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ABSTRACT

Context. Our understanding of exoplanet demographics partly depends on their corresponding host star parameters. With the majority
of exoplanet-host stars having only atmospheric constraints available, robust inference of their parameters (including ages) is suscep-
tible to the approach used.
Aims. The goal of this work is to develop a grid-based machine learning tool capable of determining the stellar radius, mass, and age
using only atmospheric constraints. We also aim to analyse the age distribution of stars hosting giant planets.
Methods. Our machine learning approach involves combining four tree-based machine learning algorithms (random forest, extra trees,
extreme gradient boosting, and CatBoost) trained on a grid of stellar models to infer the stellar radius, mass, and age using effective
temperatures, metallicities, and Gaia-based luminosities. We performed a detailed statistical analysis to compare the inferences of
our tool with those based on seismic data from the APOKASC (with global oscillation parameters) and LEGACY (with individual
oscillation frequencies) samples. Finally, we applied our tool to determine the ages of stars hosting giant planets.
Results. Comparing the stellar parameter inferences from our machine learning tool with those from the APOKASC and LEGACY,
we find a bias (and a scatter) of −0.5% (5%) and −0.2% (2%) in radius, 6% (5%) and −2% (3%) in mass, and −9% (16%) and 7%
(23%) in age, respectively. Therefore, our machine learning predictions are commensurate with seismic inferences. When applying
our model to a sample of stars hosting Jupiter-mass planets, we find the average age estimates for the hosts of hot Jupiters, warm
Jupiters, and cold Jupiters to be 1.98 Gyr, 2.98 Gyr, and 3.51 Gyr, respectively.
Conclusions. Our machine learning tool is robust and efficient in estimating the stellar radius, mass, and age when only atmospheric
constraints are available. Furthermore, the inferred age distributions of giant planet host stars confirm previous predictions – based on
stellar model ages for a relatively small number of hosts, as well as on the average age-velocity dispersion relation – that stars hosting
hot Jupiters are statistically younger than those hosting warm and cold Jupiters.

Key words. astronomical databases: miscellaneous – planet-star interactions – stars: fundamental parameters – stars: solar-type –
stars: statistics

1. Introduction

The proper characterisation of exoplanet-host stars plays a vital
role in our understanding of exoplanetary systems. This is
based on the synergy between stellar and planetary science. For
instance, the planet’s radius and mass, determined through tran-
sits and radial velocity analysis, rely on the known radius and
mass of the host star, respectively (e.g. Seager & Mallen-Ornelas
2003; Torres et al. 2008; Mortier et al. 2013; Perryman 2018;
Hara & Ford 2023). Stellar ages have also been used in inves-
tigating changes in the exoplanet demographics over time (e.g.
Berger et al. 2020; Chen et al. 2023). They are also expected
to be relevant in distinguishing between the different the-
ories regarding the formation and evolution of hot Jupiters
(Dawson & Johnson 2018).

To determine robust stellar radius, mass, and age, various
methods have been developed. Torres et al. (2010) devised poly-
? Corresponding author; kamulali@mpa-garching.mpg.de

nomial functions based on a sample of non-interacting eclips-
ing binary systems with model-independent radii and masses
available, and with measured parameters such as effective tem-
perature, Teff , surface gravity, log g, and metallicity, [Fe/H].
These relations have been adopted to uniformly estimate sim-
ilar parameters of planet host stars (e.g. Santos et al. 2013;
Hamer & Schlaufman 2019). Furthermore, Moya et al. (2018)
used an extended sample of stellar targets with radius and mass
estimates obtained through the analysis of detached eclipsing
binary star systems, interferometric measurements, and seismic
inferences. They reported 38 empirical relations for estimating
mass and radius, which were obtained from linear combinations
of stellar density, ρ, luminosity, L, [Fe/H], Teff , and log g. How-
ever, the relations by both Torres et al. (2010) and Moya et al.
(2018) cannot provide any information about the stellar interior
structure and ages.

Stellar ages are typically inferred through empirical
approaches, such as gyro-chronology (e.g. Angus et al. 2015;
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Meibom et al. 2015; Barnes et al. 2016; Claytor et al. 2020),
chemical clocks (e.g. Da Silva et al. 2012; Nissen 2015, 2016;
Feltzing et al. 2016; Titarenko et al. 2019; Mena et al. 2019;
Espinoza-Rojas et al. 2021; Moya et al. 2022), and stellar activ-
ity (e.g. Noyes et al. 1984; Mamajek & Hillenbrand 2008).
Model-dependent techniques, such as isochrone fitting (e.g.
Liu & Chaboyer 2000; Sandage et al. 2003; VandenBerg et al.
2013; Berger et al. 2020) and asteroseismology are also used
(e.g. Silva Aguirre et al. 2011, 2013, 2017; Campante et al.
2015, 2017; Nsamba et al. 2018, 2019; Moedas et al. 2020;
Deal et al. 2021; Moedas et al. 2024). Each of these methods
works well in particular regions of the Hertzsprung-Russell (HR)
diagram. For a comprehensive summary of these techniques, we
refer to the review by Soderblom (2010, 2015).

Grid-based methods involve finding the best match of stel-
lar observables to model observables through processes, such
as iterative optimisation (Gai et al. 2011), Markov chain Monte
Carlo (MCMC; Bazot et al. 2012) sampling, and genetic opti-
misation algorithms (Metcalfe et al. 2009). In iterative optimi-
sation, stellar models are specially constructed for the region
of parameter space where the solution is believed to lie. A
subsequent optimisation procedure is then carried out to find
the best-fitting model based on the available observable param-
eters of the star. The MCMC algorithm is an augmentation
of iterative technique that allows for an extensive probabilis-
tic exploration of the parameter space and yields accurate esti-
mates of stellar parameters with credible confidence intervals
(e.g. Bazot et al. 2012; Gruberbauer et al. 2012; Lund & Reese
2017; Claytor et al. 2020). In a genetic optimisation algorithm,
stellar tracks have to be run each time a new target is to be char-
acterised. Additionally, the algorithm must be initialised from
different starting points to ensure convergence to a global mini-
mum. Thus, to optimise the efficacy of these methods, we must
run dense model grids.

With large datasets, machine learning (ML) techniques have
been efficiently utilised in the characterisation of stars. The
application of ML algorithms for regression tasks in astrophysics
dates back to the earlier works of Pulone & Scaramella (1997),
in which an artificial neural network was built to determine stel-
lar ages based on the position of the star on the HR diagram.
Using a combination of classical and asteroseismic observations,
Verma et al. (2016) and Bellinger et al. (2016) characterised
sun-like stars through the application of neural networks and
a random forest, respectively. Despite the tremendous progress
of ML codes in utilising both seismic and classical constraints
to estimate stellar radius, mass, and age, majority of stars do
not have seismic data. This opens an opportunity to explore the
effectiveness of ML codes in the absence of seismic data.

Moya & López-Sastre (2022) used atmospheric constraints
to determine the capabilities of various machine learning algo-
rithms in inferring stellar mass and radius. They demonstrated
that combining (stacking) the high-performing algorithms pro-
duces a more robust stellar model than any of the individual
algorithms. In addition, they trained their ML algorithms on data
from eclipsing binary stars, interferometry, and asteroseismol-
ogy. However, only inferences of the stellar mass and radius
were conducted in their work.

In this study, we employed a stacking approach, simi-
lar to Moya & López-Sastre (2022), but combine (stack) tree-
based ensemble algorithms (RF, XT, CatBoost, and XGBoost).
Tree-based algorithms are computationally efficient (i.e. require
relatively low computational resources) compared to other
algorithms, such as neural networks (Hastie et al. 2009). In addi-
tion, they are effective in developing regression models that cap-

ture complex non-linear relationships (Hastie et al. 2009; Baron
2019), particularly in linking observed stellar parameters to their
fundamental properties (such as mass, radius, age, etc.). To
achieve this, we train our algorithms directly on grids of stel-
lar models to determine not only the radius and the mass, but
also the stellar age using atmospheric constraints. Furthermore,
this approach makes it possible to explore the impact of stellar
model physics on the predictions made. The rest of the paper
is structured as follows. In Sect. 2 we present our ML tool and
its underlying mechanisms. This is followed by an evaluation of
the tool in Sect. 3. We then apply the technique to characterise
planet host stars in Sect. 4. Finally, we provide the summary and
conclusions of our results in Sect. 5.

2. MAISTEP code

Machine learning Algorithm for Inferring STEllar Parameters
(MAISTEP) is a tool which combines Random Forest (RF;
Breiman 2001), eXtremely randomised Trees/eXtra Trees (XT;
Wehenkel et al. 2006), eXtreme Gradient Boosting (XGBoost;
Chen & Guestrin 2016), and Categorical Boosting (CatBoost;
Prokhorenkova et al. 2018) algorithms, trained on a grid of stel-
lar models to predict the radius, mass, and age of stars using
atmospheric constraints. The predictions from the four algo-
rithms are combined using a weighted sum to produce an
optimal prediction. Combining algorithms with diverse archi-
tectures increases computational demand and adds complexity,
but it contributes to building a generalised highly accurate pre-
dictor. This approach known as stacking generalisation (Wolpert
1992; Breiman 1996) allows different algorithms to capture dif-
ferent patterns in the data, resulting in improved performance
on unseen data compared to using a single algorithm. Figure 1
highlights the vital sections of MAISTEP and their details are
summarised in Sects. 2.1–2.4.

2.1. Training and test data

The data for training and testing the algorithms in MAISTEP
were generated using the open-source one-dimensional (1D)
stellar evolution code, Modules for Experiments in Stellar Astro-
physics (MESA: Paxton et al. 2018, 2019), version r12778. The
parameter space of the stellar grid spans a range in initial mass,
[0.7–1.6] M� in steps of 0.05 M�, initial metallicity, [Fe/H],
[−0.5–0.5] dex in steps of 0.1, and enrichment ratios, ∆Y/∆Z,
[0.4–2.4] in steps of 0.4. The initial helium mass fraction, Yi was
calculated following

Yi =
∆Y
∆Z

Zi + Yo , (1)

where, Zi is the initial metal mass fraction and the offset, Yo =
0.2484, is the primordial helium mass fraction (Cyburt et al.
2003). The grid consists of tracks evolved from the zero-age
main sequence (ZAMS) to end of the main sequence (defined to
be a point when the central hydrogen mass fraction drops below
10−3). Microscopic diffusion was included considering only the
gravitational settling component for models that do not show
an unrealistic over-depletion of surface elements; thus, it was
applied only to models with a ZAMS mass below .1.2 M�. In
addition, for models with convective cores, an exponential over-
shoot scheme was implemented with a fixed efficiency value of
0.01. We assume that our target stars are slow rotators and, thus,
the effects of rotation were neglected. Our grid employs a sin-
gle solar-calibrated value of αMLT = 1.71. The impact of using a
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Fig. 1. Schematic representation of MAISTEP. The training data undergoes pre-processing before being passed to the different base algorithms
under the model development phase, ultimately predicting the radius, mass, and age. See text for details.

Table 1. Main components of our grid of stellar models.

Parameter Range

Initial mass in M� [0.7–1.6], ∆M = 0.05
Initial metallicity in dex [−0.5–0.5], ∆[Fe/H] = 0.1
Enrichment ratio, ∆Y/∆Z [0.4–2.4], ∆(∆Y/∆Z) = 0.4

Input physics Prescription
Nuclear reaction rates 1, 2
Solar chemical mixtures 3
OPAL equation of state 4
OPAL opacities 5, 6
Atmosphere model 7
Atomic diffusion 8
Core overshooting, fov = 0.01 9
αMLT = 1.71 10

Notes. (1) Angulo et al. (1999); (2) Imbriani et al. (2005); (3)
Asplund et al. (2009); (4) Rogers & Nayfonov (2002); (5)
Iglesias & Rogers (1996); (6) Ferguson et al. (2005); (7) Krishna
Swamy (1966); (8) Thoul et al. (1994); (9) Herwig (2000); (10)
Cox & Giuli (1968).

single mixing length parameter in stellar grids on inferred stel-
lar properties has been explored in Silva Aguirre et al. (2015).
Table 1 summarises the main aspects of our grid of stellar mod-
els. For a detailed description of the global physical inputs
adopted, we refer to Nsamba et al. (2025).

2.2. Data pre-processing

We selected 50 models that are nearly evenly spaced in the
central hydrogen mass fraction along each evolutionary track.
We followed the same technique as in Bellinger et al. (2016)
to set up and solve an optimisation problem using cvxpy
library (Boyd & Vandenberghe 2004) in Python. This involves
finding a subset of models along each track that match a
desired set of evenly spaced values in the core hydrogen mass
fraction. This approach ensures a well-balanced and repre-
sentative sample of stellar models during the main sequence
phase.

The dataset is randomly split into 80% for training and 20%
for testing our algorithms. While the training set is passed to
each algorithm, the testing set is held back until the final model
evaluation phase. We note that our training features only took
into account Teff , [Fe/H], and L.

2.3. Model development

The training set was further split by employing the k-fold cross-
validation (Hastie et al. 2009) approach. Each algorithm (i.e. RF,
XT, CatBoost, and XGBoost) trains on k − 1 folds (subsets)
and then makes predictions for the validation set. The process
is repeated k times with each fold (subset) being used as a vali-
dation set once. In our case, we consider k = 10.

We employed Optuna (Akiba et al. 2019) to auto-tune the
hyperparameters (i.e. parameters that control the structure and
learning process of a model) of each base algorithm. Optuna
incorporates cross-validation and explores various hyperparam-
eter configurations to identify the ones that deliver the best
model performance, as measured by a defined metric. The library
includes an in-built class to sample the user-defined parameter
space, along with a pruning algorithm that monitors the interme-
diate result of each trial and terminates the unpromising ones,
thereby accelerating the exploration process.

Given the large number of hyperparameters associated with
our base algorithms, we initially used Optuna to determine
which hyperparameters most significantly influence each algo-
rithm’s ability to predict stellar radius, mass, and age. We then
focused on tuning these key hyperparameters to streamline the
hyperparameter search while maintaining each algorithm’s pre-
dictive performance.

The mean squared error metric is employed in Optuna to
evaluate the performance of a model and guide the optimisa-
tion process in selecting the optimal set of hyperparameters.
A maximum of 50 trials are specified to balance computa-
tional efficiency while allowing for a thorough exploration of
the hyperparameter space. The selected optimal hyperparam-
eters (see Table 2) are then used to generate cross-validation
predictions which served as training input (meta-features) for
the non-negativity constrained least squares (nnls) optimiser.
For a detailed description of each base algorithm, we refer
to Breiman (2001), Wehenkel et al. (2006), Chen & Guestrin
(2016), Breiman (2017), and Prokhorenkova et al. (2018).

2.4. Stacking approach

The predictions from the base algorithms, generated during
cross-validation, were assigned non-negative weights, with the
most accurate predictions typically receiving higher weights.
The weights were determined by the least squares optimisation
method (Lawson & Hanson 1995), which adjusts them to min-
imise the overall prediction error. Essentially, given the base
algorithms labelled, j = 1, 2, 3, 4, each making predictions pi j,
for the ith data point in a sample of a size, n, we sought to find
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Table 2. Optimal hyperparameters (hp) returned by Optuna for the radius, mass, and age from each base model.

hp RF XT XGBoost CatBoost

Radius Mass Age Radius Mass Age Radius Mass Age Radius Mass Age

learning_rate – – – – – – 0.29 0.3 0.3 0.64 0.97 0.95
depth / 20 20 20 20 20 20 6 6 6 5 5 5

max_depth
n_estimators / 300 224 75 1000 1000 1000 1438 1172 1495

iterations

Notes. “def” signifies that the default value was considered. Default values were also used for any hp that are excluded here.

the weights, β j, as:

min
n∑

i=1

(ŷi − yi)
2 , (2)

with

ŷi =

k∑
j=1

β j.pi j , (3)

subject to
∑
β j = 1, β j ≥ 0. Here, yi is the actual value of

the ith data point and ŷi is the associated weighted prediction
defined by Eq. (3). This approach allows for a clear assess-
ment of how much each base algorithm contributes to the final
stacked model’s prediction, with the weights directly reflect-
ing each algorithm’s relative importance. Since the weights are
constrained to be non-negative and sum to 1, the interpretation
is straightforward: higher weights indicate a greater contribu-
tion to the final prediction. The optimal weights generated are
adopted for producing the final predictions during the test and
the application phase, via the stacking approach. We note that we
imported the nnls optimiser from the scipy.optimize library
into our Python code.

3. Evaluation of MAISTEP

We conducted a double assessment of our code using both artifi-
cial data from stellar models and real observed stars. We utilised
the root mean squared error (RMSE) to evaluate and compare the
performance of the base algorithms and our weight-based model
on test data. We chose RMSE because it retains the same unit as
the target variable, making it easy to interpret the bias.

3.1. Performance on artificial data

We recall that our data is divided into 80% training and 20% test
sets. We further partitioned the training set into subsets rang-
ing from 10% to 100% in increments of 10%. For each subset,
optimal weights used to stack the predictions generated through
cross-validation (see Sect. 2.3) by the base algorithms were
determined using nnls, as described in Sect. 2.4. These weights
are shown in Fig. 2. Overall, we observe that higher weights are
consistently assigned to XT predictions in estimating the radius,
mass, and age, across all training sizes. This suggests that XT’s
predictions are generally more accurate compared to those from
other algorithms, at least within the scope of our tuned hyperpa-
rameters. Furthermore, while variations in weights are observed
at different training sizes, they tend to stabilise as training data
approach full size, except in the case of mass.
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0.45

0.65

0.85 Radius

0.05

0.25

0.45

0.65

0.85 Mass

20 40 60 80 100
0.05

0.25

0.45

0.65

0.85 Age

Training Size (%)

RF
XT
XGBoost
CatBoost

Fig. 2. Distribution of the weights (β) derived using nnls optimiser,
which are employed to combine predictions of stellar radius (top panel),
mass (middle panel), and age (bottom panel) from the base algorithms.
See text for details.

To evaluate the generalisation capability of our base algo-
rithms, we trained each algorithm on each subset. We then made
predictions for the 20% test set. This evaluation assumes that the
input features (i.e. Teff , [Fe/H], and L) used to predict the radius,
mass, and age of the test set are free from errors and bias. Finally,
we compared the performance of each base model on the test set
to that of the stacking model.

Figure 3 shows that as more training examples become avail-
able, each algorithm learns and improves its ability to predict the
radius, mass, and age, resulting in a reduced bias on the test set.
For radius (top panel of Fig. 3), the learning continues until a
stable regime (saturation point) is reached with about 50% of
the training samples; beyond this, no additional improvement
occurs within the framework of our hyperparameter tuning. The
early attainment of the saturation point could be due to two of
the training features (i.e. Teff and L) directly constraining the
radius through the Stefan-Boltzmann relation (Planck 1900). In
addition, we note that the stellar model luminosity, L, is derived
using the same relation with the Teff and R as inputs, in stellar
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evolutionary codes. Therefore, these findings may be consistent
due to the non-independence of L, yet they still demonstrate that
an accurate L coupled with Teff , can effectively recover the stellar
radius using any of our ML algorithms.

In contrast, the RMSE curves for the mass (middle panel
of Fig. 3) show that learning continues up to 100% training
size, while for the age (bottom panel of Fig. 3), they flatten
out at ∼90%. In particular, for the mass, this could suggest that
the algorithms required more samples (information) to explore
in order to achieve adequate training. To test this, we trained
our algorithms on the entire dataset and made predictions for
some observed stars through stacking. We find that increasing
the training sample had almost no influence on the resulting stel-
lar masses.

Overall, within the scope of our hyperparameter tuning, XT
stands out as the best performing base algorithm for our regres-
sion tasks in predicting stellar radius, mass, and age. It is also
weighted the most in our stacking approach across all training
sizes as seen in Fig. 2. XT’s good performance likely stems from
its highly randomised approach to feature selection and choos-
ing split points, which allows for an effective balance between
the bias and variance while maintaining a competitive accu-
racy. Therefore, we recommend it for use when computational
resources are limited (we refer the reader to Bellinger et al. 2016,
for a full exploration of XT). However, we observe enhanced
performance when XT is combined with the other three algo-
rithms, particularly in reducing the bias in age predictions,
resulting into an increase in accuracy of ∼7% (compared to XT)
at full training size (see Fig. 3). Therefore, our stacking approach

demonstrates a distinct advantage in performance, as it effec-
tively combines the strength of the base algorithms, making it
the preferred method of choice for inferring the radius, mass,
and age of observed stars.

3.2. Performance on real stars

We applied MAISTEP in its stacking approach setting,
along with the associated weights to characterise real stars
in the APOKASC (Serenelli et al. 2017) and LEGACY
(Silva Aguirre et al. 2017; Lund et al. 2017) samples. We select
targets that fall within the parameter space of the stellar models
employed in the training process. We used the observations of
Teff , [Fe/H], and L, to predict radius, mass, and age. To check
for consistency, we also compared the predicted stellar proper-
ties to those obtained in the two data sources (APOKASC and
LEGACY sample), which employ different methods and incor-
porate both seismic and spectroscopic constraints in their opti-
misation processes.

The APOKASC catalogue consists of 415 (main sequence
and sub-giant) stars whose properties were determined utilising
global asteroseismic observables (i.e. large frequency separation,
∆ν and frequencies at maximum power, νmax) complemented
with effective temperatures, Teff and metallicities, [Fe/H]. Of
the targets, 167 have stellar properties within the parameter
space of our training grid. This excludes stars that overlap
with the LEGACY sample, since they are accounted for in the
LEGACY comparisons. In addition, we also exclude stars iden-
tified as binaries according to SIMBAD and/or with astromet-
ric solution above the favoured renormalised unit weight error
(RUWE) threshold of .1.4 in Gaia DR31 (Lindegren 2018).
Serenelli et al. (2017) present two sets of results based on dif-
ferent temperature scales. We compare our findings to those
obtained using the photometric Teff scale from the SDSS griz
bands, as recommended by the authors.

The LEGACY sample is composed of 66 main-sequence
Kepler targets (Silva Aguirre et al. 2017; Lund et al. 2017).
The stellar radii, masses, and ages were determined using
either individual mode frequencies or frequency ratios together
with spectroscopic effective temperature and metallicity
compiled from different literature sources (i.e. Ramírez
et al. 2009; Pinsonneault et al. 2012; Huber et al. 2013;
Pinsonneault et al. 2014; Chaplin et al. 2013; Casagrande et al.
2014; Buchhave & Latham 2015). Silva Aguirre et al. (2017)
demonstrates a disagreement between parallaxes obtained from
asteroseismic distances (which they computed from a combi-
nation of infrared flux measurements of angular diameter and
asteroseismic radius) and Gaia parallaxes, with discrepancies
exceeding 3σ for some of the stellar targets. They emphasised
that the flux of those stars could be contaminated by their
companions, and since that directly impacts the luminosity
determinations, we excluded them. These include: KIC 9025370,
KIC 7510397, KIC 8379927, KIC 10454113, KIC 9139151,
KIC 9965715, KIC 7940546, KIC 4914923, and KIC 12317678.
Furthermore, we excluded KIC 10068307 and the spectroscopic
binary component KIC 6933899. Hence, a total of 55 stars from
the LEGACY sample are considered in our analysis.

3.2.1. Luminosity determination

Both the APOKASC and LEGACY data sources provide mea-
surements of metallicities and effective temperatures. We took

1 https://gea.esac.esa.int/archive/
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few tracks at solar metallicity, [Fe/H] = 0, extending up to the bottom
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advantage of the precise parallaxes from Gaia data in DR3 and
followed Pijpers (2003) to determine the corresponding lumi-
nosities using the expression

L = 104.0+0.4Mbol,�−2logπ(mas)−0.4(mg−Ag+BCg) , (4)

where π and mg represent the Gaia parallax and apparent g-
band magnitudes (Gaia Collaboration 2023), respectively. The
bolometric corrections BCg for the sample were computed using
coefficients from Andrae et al. (2018) and we adopted Mbol,� =
4.74, as recommended by Mamajek et al. (2015). We correct for
the effects of interstellar absorption by computing the extinction,
defined by

Ag = Rg × E(B − V) , (5)

where E(B − V) is the color excess which was queried using 3D
dustmaps2 python package (Green 2018). We adopt an extinc-
tion coefficient, Rg = 3.303, according to (Schlafly & Finkbeiner
2011). The dust maps do not provide uncertainties on the red-
dening. Therefore, to compute the lower and upper uncertainty
levels on luminosity, we employed standard error propagation
considering only the uncertainty in parallax and apparent mag-
nitude. In Fig. 4, we display the approximate positions of our
selected targets on the HR diagram with evolutionary tracks con-
structed at solar metallicity running from ZAMS to the bottom
of the red giant branch.

To propagate the uncertainties in Teff , [Fe/H], and L to our
inferred properties, we randomly generate 10 000 realisations
based on the standard deviations of these observables. These
realisations are then input into the trained algorithms, resulting
in 10 000 predictions for the radius, mass, and age of each star.
From the distributions, we compute the median and quartiles.

3.2.2. Comparison with APOKASC

In Fig. 5, we compare the estimates of the stellar radii, masses,
and ages obtained using MAISTEP to those in APOKASC. We

2 https://dustmaps.readthedocs.io/en/latest/

find a good agreement between the MAISTEP radius values,
RML, with those from APOKASC, RSEIS (see top panel of Fig. 5).
We observe a scatter of 5% and an offset/bias of −0.5%. The
average relative uncertainty in radius from our tool is 3%, which
is higher than the 1% uncertainty in the APKOSAC radius esti-
mations.

The middle panel of Fig. 5 shows that the masses inferred
using MAISTEP are systematically higher by 6% and we obtain
a scatter of 5%. The average statistical relative uncertainty in
mass from MAISTEP is 4%, compared to 3% from APOKASC.
Furthermore, this translates into MAISTEP yielding systemati-
cally lower ages with a mean offset of −9% and a scatter of 16%
(see the bottom panel of Fig. 5). The average relative uncertainty
in age is 23% and higher than the 17% based on estimations in
the APOKASC. The observed offsets could stem from variations
in the model physics and the sets of constraints employed.

3.2.3. Comparison with LEGACY

Silva Aguirre et al. (2017) provides seven sets of results gener-
ated by different optimisation codes adopting grids with differ-
ent stellar model physics. Here, we compare our results with
those inferred using the Asteroseismic Inference on a Massive
Scale (AIMS: Rendle et al. 2019) pipeline. AIMS infers stel-
lar radii, masses, or ages by combining the likelihood func-
tion with prior distributions on those properties, followed by
an exploration of parameter space using MCMC to obtain the
resulting distributions. The grid of models adopted in AIMS
by Silva Aguirre et al. (2017) was constructed by Coelho et al.
(2015) using the MESA stellar evolutionary code, without taking
into account atomic diffusion. In the optimisation process, indi-
vidual oscillation mode frequencies were complemented with
spectroscopic effective temperatures and metallicities.

The top panel of Fig. 6 presents a comparison between the
radius estimates obtained using MAISTEP and AIMS. We find
a bias of −0.2% and a scatter of 2%, demonstrating an excellent
agreement in radius determinations by the two approaches. The
statistical average relative uncertainties in radius from MAIS-
TEP and AIMS are consistent, namely, 2% and 1%, respectively.
In the middle panel of Fig. 6, we observe a bias of −2% and
a scatter of 3% in mass with MAISTEP estimations being sys-
tematically lower than those from AIMS. The average relative
uncertainty in mass for the MAISTEP and AIMS estimations is
4% and 3%, respectively. For the age, estimates obtained using
MAISTEP are systematically higher by 7% and a scatter of 23%
(see bottom panel of Fig. 6). ML estimates also have an average
relative age uncertainty of 28%, compared to 9% from AIMS.
The systematically higher ages inferred by MAISTEP contrast
with the expected age estimates from models with and without
atomic diffusion. The observed discrepancy may be explained by
the systematically lower masses inferred by MAISTEP, which
could arise from the differences in the observational constraints
used in MAISTEP, compared to the LEGACY analyses. Over-
all, MAISTEP predicts stellar radii, masses, and ages that are
commensurate with seismic inferences.

4. Ages of giant-planet hosts

Over the past two decades, the discovery of exoplanets has con-
sistently defied our expectations set by the Solar System, uncov-
ering a much greater diversity of planetary systems than ever
thought. One of the most remarkable discoveries is the existence
of close-in Jupiter-mass planets (the hot Jupiters), with orbital
periods of just a few days (Mayor & Queloz 1995; Rasio & Ford

A57, page 6 of 12

https://dustmaps.readthedocs.io/en/latest/


Kamulali, J., et al.: A&A, 695, A57 (2025)

1.2 1.4 1.6 1.8 2.0
1.0

1.2

1.4

1.6

1.8

2.0

2.2

R M
L 

(R
)

Radius

1.2 1.4 1.6 1.8 2.0
RSEIS (R )

0.1

0.0

0.1

0.2

(R
M

L 
- R

SE
IS

) /
 R

SE
IS = -0.005

= 0.05
SEIS  = 0.01
ML  = 0.03

0.9 1.0 1.1 1.2 1.3 1.4 1.5

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

M
M

L 
(M

)

Mass

0.9 1.0 1.1 1.2 1.3 1.4 1.5
MSEIS (M )

0.0

0.2

(M
M

L 
- M

SE
IS

) /
 M

SE
IS = 0.06

= 0.05
SEIS  = 0.03
ML  = 0.04

2 4 6 8 10

2

4

6

8

10

12

14

M
L 

(G
yr

)

Age

2 4 6 8 10
SEIS (Gyr)

1

0

1

(
M

L 
- 

SE
IS

) /
 

SE
IS = -0.09

= 0.16
SEIS  = 0.17
ML  = 0.23

Fig. 5. One-to-one relation and fractional differences from MAISTEP
with respect to APOKASC as the reference values, for radius (top),
mass (middle), and age (bottom). The black dashed lines in all pan-
els represent the unity relation. The orange line in the one-to-one plots
indicates the best-fit line while in the fractional difference plots, it rep-
resents the mean offset/bias, µ. The brown shaded region highlights the
associated scatter, ±σ. Additionally, we give the average statistical rel-
ative uncertainties in angle brackets.

1996), which has continually raised questions about their forma-
tion and longevity. More recently, with the substantial amount
of exoplanet detections and our growing understanding of the
star-planet connections, some statistical studies have focused on
analysing the ages of the host stars to gain better insights into the
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Fig. 6. Same as Fig. 5, but comparing estimates from MAISTEP and
AIMS for the stars in the LEGACY sample.

evolution of the hot Jupiters. For instance, Miyazaki & Masuda
(2023) used ages inferred from stellar models (isochrones) for
a sample of 382 Sun-like stars, which includes 124 giant plan-
ets, from the California Legacy Survey catalogue to demon-
strate that hot Jupiters are preferentially hosted by relatively
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younger stars and that their number decreases with stellar
age. Hamer & Schlaufman (2019) and Chen et al. (2023) illus-
trate their findings using age proxies, namely, the Galactic
space velocities and the average age-velocity dispersion relation,
respectively, and reach similar conclusions. The explanation pro-
vided is that tidal interactions between hot Jupiters and their host
stars during the main sequence phase lead to orbital decay over
time, causing these planets to spiral inward and ultimately be
engulfed. As a result, the number of hot Jupiters decreases at the
later stages of the main-sequence, suggesting that they are typi-
cally found around young stellar hosts. We aim to apply MAIS-
TEP to infer the ages of individual stars from a relatively large
sample consisting solely of planet hosts, to test the above claims.

We collect planet data from the NASA Exoplanet Archive3

and the Extrasolar Planets Encyclopaedia4. We selected stars
orbited by giant planets with the best available mass estimate
in the following order of preference: MP, MP×sin i/sin i, or
MP×sin i, depending on data availability. The selected planets
span a range in Jupiter mass of 0.3 to 13 (13MJ is the lower lim-
iting mass of brown dwarfs; Des Etangs & Lissauer 2022). We
identified hot Jupiters as giant planets orbiting very close to their
host stars with periods of ≤10 days. Our control sample consists
of stars hosting the warm and cold Jupiters, with the same mass
range as the hot Jupiters. The warm Jupiters have orbital periods
of 10 < P(days) ≤ 365, while the cold Jupiters have orbital peri-
ods of 1 < P(years) ≤ 10 (Miyazaki & Masuda 2023). We then
cross-matched the hosts that have confirmed Jupiter-mass plan-
ets with SWEET-Cat5, selecting only stars with homogeneously
derived spectroscopic Teff and [Fe/H] (Santos et al. 2013).

The stellar luminosities were derived using Eq. (4). We
select main sequence stars with observable properties within the
parameter space of the ML training grid. Our sample consists of
427 stars hosting 470 giant planets, including 208 hot Jupiters,
96 warm Jupiters, and 152 cold Jupiters. Of these stars, 387 host
single planets, 37 host double planets, and 3 host three planets.
We clarify that, unless stated otherwise, for stars hosting multi-
ple planets, if the planets share a similar range in orbital peri-
ods, the star is counted only once. However, if the planets have
orbital periods that place them in different categories, the star is
included in each of those categories.

Following the same procedures as discussed in Sect. 3.2, we
calculate the ages of the giant-planet hosts. In the top panel of
Fig. 7, we show the resulting age distributions of stellar pop-
ulations hosting hot Jupiters, warm Jupiters, and cold Jupiters,
which are constructed solely from the median ages. The data
show distinct peaks at ages of 1.98, 2.98, and 3.51 Gyr, with cor-
responding mean ages of 3.52, 4.41, and 5.13 Gyr, respectively.

To quantify the age differences further, we conducted statis-
tical tests on the distributions between the categories. Specif-
ically, we tested the null hypothesis that the distributions are
identical and that the observed mean age differences are not
significant. We used Anderson-Darling (Anderson & Darling
1954; Scholz & Stephens 1987) and Kolmogorov-Smirnov
(Kolmogorov 1933; Smirnov 1939) for k samples to assess the
distributions, along with the t-test (Student 1908) to compare the
mean values. These functions were sourced from scipy.stat in
Python 3.10.12. We summarise the results in Table. 3, for three
categories: A – hot Jupiter hosts versus warm Jupiter hosts; B –
hot Jupiter hosts versus cold Jupiter hosts; and C – warm Jupiter
hosts versus cold Jupiter hosts.

3 https://exoplanetarchive.ipac.caltech.edu/
4 http://www.exoplanet.eu/
5 https://sweetcat.iastro.pt/
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Fig. 7. Kernel density illustrating the age (top panel) and mass (lower
panel) distributions of planet hosting stars.

We found low p-values at the 5% significance level for cat-
egories A and B, indicating that the distributions differ and the
mean age differences are statistically significant. For category C,
both the t and the KS tests fail to reject the null hypothesis,
but the AD test rejects with a p = 0.025, suggesting that there
may be a noticeable difference between the two distributions
that the other two tests did not detect. This could be because
of the AD’s sensitivity to the tails of the distributions. In addi-
tion, we conducted a test that excluded stars hosting planets
in different categories. The results showed that the warm and
cold Jupiter hosts are identical, with p-values of 0.05, 0.22, and
0.09. Generally, the statistical tests confirm that hot Jupiters are
hosted by stars that are relatively younger than those hosting the
warm and cold Jupiters. This is consistent with previous find-
ings, which examined a relatively small sample of host stars
(Miyazaki & Masuda 2023), as well as with kinematic results
(e.g. Hamer & Schlaufman 2019; Chen et al. 2023).

In the bottom panel of Fig. 7, our sample shows that the hot-
Jupiter hosts are statistically more massive than stars hosting the
warm and cold Jupiters, which may help explain the observed
age differences. The dip in the mass distribution of hot Jupiters
could be a selection effect, as our study considers only hosts with
homogeneously derived spectroscopic properties in the SWEET-
cat catalogue. The p-values from the AD test, the KS and the
t-test, for categories A and B, are all below the critical value of
0.05 (see Table 3) suggesting that the mass distributions are not
identical. For category C, all tests do not reject the null hypoth-
esis, with p-values greater than 0.05. Therefore, the warm and
cold Jupiter mass distributions and associated mean values are
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Table 3. Statistical test results from the age and mass distributions.

Category AD test KS test t-test

AD p-value KS p-value t p-value
Age

A 7.81 <10−3 0.23 8 × 10−4 3.39 8 × 10−4

B 30.5 <10−3 0.36 3.07 × 10−11 6.28 1.17 × 10−9

C 2.74 0.025 0.16 0.07 1.57 0.12
Mass

A 4.4 0.006 0.19 0.01 2.9 0.004
B 11.6 <10−3 0.36 1.0 × 10−4 4.6 5.8 × 10−6

C −0.53 0.25 0.08 0.81 0.98 0.33

Notes. The Anderson-Darling (AD) test, Kolmogorov-Smirnov (KS) test, and t-test for three categories: A – hot Jupiter hosts versus warm Jupiter
hosts; B – hot Jupiter hosts vs cold Jupiter hosts; and C – warm Jupiter hosts vs cold Jupiter hosts.

similar, but they are statistically different when compared with
the hot Jupiter host masses. Further, to assess the sensitivity of
the statistics to the orbital period threshold set for the hot Jupiter
hosts, we varied the period over a range of 5 to 15 days in steps
of 1 day. The results show no significant departure from the con-
clusions drawn based on a period threshold of P ≤ 10 days.

5. Summary and conclusions

We developed a grid-based machine learning tool (MAIS-
TEP) for estimating robust stellar radius, mass, and age using
atmospheric constraints. The code relies on transfer learning
in which various machine algorithms (i.e. RF, XT, CatBoost,
XGBoost) pre-trained on data from stellar models are used to
make predictions for real stars. Most importantly, MAISTEP, has
enhanced generalisation capabilities producing highly accurate
stellar radius, mass, and age, in contrast to the typical use of sin-
gle algorithms.

We explored the robustness of MAISTEP by conducting
a detailed comparison with inferences from APOKASC and
LEGACY samples. In terms of radius, we observe a bias of
−0.5% with a scatter of 5% when compared to the APOKASC,
and a bias of −0.2% with a scatter of 2% when compared to
the LEGACY sample. A bias of 6% and −2%, with scatter
values of 5% and 3%, is obtained in mass when compared to
the APOKASC and LEGACY sample results, respectively. For
age, the bias is −9% and 7%, with scatter values of 12% and
23% when compared to the APOKASC and LEGACY samples,
respectively. Accordingly, our results demonstrate that we can
infer stellar masses and radii to a precision relevant for exoplan-
etary studies, in cases where seismic information is not available.
Our findings also emphasise the need for seismic information in
order to yield robust ages. In addition, in cases where it’s neces-
sary to explore the internal structures of stars, asteroseismology
offers a solution.

Lastly, we used MAISTEP to estimate ages of planet-hosting
stars that have homogeneously derived spectroscopic effec-
tive temperatures and metallicities, which we complemented
with Gaia-based luminosities. We obtain consistent results with
previous findings determining that hot Jupiter planets are prefer-
entially hosted by relatively a younger and massive stellar popu-
lation compared to the warm and cold Jupiter hosts.

Our study primarily focused on the stars in the main
sequence; however, we plan to extend it to the sub-giant and red-
giant branches, where there is a growing number of detections of
high-mass planet-hosting stars, supported by their slow surface

rotations and cooler atmospheres – both of which are advanta-
geous for radial velocity measurements. In addition, we plan to
use our tool to investigate the impact of stellar model physics on
an ensemble of planet-host stars.
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Appendix A: Additional tests

A.1. Comparison with other LEGACY results

We conducted additional comparisons between the estimates
from MAISTEP and those derived from other pipelines in
LEGACY analyses. Here, we report only the results from
the two pipelines that show the best and worst agreement in
age compared to MAISTEP. The BAyesian STellar Algorithm
(BASTA; Silva Aguirre et al. 2015) and GOEttingen (GOE;
Appourchaux et al. 2015) pipelines yield consistent estimates of
radius and mass in comparison to MAISTEP, with bias (and scat-
ter) values of 0.7% (2%) and 0.6% (3%), 0.4% (4%), and −1%
(6%), as illustrated in the top and middle panels of Fig. A.1 and
Fig. A.2, respectively. In age, we find a slight disagreement with
bias (and scatter) values of 6% (23%) and 20% (32%) as shown
in the bottom panels of Fig. A.1 and Fig. A.2, respectively. We
note that the primary difference in the results obtained using
BASTA and GOE stem from the sets of constraints employed
during optimisation: frequency ratios in BASTA and individual
oscillation frequencies for GOE.

A.2. Comparison of results from two sets of constraints

We performed an additional test by training our algorithms with
Teff , [Fe/H] and log g, instead of Teff , [Fe/H], and L. Applying
the model to the LEGACY sample, we obtain consistent results
as shown in Fig. A.3. The resulting bias (and scatter) is −1%
(2%) in radius, −1% (2%) in mass, and 1% (5%) in age.
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Fig. A.1. Same as Fig. 6, but for results from the BASTA pipeline.

A57, page 11 of 12



Kamulali, J., et al.: A&A, 695, A57 (2025)

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

R M
L 

(R
)

GOE

Radius

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
RSEIS (R )

0.0

0.1

0.2

(R
M

L 
- R

SE
IS

) /
 R

SE
IS

= 0.006
= 0.03

SEIS  = 0.01
ML  = 0.02

0.8 1.0 1.2 1.4 1.6 1.8

0.8

1.0

1.2

1.4

1.6

1.8

M
M

L 
(M

)

Mass

0.8 1.0 1.2 1.4 1.6 1.8
MSEIS (M )

0.2

0.0

0.2

0.4

0.6

(M
M

L 
- M

SE
IS

) /
 M

SE
IS

= -0.01
= 0.06

SEIS  = 0.04
ML  = 0.04

0 2 4 6 8 10 12
0

2

4

6

8

10

12

14

M
L 

(G
yr

)

Age

0 2 4 6 8 10 12
SEIS (Gyr)

0

2

(
M

L 
- 

SE
IS

) /
 

SE
IS = 0.2

= 0.32
SEIS  = 0.06
ML  = 0.28

Fig. A.2. Same as Fig. 6, but for results from the GOE pipeline.
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Fig. A.3. Same as Fig. 6, but for the combinations of Teff , [Fe/H], and
log g versus Teff , [Fe/H], and L as constraints.

A57, page 12 of 12


	Introduction
	MAISTEP code
	Training and test data
	Data pre-processing
	Model development
	Stacking approach

	Evaluation of MAISTEP
	Performance on artificial data
	Performance on real stars
	Luminosity determination
	Comparison with APOKASC
	Comparison with LEGACY


	Ages of giant-planet hosts
	Summary and conclusions
	References
	Additional tests
	Comparison with other LEGACY results
	Comparison of results from two sets of constraints


