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ABSTRACT

Context. Turbulent convection models treat stellar convection more physically than standard mixing-length theory by including non-
local effects. We recently successfully applied the Kuhfuss version to convective cores in main sequence stars. Its usefulness for
convective envelopes remains to be tested.
Aims. The solar convective envelope constitutes a viable test bed for investigating the usefulness of the 1-equation Kuhfuss turbulent
convection model.
Methods. We used the one-dimensional stellar evolution code GARSTEC to calculate a standard solar model with the 1-equation
Kuhfuss turbulent convection model, and compared it to helioseismic measurements and a solar model using standard mixing-length
theory. Additionally, we investigated the influence of the additional free parameters of the convection model on the solar structure.
Results. The 1-equation Kuhfuss model reproduces the sound-speed profile and the lower boundary of the convective region less
well than the mixing-length model, because the inherent non-local effects overestimate the amount of convective penetration below
the Schwarzschild boundary. We trace this back to the coupling of the temperature gradient to the convective flux in the 1-equation
version of the Kuhfuss theory.
Conclusions. The temperature stratification of the solar convective envelope is not well modelled by the 1-equation Kuhfuss turbulent
convection model, and the more complex 3-equation version is needed to improve the modelling of convection in the envelopes of 1D
stellar evolution models.

Key words. convection – Sun: interior – Sun: evolution

1. Introduction

Convection plays a major role in the evolution of a star, as it
is one of the main transport mechanisms for energy and chem-
ical elements. However, modelling convection remains a chal-
lenge, because convection is an inherently three-dimensional and
highly turbulent process.

Three-dimensional (3D) hydrodynamic simulations of
wedges or boxes in stars over a limited time span pro-
vide an opportunity to study the features of convection
(e.g. Chiavassa et al. 2011; Trampedach et al. 2014; Magic et al.
2015; Käpylä et al. 2017; Andrassy et al. 2024; Herwig et al.
2023). However, simulation of the entire evolution of a star
remains an impossible task. Even with the expected increase in
computing power in the near future, it will not be possible to
follow the entire evolution of a star in a 3D simulation, as the
simulation needs to cover many orders of magnitude in length
scale and timescale. Simulating a thermal timescale is already a
difficult task, and the simulation result may still depend on the
initial thermal structure.

One-dimensional (1D) stellar-evolution codes still provide
the only possibility to follow the long-term evolution of stars.
While the numerical methods and treatment of physics have
constantly been refined, from the first attempts to model this
evolution (Schwarzschild et al. 1953, 1957; Hofmeister et al.
1964; Iben 1965) to the more recent efforts (e.g. Dotter et al.
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2008; Weiss & Schlattl 2008; Jermyn et al. 2023), the method
of choice to deal with convection has been, and still is, mixing
length theory (MLT), which dates back to Prandtl (1925) and
Biermann (1932) in terms of the physical picture, and is pre-
dominantly used in the versions by Böhm-Vitense (1958) and
Cox & Giuli (1968).

Mixing length theory uses the approximation of a bubble
of hot material that rises and eventually dissolves in cooler
regions, thus transporting energy and chemical elements. Due
to its adjustable parameter –the mixing length–, which describes
the average distance travelled by a bubble, it successfully repro-
duces the overall structure of convective layers both in the cores
of massive stars and in the envelopes of cool stars. However,
its simplicity neglects key features of convection, namely non-
locality and time dependence. As the adjustment of convec-
tion to changes in the stellar structure happens on a dynamical
timescale, the approximation of instantaneous adjustment (and
mixing of the chemical species) is reasonable as long as the
structural changes happen on a longer timescale, such as the
thermal or even more so the nuclear timescale during core hydro-
gen and helium burning. This approximation becomes question-
able for events with timescales shorter than or comparable to the
timescale of convection, such as the core He-flash in low-mass
stars (Flaskamp 2003). Furthermore, the time dependence is
important for stellar pulsations (e.g. Feuchtinger & Dorfi 1998;
Smolec & Moskalik 2008).

A more crucial weakness of MLT is the inherent assumption
of locality. At the boundary of convectively unstable regions, that
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is at the radius where the acceleration due to the radial buoy-
ancy force drops to zero (the so-called Schwarzschild or Ledoux
boundary), MLT predicts zero convective velocity by construc-
tion. However, the material approaches this boundary with non-
zero velocity, and will penetrate into layers that are locally sta-
ble against convection. This convective boundary mixing (CBM)
can potentially modify both the chemical composition, and the
temperature gradient in the regions adjacent to the convec-
tively unstable region (see the review by Anders & Pedersen
2023). There is a long list of cases where CBM provides a
way to reconcile stellar models with observations. Examples
are the width of the main sequence (MS) (Napiwotzki et al.
1991), the morphology of open-cluster colour–magnitude dia-
grams (Maeder & Mermilliod 1981; Demarque et al. 1994), or
the requirement of identical ages for the components of detached
eclipsing binaries (Claret & Torres 2016). Furthermore, the
overestimation of the luminosity of the red giant bump in globu-
lar clusters by stellar models using standard MLT (King et al.
1985; Alongi et al. 1991) and the ‘Cepheïd mass discrepancy
problem’ (Stobie 1969) can be explained by CBM. Here, the
mass estimate based on the pulsation and the mass derived
from evolutionary models that match the observed luminos-
ity disagree. The pulsational masses have recently been shown
to agree with the dynamical masses in LMC Cepheïd binaries
(Pietrzyński et al. 2010). Additional mixing beyond the stability
limit into the CBM region is needed to solve this mass discrep-
ancy (Chiosi et al. 1992; Cassisi & Salaris 2011; Neilson et al.
2011).

To solve these discrepancies between observations and stel-
lar models, 1D stellar evolution codes commonly incorporate
CBM as an additional parametrised overshooting of convection.
This adds the mixing of chemical elements without heat trans-
port, which means the temperature gradient is not modified in
the CBM region. This is either described as complete mixing up
to a certain fraction of the scale height, or as a diffusive pro-
cess (Freytag et al. 1996), with an exponentially decaying mix-
ing speed and again scaled by an appropriate scale height. In the
following, we refer to this treatment of CBM as ‘ad hoc over-
shooting’.

A more physical but still one-dimensional description of
CBM is provided by non-local turbulent convection models
(TCMs). In contrast to ad hoc overshooting, TCMs are derived
from the fundamental hydrodynamic equations and allow us to
predict the structure and extent of the CBM region. Several
non-local TCMs have been developed (e.g. Xiong et al. 1997;
Canuto & Dubovikov 1998; Li & Yang 2007), with the Kuh-
fuss model (Kuhfuss 1986; Kuhfuß 1987), which is tested in
this work, being one of them. There are two versions of the
Kuhfuss model: the 3-equation model and the simplified 1-
equation model (see Sect. 2 for more details). Both versions
were improved (Wuchterl & Feuchtinger 1998; Flaskamp 2003;
Kupka et al. 2022; Ahlborn et al. 2022), and implemented in
the GARching STellar Evolution Code (Weiss & Schlattl 2008,
GARSTEC). The results for MS stars in the mass range of 1.5–
8 M� with convective cores are in qualitative agreement with
models using MLT and ad hoc overshooting, which were tuned
to match observations (Ahlborn et al. 2022). In particular, we
showed that the extent of the chemically mixed core, as obtained
from using the 1-equation version of the Kuhfuss model, is in
very good agreement with that resulting from the 3-equation ver-
sion, while the two versions lead to different temperature gra-
dients (Kupka et al. 2022). This encouraging first result led us
to consider further tests of the convection model for stars of
different mass and different evolutionary stages, including the

Cepheïd mass discrepancy (Deka et al., in preparation). A first
such test case for the Kuhfuss model is convection in stellar
envelopes, such as those in lower mass MS stars like the Sun.
The conditions under which convection in stellar envelopes hap-
pens are different from the conditions in cores. It is assumed that
convection in envelopes is driven by cooling from the surface
(Spruit 1997), while convection in cores is driven by the heating
from the hottest layers in the centre of the star. The tempera-
ture stratification in convective cores is nearly adiabatic, while
convective envelopes can be extremely superadiabatic, the tem-
perature gradient sometimes being nearer to the radiative than to
the adiabatic value. Furthermore, the density contrast between
the top and the bottom of the convective region is larger in
convective envelopes compared to convective cores. Convective
envelopes consist of narrow, fast downdrafts driven by cool-
ing, and upflows driven by mass conservation, which replace
the mass that flows down (Stein & Nordlund 1989; Trampedach
2010; Trampedach et al. 2014). Therefore, applying and testing
the Kuhfuss model with convective envelopes will allow us to
gauge the extent of its applicability.

The solar envelope is the prime test case for stellar mod-
els, because its structure –including the depth of the convec-
tive region– inferred from helioseismology (see Basu 2016, and
Sect. 3.1) is well known. In this paper, we therefore use the Sun
to study the predictions of the 1-equation model for the solar
convective envelope and its structure. After a short introduction
to the Kuhfuss 1-equation model in Sect. 2, the solar models
and available observable quantities are described in Sect. 3. We
present our results in Sect. 4, and provide a discussion of these
results in Sect. 5. We end the paper with our conclusions and a
summary (Sect. 6).

2. The Kuhfuss 1-equation model

Kuhfuss (1986) derived a turbulent convection model based on
the Reynolds averaged hydrodynamic conservation equations
(Reynolds 1895). To compute the Reynolds averaged equations,
the quantities of a fluid are split into a fluctuating part a′ and
a spherically averaged part a. This procedure is also called
Reynolds splitting. Kuhfuss (1986) applied this splitting to the
quantities of the fluid and derived dynamical equations for the
turbulent kinetic energy (TKE) ω = 1

2 u′2, the convective flux
variable Π = s′u′r, and the second-order entropy fluctuations
Φ = 1

2 s′2. The variables s′ and u′ denote the fluctuations of spe-
cific entropy and velocity. The radial component of u′ is denoted
u′r. From here on, the mean values are given without bars for
improved readability.

The relation between Π and the convective flux is given by
Fconv = ρTΠ, where ρ and T denote mean density and temper-
ature. The dynamical equations for ω, Π, and Φ constitute the
3-equation model. In this work, the more simplified 1-equation
model is used, which is summarised below. For more details on
the 1- and 3-equation models, we refer the reader to the orig-
inal work of Kuhfuß (1987), and the improvements introduced
by Kupka et al. (2022) and Ahlborn et al. (2022).

The main difference between the 1- and the 3-equation model
is the downgradient approximation, which is applied to the
convective flux in the 1-equation model. In analogy to Fick’s
law of diffusion, the convective flux is assumed to be propor-
tional to the gradient of the entropy. This approximation is also
applied in MLT. In the case of the 1-equation model, for the
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convective flux, this approximation implies:

Π = −αsΛω
1/2 ∂s
∂r
, (1)

with a free parameter αs, and a characteristic length scale Λ. The
gradient of the specific entropy can be described by

∂s
∂r

= −
cp

Hp
(∇ − ∇ad) , (2)

with the model and the adiabatic temperature gradient, ∇ and
∇ad, respectively, the specific heat cp, and the pressure scale
height Hp. This reduces the model to one equation, namely to
the equation describing the TKE, ω:

∂ω

∂t
=
∇adTΛαscp

H2
p

√
ω(∇ − ∇ad) −

CD

Λ
ω3/2 −

ω

τrad
− Fω . (3)

The second and third terms in this equation describe the viscous
dissipation with the free parameter CD and the radiative dissipa-
tion, with

τrad =
cpκρ

2Λ2

4σT 3γ2
R

, (4)

with the opacity κ, the Stefan-Boltzmann constant σ, and
the free parameter γR. The inclusion of the radiative losses
in the 1-equation model is an extension of the model by
Wuchterl & Feuchtinger (1998).

The fourth term of Eq. (3) describes the non-local transport
processes, which are modelled with a downgradient approxima-
tion

Fω = −
1
ρ
∇ · (αωρΛ

√
ω∇ω) , (5)

introducing another free parameter αω.
Given the equation for the convective flux (Eqs. (1) and (2)),

the temperature gradient for the model can be calculated as

∇ − ∇ad = (∇rad − ∇ad)
(
1 +

ρcpαsΛ
√
ω

krad

)−1

, (6)

where ∇rad denotes the temperature gradient that is expected
if all energy is transported by radiation and krad denotes the
radiative conduction coefficient (see e.g. Kippenhahn et al. 2013,
Eq. (5.10)).

In analogy to MLT, the characteristic length scale Λ can be
expressed by a parameter αΛ and the pressure scale height Hp.
Wuchterl (1995) introduced another parameter β to account for
cases where Hp diverges, as is the case for example towards the
centre, so that Λ is modified according to

1
Λ

=
1

αΛHp
+

1
βr
. (7)

Compared to MLT, the Kuhfuss 1-equation model has the
advantage of having both the non-locality and the time depen-
dency of convection already included in the theory. As in
Kupka et al. (2022) and Ahlborn et al. (2022), we are interested
in the stationary situation only, setting the time derivative on the
left-hand side of Eq. (3) to zero. A time-dependent but local ver-
sion of the 1-equation model to deal with stellar pulsations was
implemented in the MESA-code by Paxton et al. (2019).

Table 1. Default parameters of the Kuhfuss 1-equation model.

Parameter Default value Physical meaning

αΛ 1.0 Turbulent length scale
αω 0.25 Non-locality

αs
1
2

√
2
3 Entropy flux

CD
8
3

√
2
3 Viscous dissipation

γR 2
√

3 Radiative dissipation
β 1.0 Limitation of Λ

In the non-local version, as implemented in GARSTEC, the
CBM emerges naturally from the solution of the model equa-
tions (Ahlborn et al. 2022), without applying ad hoc overshoot-
ing, as needed in MLT. An important difference between the two
convection models is that the free parameters of the 1-equation
Kuhfuss model are explicitly stated and are connected to dis-
tinct physical processes. While several numerical parameters are
introduced in the derivation of MLT, they are generally not mod-
ified when MLT is applied. In most applications of MLT, there is
only one free parameter left: the mixing length parameter, which
controls the efficiency of convective transport. In contrast, our
implementation of the 1-equation model allows us to vary and
test the impact of all free parameters of the theory. Even though
this also poses the challenge of calibrating a larger number of
parameters, we consider this an advantage of the implementa-
tion of the 1-equation model.

The default parameters of the 1-equation model, as given
in Table 1, were estimated by comparing the convective flux
and the convective velocity of the stationary, local limit of the
1-equation model with the results from MLT (αs, CD), or by
simple physical arguments (αω) (Kuhfuss 1986; Kuhfuß 1987).
Wuchterl & Feuchtinger (1998) suggested using the same value
for γR as determined by Kuhfuss (1986) for the 3-equation
model, who determined it by comparison to MLT. For β, we fol-
low Straka et al. (2005), who used a default value of β = 1. The
default value of αΛ is motivated by the expectation that Λ should
be of the same order as the pressure scale height. However, this
parameter can also be obtained from a solar calibration. As αΛ is
always in combination with the other parameters, there are effec-
tively five free parameters. The influence of the free parameters
on the stellar structure is investigated in Sect. 4.3.

3. The Sun

The vicinity of the Sun to the Earth enables us to observe and
deduce several quantities that are directly linked to the convec-
tive envelope, and thus, can serve as reference points for solar
models (see e.g. Christensen-Dalsgaard 2021, for a review). In
the following section, we describe the measurements available
for comparison with the solar models, which are subsequently
discussed.

3.1. Observations

Helioseismology is the study of the oscillations visible on the
solar surface, which can be used to infer the interior struc-
ture and dynamics of the Sun (Christensen-Dalsgaard 2002). It
allows the radial sound speed and density profile of the Sun
to be obtained with percentage accuracy or better (Basu et al.
2009). Furthermore, helioseismology allows the determination
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of the helium abundance in the envelope (Basu & Antia 2004,
Ycz = 0.2485±0.0034) and the location of the base of the convec-
tive zone (Basu & Antia 1997, Rcz = 0.713 ± 0.001 R�), which
is defined as the radius where the temperature gradient changes
from an adiabatic to a radiative gradient (Basu 2016). Depending
on the prescription of CBM, this does not have to be coincident
with the edge of the mixed region.

The observed frequencies are also influenced by the detailed
structure of the outermost, superadiabatic layers of the con-
vective envelope. Inappropriate modelling of these layers and
neglect of the non-adiabaticity of the oscillations (Houdek et al.
2017) lead to a systematic difference between the observed and
modelled frequencies. In helio- and asteroseismology, this is
called the ‘surface effect’. We find that the 1-equation and MLT
solar models have a very similar structure in the outer layers,
leading to a very similar surface effect. Therefore, we do not
discuss the surface effect in more detail in this work, but show
the similarity in Appendix A. For a solution of the surface effect
problem using three-dimensional box-in-a-star simulations, see
Jørgensen et al. (2018) and Jørgensen & Weiss (2019).

An additional and independent test of the quality of the 1-
equation model concerns the central solar regions. A 1 M� star
is expected to develop a convective core at the end of the pre-
MS, when the core temperature becomes sufficiently hot to bring
the pp1 chain into 3He equilibrium and to burn 12C. When 12C
is depleted and the pp chain dominates the energy production,
this convective core should disappear again (Kippenhahn et al.
2013). A convection theory has to reproduce this behaviour, and
most importantly must result in a solar model that does not have
a convective core at the age of the Sun. Models with an exces-
sively efficient ad hoc overshooting implementation will result
in a persistent convective core over the full duration of the solar
MS lifetime. For all models discussed in Sect. 4, we confirmed
that the energy transport in the core at the age of the Sun is not
convective. This validates the results of the previous successful
test of the 1-equation Kuhfuss TCM for hydrogen-burning stellar
cores (Ahlborn et al. 2022).

Another observable that is directly influenced by convec-
tion is the lithium abundance in the photosphere of stars. Li is
already depleted at relatively low temperatures of about 2.5 ·
106 K (Pinsonneault 1997), for densities typically found in MS
envelopes. The depletion of Li in convective envelopes depends
on whether the well-mixed envelope reaches sufficiently deeply
into the star, that is, into regions hot enough for Li depletion,
and how long this stage lasts. Observations of open clusters and
solar analogues suggest that Li depletion happens on the MS.
However, simple convection models like MLT or the 1-equation
model only predict Li depletion on the pre-MS. To reproduce
the Li depletion on the MS, the convection theories need to be
modified, for example by using MLT with different overshooting
lengths for the pre-MS and MS evolution, and for core and enve-
lope convection (Schlattl & Weiss 1999), or processes beyond
convection need to be considered (e.g. Andrássy & Spruit 2013;
Montalban 1994; Zahn 1992; Caballero Navarro et al. 2020).
Such additional processes are not included in the solar models
discussed in this work, and therefore we do not discuss Li deple-
tion in detail. We comment on this briefly in Appendix B.

3.2. Standard solar models

The GARching STellar Evolution Code (GARSTEC, Weiss
& Schlattl 2008) calibrates a standard solar model (SSM) by
matching a 1 M� model of the solar age to the Sun’s present
luminosity (L�), radius (R�), and surface metallicity fraction

(Z�/X�) within 1 in 105 parts (Schlattl et al. 1997). The free
parameters are the mixing length parameter (αMLT), and the ini-
tial helium (Yinit) and metal abundances (Zinit). This calibration
can also be applied to the 1-equation model, in which case the
parameter αΛ is varied, which is the analogue of the αMLT param-
eter in MLT.

The models include the atomic diffusion of hydrogen,
helium, and metals in radiative regions. In convective regions,
mixing of all elements is modelled by a diffusion equation with
a diffusive velocity obtained from the convection theory. Effec-
tively, this amounts to instantaneous mixing. Solar models com-
puted with MLT (Sect. 4.1) do not include overshooting.

For a comparison between the models using MLT and the
ones using the 1-equation model in Sect. 4.1, the parameters
of the 1-equation model were fixed to the default parameters
as determined by Kuhfuss (1986) (see Table 1), except for αΛ,
which was varied to match the Sun. The abundances as deter-
mined by Magg et al. (2022) were used, with a metal fraction
of Z�/X� = 0.0225. In Sects. 4.2 and 4.3, solar calibrated mod-
els with different abundances and varied parameters of the 1-
equation model were calculated to test the influence of these
inputs. The abundances and parameters used are specified in the
respective sections.

For all solar models calculated for this work, we adopted
the opal equation of state from Rogers & Nayfonov (2002) and
the OP opacities from Badnell et al. (2005), substituted at low
temperatures with the opacities by Ferguson et al. (2005), using
the appropriate compositions. For the stellar models discussed
in Sect. 4.1, we used opacities calculated from the abundances
determined by Magg et al. (2022) (Yago Herrera, private com-
munication). For the stellar models discussed in Sects. 4.2
and 4.3, we used the abundances as indicated in those respec-
tive sections.

4. Results

In the following section, we compare the models described in
Sect. 3.2 to the solar seismic structure described in Sect. 3.1.
First, we compare the solar calibrated model obtained using
MLT (SSM-MLT) with the one obtained using the Kuhfuss 1-
equation model (SSM-K1). For this comparison, the parameters
of the 1-equation model were kept at the default values, except
for the calibrated parameter αΛ. In Sect. 4.2 we test the impact
of different compositions on the structure of the solar model. We
close this section by testing the influence of the parameters of
the 1-equation model (Sect. 4.3).

4.1. Comparing MLT and the 1-equation model

The base of the convective envelope as measured by helioseis-
mology is defined as the radius where the temperature gradient
changes from close to adiabatic to radiative; this occurs at dif-
ferent radii depending on the convection theory used1. For the
SSM-MLT, this radius coincides with the Schwarzschild radius,
where ∇ad = ∇rad, which equates to 0.7144 R� (Table 2). This
value is within 1.4σ of the seismologically inferred value of
0.713± 0.001 R� (Basu & Antia 1997), and is in agreement with
the recent solar model by Magg et al. (2022). The 1-equation
model predicts a nearly adiabatic temperature stratification over
most of the CBM region. Thus, the change to ∇rad happens at the
boundary of the CBM region, at a radius of 0.6845 R�, which

1 See Appendix C for a detailed description of the terminology for the
different parts of the envelope.
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Table 2. Characteristics of the solar models and comparison to the mea-
surements of Rcz and Ycz (Basu & Antia 1997, 2004, respectively).

MLT 1-eq. Measurement

Rcz [R�] 0.7144 0.6845 0.713± 0.001
Ycz 0.2423 0.2456 0.2485± 0.0034
αMLT or αΛ 1.809 1.818 · · ·

Yinit 0.2724 0.2702 · · ·

Zinit 0.0184 0.0179 · · ·

Fig. 1. Temperature stratification (upper panel) and TKE ω (lower
panel) in the region of the convective boundary, calculated with the 1-
equation model (orange) and with MLT (blue). The adiabatic (∇ad, dark
grey), radiative (∇rad: light grey, MLT: solid, 1-equation model: dash-
dotted), and model temperature gradients are shown. ∇ad is the same for
the 1-equation model and MLT. For the 1-equation model, ∇ is slightly
subadiabatic in the CBM region and sharply changes to ∇rad when ω
(lower panel) drops to zero. The inset in the lower panel shows the
complete convective envelope. The vertical lines mark the boundaries
of the convective regions (orange: 1-equation model, blue: MLT) and
the helioseismic measurement (red, Basu & Antia 1997), whereas the
grey shaded regions denote the uncertainty of the measurement.

is in strong disagreement with the helioseismic measurement
(29σ).

Figure 1 shows the temperature stratification close to the
convective boundary for the SSM-K1 and the SSM-MLT. The
convective velocity in the SSM-MLT, and therefore the TKE,
drops to zero at the Schwarzschild boundary (see lower panel
of Fig. 1). By construction, the Schwarzschild boundary is coin-
cident with the boundary of the convective region when using
MLT. At that radius, the temperature gradient also changes from
the adiabatic to the radiative gradient. For the 1-equation model,

Fig. 2. Sound speed profile as determined by Basu et al. (2009) com-
pared to the profile predicted by SSM-MLT (blue) and by SSM-K1
(orange). The y-axis shows the relative difference in the squared sound
speed between the observation c2

helio and the models c2
model: δc

2/c2 =

(c2
helio − c2

model)/c
2
helio.

the region with a close-to-adiabatic gradient is extended to a
smaller radius than expected from helioseismology, while the
Schwarzschild boundary is still located within the observation-
ally allowed range. The temperature gradient ∇ in the 1-equation
model is dependent on the TKE ω, ∇ad, and ∇rad (see Eq. (6)); it
is superadiabatic at radii larger than the Schwarzschild boundary,
and in this region ω > 0 and ∇ad < ∇rad. In the CBM region, that
is beyond the Schwarzschild boundary, the temperature gradient
becomes subadiabatic (∇−∇ad of the order of −10−6). However,
ω is large for the largest part of the CBM region, and thus con-
vection is efficient and ∇ is close to ∇ad. Only at the boundary
of the CBM region does ω sharply drop to zero. When ω → 0,
∇ → ∇rad (see Eq. (6)). This means that ∇ stays close to adia-
batic for most of the CBM region, and sharply changes to ∇rad
at the boundary. This extended region where ∇ is close to ∇ad in
the CBM region is in disagreement with the measurement. The
expression for the temperature gradient in the 1-equation model
was determined with the use of the convective flux, which was
estimated using the downgradient approximation (Eq. (1)). This
approximation is likely what causes the poor agreement between
the temperature stratification of the model and the measurements
of the Sun.

Figure 2 shows the relative difference in the squared sound
speed between observations (Basu et al. 2009) and solar mod-
els (δc2/c2). The greatest deviation occurs for both models at a
radius of r ≈ 0.683 R�, in the vicinity of the base of the convec-
tive envelope. In this region, the SSM-MLT underestimates the
squared sound speed by ≈0.69%, whereas the SSM-K1 overes-
timates it by ≈2.17%. The larger sound speed at the base of the
convective envelope obtained with the 1-equation model is con-
nected to the location of the boundary of the CBM region (see
also Basu & Antia 1997, their Fig. 3). In SSM-K1, the change
from a close-to-adiabatic to a radiative temperature gradient hap-
pens at a smaller radius than in the Sun. Therefore, the predicted
temperature in the CBM region is higher, resulting in a higher
sound speed. The radii where the temperature gradient changes
to a radiative gradient are marked with a vertical dash-dotted and
dotted line for MLT and the 1-equation model, respectively.

The He abundance in the envelope of both models is a good
match to the seismically determined value (Table 2). For the
SSM-MLT, the abundance is 0.2423, which is within 1.8σ of the
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measurement (0.2485± 0.0034, Basu & Antia 2004), while it is
0.2456 for the SSM-K1, within 0.9σ. This small improvement
is due to the larger convective reservoir, from which diffusive
settling draws helium to the interior.

In summary, the agreement between observations and the
solar model decreases when the Kuhfuss 1-equation model is
used. This is especially obvious for quantities related to the tem-
perature stratification, such as the boundary of the convective
region and the sound speed profile. The He abundance is not
affected. This is a hint that the downgradient approximation of
the convective flux and the resulting temperature gradient do not
appropriately represent the conditions in the Sun.

4.2. Different abundances

The composition of the Sun is a long-standing problem. It is an
important input parameter in solar models and influences, for
example, the opacities, and thus observables such as the sound
speed profile. In this section, we first give a brief overview of
the commonly used compositions, and then we compare SSM-
K1 with different compositions to investigate their impact on the
model.

Grevesse & Sauval (1998, hereafter GS98) determined the
fraction of metals in relation to hydrogen Z�/X�=0.023, using
a 1D model of the solar atmosphere. With 3D hydrodynamic
models becoming feasible, Asplund et al. (2005) determined the
composition of the Sun, which was updated by Asplund et al.
(2009, hereafter A09). Their work resulted in a shift of the metal-
licity to lower values compared to GS98: Z�/X�=0.0181. The
lower abundances derived by A09, especially those of C, N, and
O, result in lower opacities, and decrease the agreement between
observations and a SSM calculated with the abundances from
A09. For a discussion of the possible causes and solutions for
the decreased agreement, we refer the reader to A09, Serenelli
(2016), and Buldgen et al. (2019). Magg et al. (2022, hereafter
M22) redetermined the solar abundances, also using 3D simu-
lations, but employing different atomic data. They obtained an
overall metallicity fraction of Z�/X�=0.0225, the value used in
Sect. 4.1. This is close to that determined by GS98, but the abun-
dances of individual elements differ. This improves the agree-
ment with helioseismic measurements compared to the lower
metallicity obtained by A09 (Magg et al. 2022).

However, the question of which abundances are the best to
use is not straightforward. For example, Buldgen et al. (2024b)
studied the first adiabatic exponent using helioseismic inver-
sions, and found a better agreement for lower metallicities. In
a detailed study of the degeneracies and the influence of the
input physics of a SSM, Buldgen et al. (2024a) found that the
higher metallicities determined by M22 do not solve the issues
present in solar modelling. Therefore, it is not yet clear which set
of abundances is the appropriate one, and we calculated SSMs
with the 1-equation model with all three sets of abundances. The
other input parameters are the same as described in Sect. 3.2. The
results of these calculations are given in Table 3 and Fig. 3. We
emphasise that in each case, we used opacities consistent with
the respective composition.

The results obtained for the abundances from M22 and GS98
are quite similar due to the similar total metallicity. The base of
the convective zone is within 29σ of the helioseimsic measure-
ment for both GS98 and M22; it is improved, although still very
different from the measurement (19σ), when using the abun-
dances from A09.

Figure 3 shows δc2/c2 for the models with different abun-
dances. The differences range from −2.24% to 0.44% and from

Table 3. Characteristics of the solar models calculated with differ-
ent abundances and comparison to the measurements of Rcz and Ycz
(Basu & Antia 1997, 2004, respectively).

GS98 A09 M22 Measurement

Rcz [R�] 0.6842 0.6938 0.6845 0.713± 0.001
Ycz 0.2416 0.2371 0.2456 0.2485± 0.0034
αΛ 1.817 1.808 1.818 · · ·

Yinit 0.2658 0.2623 0.2702 · · ·

Zinit 0.0184 0.0146 0.0179 · · ·

Fig. 3. As in Fig. 2, but comparing the sound speed profiles of
solar models calculated with the 1-equation model and different abun-
dances: Grevesse & Sauval (1998, GS98), Asplund et al. (2009, A09),
and (2022, M22). The quantity on the y-axis is defined as δc2/c2 =
(c2

helio − c2
model)/c

2
helio.

−2.17% to 0.31% for GS98 and M22, respectively, and from
−0.70% to 1.07% for A09. The morphology of δc2/c2 is dif-
ferent between the models using the A09-abundances and the
ones using the GS98- and M22-abundances. The largest abso-
lute deviation in the latter two sets of abundances is just below
the convective envelope and negative in sign, because the mod-
els over-predict the sound speed. For the A09 model, the maxi-
mum deviation is at smaller radii and the model under-predicts
the sound speed.

GS98 and M22 agree with the measured helium abundance
in the envelope within 2σ and 0.9σ, respectively. For A09, the
agreement is decreased to 3.3σ.

As was found previously for MLT-based SSMs (Magg et al.
2022), the results for GS98 and M22 are nearly identical. For
our TCM-based models, the agreement between the helioseis-
mic measurements and A09 is better for the depth of the con-
vective envelope compared to the models with the other abun-
dances. However, it is worse when considering the He content in
the solar envelope, and the sound speed profile.

4.3. Varying the parameters of the 1-equation model

The Kuhfuss 1-equation model effectively has five free param-
eters (see Sect. 2). Ahlborn et al. (2022, see their Appendix)
investigated the influence of some parameters for the cores of
MS models, and found a rather limited effect. Here we test
their influence on the solar convective envelope. We performed a
solar calibration, varying one of the parameters at a time, while

A292, page 6 of 12



Braun, T. A. M., et al.: A&A, 689, A292 (2024)

Fig. 4. As in Fig. 2, but comparing the sound speed profiles of solar models calculated with the 1-equation model and different values for the free
parameters. One parameter is varied in each panel while keeping the other parameters at the default values. The parameter changed is specified in
the legend. The quantity on the y-axis is defined as δc2/c2 = (c2

helio − c2
model)/c

2
helio.

leaving the others at their default values. For these calculations,
the abundances determined by Magg et al. (2022) were used.
The results of the solar calibration with different sets of param-
eters are shown in Fig. 4 and Table 4. For each run, the varied
parameter and its new value are given in the header of Table 4,
and all other parameters except for the specified one were kept
at the default value (see Table 1). As αΛ, Yinit, and Zinit are varied
to match R�, L�, and Z�/X� in the solar calibration, the values
of αΛ, Yinit, and Zinit differ between calculations with different
sets of parameters, partly compensating for the variation of the
parameters of the TCM.

We find that Rcz is at a smaller radius, the higher the value of
αω, and the lower the values of αs and CD. This also affects the
other observables: When the convective envelope reaches deeper
into the solar model, the value of δc2/c2 in the vicinity of the
boundary of the CBM region is more negative (Fig. 4), and the
He abundance in the envelope is higher (Table 4). These effects
can be understood by the physical interpretation of the individual
free parameters.

The non-locality of the model is controlled by αω. Hence,
an increase in αω results in an extension of the CBM region.
The parameter αs combined with Λ and ω1/2 can be interpreted
as a diffusion coefficient for the convective flux, which is pow-
ered by the entropy gradient (see Eq. (1)). Thus, decreasing αs
decreases the convective flux for the same entropy gradient. In
other words, to obtain the same convective flux, which is needed
to reproduce L� and R�, the product Λω1/2 needs to increase
when αs is decreased. It was confirmed that the quantities Λ
–which depends on αΛ– and ω increase for decreased αs. As

the non-local term increases for a generally larger ω and Λ (see
Eq. (5)), the CBM region becomes more extended when decreas-
ing αs.

Finally, the viscous dissipation is controlled by CD. Thus, a
smaller value for CD decreases the dissipation in the convective
region, increasing the efficiency of the convection, which means
increasing ω. Again, this increase in ω also effects the CBM
region, shifting the boundary of the CBM region to smaller radii.

When varying γR, the parameter controlling the radiative dis-
sipation, only minor changes are visible. Thus, the exact value of
the parameter of the radiative dissipation does not significantly
influence the result.

The parameter β is not a parameter that directly controls the
physical processes playing a role in convection, but instead it
was introduced to limit the turbulent length scale Λ in regions
where the pressure scale height Hp diverges (Wuchterl 1995).
The larger the correction applied to Λ, the smaller the value of β.
The pressure scale height diverges in the centre, and therefore the
limitation of Λ due to βmostly effects the core. For β = 10, it can
be observed that the limitation is not strong enough in this case.
The high values of Hp in the core region influence Λ enough
to alter the solar sound speed profile, which shows the need for
a limitation of Λ when Hp diverges (Fig. 4). However, β also
limits Λ in the envelope. The impact on the convective envelope
can be seen from Eq. (3), where Λ appears in the numerator of
the source terms and in the denominator of the sink terms. Thus,
if Λ is limited less strongly by a larger β, ω has to be larger to
compensate, and the convective envelope reaches deeper into the
Sun due to the influence of ω on the non-local term. As for the

A292, page 7 of 12



Braun, T. A. M., et al.: A&A, 689, A292 (2024)

Table 4. Characteristics of the solar models calculated with different Kuhfuss parameters and comparison to the measurements of Rcz and Ycz
(Basu & Antia 1997, 2004, respectively).

Default αω = 0.0 αω = 0.1 αω = 0.4 αs = 0.3 αs = 0.6 CD = 1.7 CD = 4.0 Measurement

Rcz [R�] 0.6845 0.7142 0.6957 0.6762 0.6779 0.6911 0.6822 0.6896 0.713± 0.001
Ycz 0.2456 0.2424 0.2444 0.2464 0.2461 0.2449 0.2456 0.2451 0.2485± 0.0034
αΛ 1.818 1.728 1.761 1.873 2.346 1.342 1.730 2.068 · · ·

Yinit 0.2702 0.2723 0.2708 0.2699 0.2698 0.2705 0.2698 0.2705 · · ·

Zinit 0.0179 0.0184 0.0180 0.0178 0.0178 0.0180 0.0178 0.0179 · · ·

Default γR = 1.0 γR = 5.5 β = 0.1 β = 10 Measurement
Rcz [R�] 0.6845 0.6851 0.6840 0.7019 0.6803 0.713± 0.001

Ycz 0.2456 0.2455 0.2455 0.2438 0.2463 0.2485± 0.0034
αΛ 1.818 1.780 1.860 1.829 1.817 · · ·

Yinit 0.2702 0.2702 0.2701 0.2712 0.2703 · · ·

Zinit 0.0179 0.0179 0.0179 0.0181 0.0178 · · ·

other cases, a deeper convective envelope (larger β) produces a
sound speed profile of the model that tends to overestimate the
sound speed near the boundary of the CBM region, resulting in
a negative amplitude in Fig. 4.

Therefore, varying the free parameters in the 1-equation
model would allow the 1-equation model to be tuned such that
the agreement between SSM-K1 and the helioseismic measure-
ments is improved. However, this is not the aim of the present
paper, and would not address the shortcomings of the 1-equation
model (see Sect. 5).

5. Discussion

There are several studies in the literature that investi-
gate the thermal structure of the CBM in general and
also specifically for the Sun. Xiong & Deng (2001) and
Christensen-Dalsgaard et al. (2011) both used 1D stellar mod-
els to study the solar convective envelope, but followed dif-
ferent approaches. Christensen-Dalsgaard et al. (2011) inves-
tigated which parameterisation of the temperature stratifi-
cation in the CBM region best fits the helioseismic mea-
surements. The theory used by Xiong & Deng (2001) is a
non-local convection model based on the auto- and cross-
correlations of the temperature fluctuations and the turbulent
velocity (Xiong 1989; see Xiong 2021 for a review of this
theory). This theory is similar to the full Kuhfuss 3-equation
model, where the correlations of the turbulent velocity and the
entropy fluctuations are used. Both Xiong & Deng (2001) and
Christensen-Dalsgaard et al. (2011) found a smooth transition
of the temperature gradient from close-to-adiabatic to radiative
in the CBM region, and an extended subadiabatic layer already
within the formal Schwarzschild boundary. Using the non-local
and anisotropic model derived by Xiong (1989) and Deng et al.
(2006), Zhang et al. (2012) constructed a model for the solar
envelope, and showed that the discrepancies in the sound speed
profile decrease if a non-local convection model with such a
smooth transition of the temperature gradient is used.

Käpylä et al. (2017) employed a 3D hydrodynamic simula-
tion to study the CBM region, finding that a convective region
is generally composed of three layers: a buoyancy region with
a super-adiabatic gradient and positive convective flux, followed
by a Deardorff layer, which is a sub-adiabatic layer with pos-
itive convective flux, and an overshooting region, where the
convective flux becomes negative and the temperature gradi-
ent is subadiabatic. The overshooting region is then followed
by a region where radiative energy transport is dominating.

These layers have the same characteristics as the ones found by
Christensen-Dalsgaard et al. (2011) and Xiong & Deng (2001)
using one-dimensional approaches. Käpylä et al. (2017) con-
firmed that the convective flux has a contribution that is not pro-
portional to the entropy gradient, which is found to be crucial for
developing the Deardorff layer (see also Deardorff 1961, 1966).
The 1-equation model, as well as MLT, use the downgradient
approximation for the convective flux, which means that the con-
vective flux is modelled by assuming a proportionality with the
entropy gradient (Eq. (1)). This assumption prevents a Deardorff
layer, and causes a physically inaccurate modelling of the CBM
region.

Using 2D hydrodynamic simulations, Baraffe et al. (2021)
found that CBM can modify the thermal background in the CBM
region considerably. This leads to a more gradual change of the
temperature gradient in the CBM region. Baraffe et al. (2022)
included the description of the modification of the temperature
gradient found by Baraffe et al. (2021) in a 1D stellar evolution
code, finding that this effect has the potential to improve the
sound speed discrepancy, which is found just below the convec-
tive envelope in solar models.

All the aforementioned findings show that the temperature
stratification is not appropriately modelled in the 1-equation
model, which is connected to the approximation of the convec-
tive flux based on the entropy gradient. As briefly mentioned in
Sect. 2, this approximation is the main difference between the
Kuhfuss 1-equation and 3-equation models. In the 3-equation
model, the equation for the convective flux variable Π is kept.
With the temperature gradient given as

∇ = ∇rad −
Hp

kradT
ρTΠ , (8)

it becomes clear that keeping the equation for Π without employ-
ing the downgradient approximation will have a direct impact
on the temperature stratification of the model. In earlier stud-
ies, the 3-equation model was applied to convective cores, and
it was confirmed that the 3-equation model is able to produce
not only the correct convective core size for MS stars, but also
a Deardorff layer and a more gradual change of the tempera-
ture gradient at the boundary of the CBM region (Ahlborn et al.
2022). The next step in this project will therefore be to apply the
3-equation model in stellar envelopes and to test this again on
a solar model. Due to the findings in main sequence stars, we
expect the 3-equation model to provide a better structure of the
solar CBM region.

In standard solar models, several physical effects are not
included. Their purpose is to serve as a well-defined reference
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against which new physical ingredients can be tested (see
Serenelli 2016, for a review). However, an appropriate modelling
of the convective energy transport is not the only open ques-
tion that needs to be answered in order to find a realistic solar
model. The depletion of Li is a prime example of possibly miss-
ing physics, and is needed to bring the depletion of Li as a func-
tion of time into agreement with observations. In Appendix B,
we briefly show the evolution of the solar surface Li content as
a result of our SSM-K1 model. Other physical processes known
to influence the Sun but nevertheless not included in standard
solar models are magnetic fields (Baldner et al. 2009) and rota-
tion (Thompson et al. 2003). It is likely that the appropriate treat-
ment of these processes necessitates sophisticated (magneto-
)hydrodynamic simulations.

6. Conclusion and summary

We used a standard solar model to test the 1-equation convec-
tion model first developed by Kuhfuss (1986). The advantage
of this TCM is that the non-locality of convection is included
in the theory and no ad hoc inclusion of CBM is needed. Com-
parison with several observed quantities of the Sun shows that
the convective envelope as predicted by a solar-calibrated model
with the 1-equation Kuhfuss model reaches too far into the star if
the default choice of parameters suggested by Kuhfuss (1986) is
used. While substantial CBM from a convective envelope would
be a way to solve the red giant bump problem (see Sect. 1), it
would degrade the SSM quality, at least when the temperature
gradient is nearly adiabatic in the CBM region.

The nearly adiabatic temperature stratification in the CBM
region is connected to the simplicity of the Kuhfuss 1-equation
model. The close coupling of the convective flux and the super-
adiabatic temperature gradient –which is introduced by the
downgradient approximation– results in an unrealistic temper-
ature stratification in the CBM region. Several 2D and 3D simu-
lations, as well as other 1D models (Christensen-Dalsgaard et al.
2011; Xiong & Deng 2001; Käpylä et al. 2017; Baraffe et al.
2021), found that the temperature gradient in the CBM region is
subadiabatic, smoothly changing to a radiative gradient; whereas
in the 1-equation model, it is close to adiabatic and changes
to a radiative gradient abruptly at the boundary of the CBM
region. The 3-equation model, the full version of the Kuhfuss-
TCM (Kuhfuß 1987; Kupka et al. 2022), lifts the tight coupling
between the convective flux and the superadiabatic temperature
gradient. Ahlborn et al. (2022) applied the 3-equation model to
convective cores and found a temperature stratification in better
agreement with other TCMs and hydrodynamical simulations.
This is a first suggestion that the modelling of the temperature
stratification is more realistic, and that a solar model can be
improved by using the 3-equation model. This will be investi-
gated further in the future.

Another route to a better solar model could be to calibrate the
free parameters of the Kuhfuss 1-equation model. Their default
values were mostly determined by calibrating the local and sta-
tionary limit of the 1-equation model to the MLT, but this is not
compulsory. Instead, the helioseismic measurements could be
used to calibrate the free parameters. However, considering the
shortcomings of the 1-equation model, this approach does not
seem to be very favourable, and a convection model with a more
realistic temperature stratification would be a more promising
way forward.

The calibration of the Kuhfuss 1-equation model to the MLT
in the local and stationary limit results in a similar structure in
the superadiabatic parts of the solar envelope (Fig. A.2). This,

and the failure of the 1-equation TCM concerning the depth
of the solar convective envelope, indicate that the Kuhfuss 1-
equation model can be considered a consistent and physical non-
local extension of MLT. It may be used instead of the normal
approach of extending MLT with ad hoc overshooting. Indeed,
first tests demonstrate that the mentioned red giant bump prob-
lem can be solved with the 1-equation Kuhfuss model. Why the
theory seems to work for deep convective envelopes in red giants
but overpredicts the depth of the comparably shallow solar con-
vective envelope remains to be understood.

On the other hand, in spite of the non-locality of the 1-
equation model, the convective core that exists during the final
pre-MS phase vanishes before reaching the MS, such that the
solar model has no convective core. This supports the conclu-
sion of Ahlborn et al. (2022) that the 1-equation model is a rea-
sonable theory for core convection.
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Fig. A.1. The difference between the observed frequencies of the l = 0
modes (Broomhall et al. 2009; Davies et al. 2014), and the frequen-
cies calculated based on the SSM-K1 (orange diamonds), SSM-MLT
(blue circles), and the solar model from Jørgensen & Weiss (2019),
with inclusion of turbulent pressure and patched 3D atmosphere (green
crosses) is shown. For the solar model from Jørgensen & Weiss (2019),
the structural surface effect is corrected, and the difference between
observed and calculated frequencies can be explained by remaining
modal effects.

Fig. A.2. The structure of the envelope of the SSM-K1 (orange) and
of the SSM-MLT (blue) is very similar, which leads to a very similar
surface effect.

Appendix A: Envelope structure

As mentioned in Sect. 3, SSM employing MLT predict a defec-
tive thermal structure of the convective envelope that results
in the surface effect, a systematic deviation of model p-mode
frequencies from those observed in the Sun. In Fig. A.1 we
show the comparison of l = 0 p-mode frequencies resulting
from the SSM-MLT, the SSM-K1, and a SSM with a patched
envelope and atmosphere from a three-dimensional simulation
(Jørgensen & Weiss 2019). Although in the latter there is still
a discrepancy visible, the authors argue that this is due to the
adiabaticity assumed in the frequency calculation (the “modal
effect”), while the “structural effect” is solved. In any case, it
is clear that both MLT and the 1-equation Kuhfuss model share
the same problem. This is the result of the very similar thermal
structure in both models, as is shown in Fig. A.2.

Fig. B.1. Li is depleted over the lifetime of the Sun. For comparison, the
value derived from meteoric and photometric measurements is included
as red dashed line, with the 1, 2 and 3σ range denoted as grey shaded
regions (Lodders et al. 2009). The vertical black line denotes the begin-
ning of the MS.

Table B.1. Comparison of the Li depletion in the solar models and the
measurement (Lodders et al. 2009)

MLT 1-eq. Measurement

XLi,Surf/XLi,0 0.204 5 · 10−5 0.007+0.003
−0.002

Appendix B: Li depletion

Figure B.1 shows the depletion of lithium as a function of age as
predicted by the SSM-MLT and the SSM-K1 (Table B.1). The
fractional Li depletion as determined by Lodders et al. (2009) is
used as a reference for the expected depletion, and is marked in
the figure with a red dotted line, with grey shaded areas to indi-
cate the 1σ, 2σ and 3σ ranges. While it is clear that the SSM-
MLT has a fractional Li abundance which is much too high, the
fractional Li abundance as predicted by the SSM-K1 is in better
agreement (3.5σ), but lower than the observation. The extension
of the well-mixed CBM region when using the 1-equation model
brings Li to smaller radii, into regions hot enough to deplete Li,
thus, resulting in a lower Li abundance at the age of the Sun.

The black vertical line in Fig. B.1 denotes the beginning of
the MS. Both convection models predict that the Li depletion
mainly happens in the pre-MS phase, but not later. Observations
of open clusters and solar analogues find Li depletion during
the MS phase (Chaboyer et al. 1998; Carlos et al. 2016, 2020;
Mishenina et al. 2020, 2022; Rathsam et al. 2023), which is nei-
ther predicted by the SSM-MLT nor by the SSM-K1, even if the
convective envelope tends to reach deeper than in the SSM-MLT.
Several solutions are suggested in the literature to solve this
discrepancy. For example, Schlattl & Weiss (1999) and Zhang
(2012) studied how to modify the overshooting to bring models
and observations in agreement. Furthermore, additional causes
of mixing beyond the convectively unstable region, such as
gravitational settling (Andrássy & Spruit 2013, 2015), internal
gravity waves (Montalban 1994; Montalbán & Schatzman 2000;
Charbonnel & Talon 2005) and rotational mixing (Zahn 1992;
Charbonnel et al. 1994; Constantino et al. 2021), are discussed
as a cause of the observed Li depletion. Since these processes
are not yet fully understood, and not included in SSMs, the SSM-
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MLT and the SSM-K1 suffer from the same general shortcoming
of SSMs.

Fig. C.1. Schematic plot of a convective region. The convective region,
where ω > 0, is divided into a CBM region and a convectively unstable
region. The vertical lines mark the boundary of the convective region
(dotted) and the Schwarzschild boundary (∇ad = ∇rad, dashed).

Appendix C: General structure of a convective
region

Figure C.1 shows the structure of a general convective zone, in
order to clarify the terminology. When ω > 0, there is con-
vective motion, thus, we call this region the convective region.

For simple one-dimensional convection models as MLT and the
1-equation model, this region is divided into the convectively
unstable region, where ∇ad < ∇rad, and the CBM region, where
∇ad > ∇rad. The boundary between the convectively unsta-
ble region and the CBM region is the Schwarzschild boundary
(∇ad = ∇rad). The radius at which the TKE drops to zero is the
boundary of the convective region. If a CBM region is present,
this is synonymous with the boundary of the CBM region. In
classical MLT, the TKE drops to zero at the Schwarzschild
boundary. Thus, there is no CBM region, and the boundary
of the convective region is synonymous with the boundary of
the convectively unstable region, which is the Schwarzschild
boundary.

The temperature gradient depends on the details of the con-
vection theory. Ad hoc overshooting only considers the transport
of elements but does not include heat transport. Thus, if MLT
with ad hoc overshooting is applied, the temperature gradient
is not modified compared to the temperature gradient predicted
from classical MLT. It is adabatic in the convectively unstable
region and becomes radiative at the Schwarzschild boundary.
The 1-equation model predicts a marginally subadiabatic tem-
perature gradient in the CBM region, with a sharp transition to
a radiative gradient at the boundary of the CBM region (see Fig.
1). Other, less simplified convection models and 3D simulations
predict a gradual change from an adiabatic to a radiative tem-
perature gradient. The temperature gradient can become suba-
diabatic already before the Schwarzschild boundary. This gives
rise to a Deardorff-layer, which is a region with a subadiabatic
temperature gradient and a positive convective flux (see Sect. 5,
and references therein).
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