-dimensional simulations of an 11.2, a 27, and a 20 solar-mass progenitor (2013)
27 solar-mass case published in Hanke, F., et al., ApJ 770, 66 (2013), arXiv eprint 1303.6269
20 solar-mass case published in Melson, T., et al. ApJL 808, L42 (2015), arXiv eprint 1504.07631
All cases published in Hanke, F., PhD thesis, TU München (2014)
A New Multi-Dimensional General Relativistic Neutrino Hydrodynamics Code of Core-Collapse Supernovae. III. Gravitational Wave Signals from Supernova Explosion Models (2013)
Müller, B., Marek, A., & Janka, H.-Th., ApJ 766, 43 (2013), arXiv eprint 1210.6984
Parametrized 3D models of neutrino-driven supernova explosions: Neutrino emission asymmetries and gravitational-wave signals (2012)
Müller, E., Janka, H.-Th., & Wongwathanarat, A., A&A 537, A63 (2012), arXiv eprint 1106.6301
Equation-of-state dependent features in shock-oscillation modulated neutrino and gravitational-wave signals from supernovae (2009)
Marek, A., Janka, H.-Th., & Müller, E., A&A 496, 475 (2009), arXiv eprint 0808.4136v2
Gravitational wave archive from 2D rotational core-collapse models
The following links provide information about the gravitational wave forms of stellar core collapse and a collection of the corresponding literature.
3D plots of EOS quantities
The following Java applet can be used to study the behavior of different equation of states.
The Explosion of Helium Stars Evolved with Mass Loss (2020)
Ertl, T., Woosley, S., Sukhbold, T., and Janka, H.-T. (2020), ApJ 890, 51 (2020), arXiv eprint 1910.01641
Supernova profiles of Ertl et al. (2020)
Profiles for different phases for 1D simulations of Ertl et al. (2020)
Supernova profiles of Sukhbold et al. (2016)
Profiles for different phases for 1D simulations of Sukhbold et al. (2016)
Radial profiles of a (modified) 22 solar-mass model of the 2002 series by Woosley, Heger & Weaver (2002) calibrated with HotB for different explosion energies (1D simulations)
Simulations done by Thomas Ertl
Radial profiles of a calibrated 1D explosion of a 9.0 solar-mass model with solar metallicity by WH15
Simulations done by Thomas Ertl
Mass shells of calibrated 1D explosion models combined with spectral neutrino-transport simulations for NS-cooling
Simulations done by Thomas Ertl
Supplementary Data for "Core-Collapse Supernovae from 9 to 120 Solar Masses Based on Neutrino-powered Explosions" (doi:10.17617/1.b)
Sukhbold, T., Ertl, T., Woosley, S., Brown, J., and Janka, H.-T., ApJ 821, 38 (2016), arXiv eprint 1510.04643
Radial profiles at different postbounce times of the 2013 model series by Sukhbold & Woosley (2014) simulated with HotB (calibrated 1D simulations)
Simulations done by Thomas Ertl
Trajectories for single stars (see Sukhbold & Woosley 2014) and for helium stars from simplified binary evolution (Woosley 2019)
Simulations done by Thomas Ertl
Models of Ertl et al. (2016)
Simulations done by Thomas Ertl
Long-time 3D core-collapse supernova models of He-star progenitors (2021)
Wongwathanarat, A.
The infancy of core-collapse supernova remnants (2020)
Gabler, M.; Wongwathanarat, A.; & Janka, H.-T., ADS, arXiv eprint 2008.01763
Three-dimensional Models of Core-collapse Supernovae From Low-mass Progenitors With Implications for Crab (2020)
Stockinger, G., Janka, H.-Th., Kresse, D., Melson, T., Ertl, T., Gabler, M., Gessner, A., Wongwathanarat, A., Tolstov, A., Leung, S.-C., Nomoto, K., & Heger, A., MNRAS 496, 2039 (2020), ADS, arXiv eprint 2005.02420
Long-time 3D core-collapse supernova models (2016 and afterwards)
Wongwathanarat, A., Müller, E., & Janka, H.-Th.
In the simulations, different progenitor models from Woosley & Weaver (1995), Limongi et al. (2000), Woosley & Weaver (1988), and Shigeyama et al. (1990)) are followed up to 30 hours after bounce. The Helmholtz EOS by Timmes & Swesty (2000) is used. The calculations make use of the Yin-Yang grid technique. 3D Newtonian self-gravity and an alpha reaction network consisting of 13(+1) species are included.
Parametrized 3D models of neutrino-driven supernova explosions: Neutrino emission asymmetries and gravitational-wave signals (2012)
Müller, E., Janka, H.-Th., & Wongwathanarat, A., A&A 537, A63 (2012), arXiv eprint 1106.6301
Three-dimensional simulations of mixing instabilities in supernova explosions (2010)
Hammer, N. J., Janka, H.-Th., & Müller, E., ApJ 714, 1371 (2010), arXiv eprint 0908.3474
Profiles from CRAB simulations of single-star and binary explosion models for SN 1987A at day 100
Utrobin V.P., Wongwathanarat A., Janka H.-Th., Mueller E., Ertl T., Woosley, S. (2019); A&A 624, A116, ADS
Utrobin V.P., Wongwathanarat A., Janka H.-Th., Mueller E., Ertl T., Menon A., Heger A. (2021); ADS
Proto-Neutron Star Evolution (2023)
1D-simulations with Prometheus-Vertex by Malte Heinlein
Heinlein, M. (2022). Master Thesis, unpublished. MPA & TU München.
Proto-neutron star neutrino cooling signals, neutrino angular moments, and radial profiles
Simulations done by Robert Bollig and Lorenz Hüdepohl
Flavor-dependent neutrino angular distribution in core-collapse supernovae (2017)
Tamborra, I., et al., ApJ 839, 132 (2017), arXiv eprint 1702.00060, simulations done by Lorenz Hüdepohl
Neutrinos from the Formation, Cooling, and Black Hole Collapse of Neutron stars (2014)
Neutrino signals from models of the PhD Thesis of Lorenz Hüdepohl, TU München 2014
Spherically symmetric simulations of the accretion phase for a set of progenitors and EoS (2012)
Simulations done by Lorenz Hüdepohl
Partially published in Phys. Rev. D 85, 085031 (2012), arXiv eprint 1111.4483.
Neutrino intensity for a 15 solar-mass star core collapse (2012)
Simulations done by Lorenz Hüdepohl
The simulation data are used in Phys. Rev. Lett. 108, 061101 (2012) (arXiv eprint 1109.3601) and in Phys. Rev. D 85, 113007 (2012) (arXiv eprint 1204.0971).
Neutrino intensity for a set of progenitors (2012)
Simulations done by Lorenz Hüdepohl (unpublished)
In the one-dimensional simulations, progenitor models from Woosley, Heger & Weaver (2002) and the EOS by Lattimer & Swesty (1991) are used.
Neutrino Signal of Electron-Capture Supernovae from Core Collapse to Cooling (2010)
Hüdepohl, L., Müller, B., Janka, H.-T., Marek, A., & Raffelt, G. G., Physical Review Letters 104, 251101 (2010), arXiv eprint 0912.0260
Production of 44Ti and iron-group nuclei in the ejecta of 3D neutrino-driven supernovae (2023)
Sieverding, A., Kresse, D., & Janka, H.-T., arXiv eprint: 2308.09659
Self-consistent 3D Supernova Models From -7 Minutes to +7 Seconds: A 1-bethe Explosion of a ~19 Solar-mass Progenitor (2021)
Bollig, R., Yadav, N., Kresse, D., Janka, H.-Th., Müller, B., & Heger, A., ApJ 915, 28, ADS, arXiv eprint 2010.10506
Neutrino emission characteristics of black hole formation in three-dimensional simulations of stellar collapse (2020)
Walk, L., Tamborra, I., Janka, H.-T., Summa, A., Kresse, D., Phys. Rev. D 101 (2020) no.12, 123013, arXiv eprint 1910.12971
Gravitational waves from 3D core-collapse supernova models: The impact of moderate progenitor rotation (2019)
Andresen, H., Müller, E., Janka, H.-T., Summa, A., Gill, K., Zanolin, M., MNRAS 486, 2238 (2019), arXiv eprint 1810.07638
Identifying rotation with neutrinos in three dimensional core-collapse supernovae (2018, 2019)
Walk, L., Tamborra, I., Janka, H.-T., Summa, A. Phys. Rev. D 98 (2018) no.12, 123001 [Paper 1], arXiv eprint 1807.02366
Walk, L., Tamborra, I., Janka, H.-T., Summa, A. Phys.Rev. D100 (2019) no.6, 063018 [Paper 2], arXiv eprint 1901.06235
Nucleosynthesis yields for the innermost ejecta of neutrino-driven supernova explosions in two dimensions (2018)
Wanajo, S., Müller, B., Janka, H.-T., & Heger, A., ApJ, 852, 40, ADS, arXiv eprint 1701.06786
3D simulations of heavy progenitor stars
Summa, A., et al.
Progenitor-dependent explosion dynamics in self-consistent, axisymmetric simulations of neutrino-driven core-collapse supernovae (2016): Neutrino data
Summa, A., et al., ApJ 825, 6 (2016), arXiv eprint 1511.07871
Gravitational wave signals from 3D neutrino hydrodynamics simulations of core-collapse supernovae (2016)
Andresen, H., Müller, B., Müller, E., Janka, H.-T., MNRAS 468, 2032 (2017), arXiv eprint 1607.05199
Neutrino signal from the 3D core collapse of a 20 solar-mass star (2015)
Melson, T., Janka, H.-T., et al., ApJL 808, L42 (2015), arXiv eprint 1504.07631
Neutrino emission properties obtained by applying observer projections (2014)
The observer projections are obtained from the neutrino data of the 3D simulations of a 27, 20, and 11 solar-mass progenitor (see archive entry above) and are partly published in Tamborra et al., 2014, Phys. Rev. D 90, 045032, arXiv eprint 1406.0006 and Tamborra et al., 2013, Phys. Rev. Lett. 111, 121104, arXiv eprint 1307.7936.
Two- and three-dimensional simulations of an 11.2, a 27, and a 20 solar-mass progenitor (2013)
27 solar-mass case published in Hanke, F., et al., ApJ 770, 66 (2013), arXiv eprint 1303.6269
20 solar-mass case published in Melson, T., et al. ApJL 808, L42 (2015), arXiv eprint 1504.07631
All cases published in Hanke, F., PhD thesis, TU München (2014)
Equation-of-state dependent features in shock-oscillation modulated neutrino and gravitational-wave signals from supernovae (2009)
Marek, A., Janka, H.-Th., & Müller, E., A&A 496, 475 (2009), arXiv eprint 0808.4136v2
Results of one- and two-dimensional explosion simulations for the pre-supernova progenitors of Woosley & Heger (2007)
Simulations done by Florian Hanke, data extraction done by Alexander Summa
A New Multi-Dimensional General Relativistic Neutrino Hydrodynamics Code of Core-Collapse Supernovae. III. Gravitational Wave Signals from Supernova Explosion Models (2013)
Müller, B., Marek, A., & Janka, H.-Th., ApJ 766, 43 (2013), arXiv eprint 1210.6984
New Two-dimensional Models of Supernova Explosions by the Neutrino-heating mechanism: Evidence for Different Instability Regimes in Collapsing Stellar Cores (2012)
Simulations done by Bernhard Müller, ApJ 761, 72 (2012), arXiv eprint 1205.7078
The hydro data are also used in the publication by Fernandez et al. (2014).
A New Multi-dimensional General Relativistic Neutrino Hydrodynamic Code for Core-collapse Supernovae. I. Method and Code Tests in Spherical Symmetry
Müller, B., Janka, H.-Th. & Dimmelmeier, H., ApJS 189, 104 (2010), arXiv eprint 1001.4841
Gravitational-wave Signals From Three-dimensional Supernova Simulations With Different Neutrino-Transport Methods (2021)
Andresen, H., Glas, R., & Janka, H.-T., MNRAS 503, 3552 (2021), arXiv eprint 2011.10499
Three-Dimensional Core-Collapse Supernova Simulations with Multi-Dimensional Neutrino Transport:
Space Dependent Hydrodynamic and Neutrino Data for Temporal Snapshots
Glas, R., Just, O., Janka, H.-T., & Obergaulinger, M. (2018), ADS, ApJ 873, 45, arXiv eprint 1809.10146
Glas, R., Janka, H.-T., Melson, T., Stockinger, G., & Just, O. (2018), ADS, ApJ 881, 36, arXiv eprint 1809.10150
Glas, R., Janka, H.-T., Capozzi, F., Sen, M., Dasgupta, B., Mirizzi, A., & Sigl, G. (2020), ADS, Phys. Rev. D 101, 063001, arXiv eprint 1912.00274
Pulsational Pair-instability Supernovae: Gravitational Collapse, Black-hole Formation, and Beyond (2021)
Rahman, N., Janka H.-T., Stockinger G., & Woosley, S. E., ADS, arXiv eprint 2112.09707
Improved leakage-equilibration-absorption scheme (ILEAS) for neutrino physics in compact object mergers (2019)
R. Ardevol-Pulpillo, H.-T. Janka, O. Just, & A. Bauswein, MNRAS 485, 4754 (2019), NASA/ADS, arXiv eprint 1808.00006
Comprehensive nucleosynthesis analysis for ejecta of compact binary mergers (2015)
O. Just, A. Bauswein, R. Ardevol Pulpillo, S. Goriely, & H.-Th. Janka, MNRAS 448, 541 (2015), arXiv eprint 1406.2687
Low-luminosity type IIP supernovae: SN 2005cs and SN 2020cxd as very low-energy iron core-collapse explosions (2022)
A. Kozyreva, H.-T. Janka, D. Kresse, S. Taubenberger, & P. Baklanov, arXiv eprint 2203.00473
The role of radioactive nickel in shaping the plateau phase of Type II supernovae (2018)
A. Kozyreva, E. Nakar, & R. Waldman, MNRAS 483, 1211 (2019), ADS, arXiv eprint 1811.08713
Stellar Collapse Diversity and the Diffuse Supernova Neutrino Background (2021)
Kresse, D., Ertl, T., & Janka, H.-T., ApJ 909, 169 (2021), ADS, arXiv eprint 2010.04728
Python TOV solver (2020)
Author: Robert Bollig
Improved leakage-equilibration-absorption scheme (ILEAS) for neutrino physics in compact object mergers (2019)
R. Ardevol-Pulpillo, H.-T. Janka, O. Just, & A. Bauswein, MNRAS 485, 4754 (2019), NASA/ADS, arXiv eprint 1808.00006