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ABSTRACT

Context. Convective overshoot mixing is a critical ingredient of stellar structure models but is treated in most cases by ad hoc exten-
sions of the mixing-length theory for convection. Advanced theories that are both more physical and numerically treatable are needed.
Aims. Convective flows in stellar interiors are highly turbulent. This poses a number of numerical challenges for the modelling of
convection in stellar interiors. We included an effective turbulence model in a 1D stellar evolution code in order to treat non-local
effects within the same theory.
Methods. We used a turbulent convection model that relies on the solution of second order moment equations. We implemented this
into a state-of-the-art 1D stellar evolution code. To overcome a deficit in the original form of the model, we took the dissipation due
to buoyancy waves in the overshooting zone into account.
Results. We compute stellar models of intermediate mass main-sequence stars of between 1.5 and 8 M�. Overshoot mixing from the
convective core and modified temperature gradients within and above it emerge naturally as a solution of the turbulent convection
model equations.
Conclusions. For a given set of model parameters, the overshooting extent determined from the turbulent convection model is com-
parable to other overshooting descriptions, the free parameters of which had been adjusted to match observations. The relative size
of the mixed cores decreases with decreasing stellar mass without additional adjustments. We find that the dissipation by buoyancy
waves constitutes a necessary and relevant extension of the turbulent convection model in use.
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1. Introduction

Internal transport processes substantially shape the structure of
stars. This concerns the transport of energy as well as the trans-
port of chemical elements and angular momentum. In interme-
diate and high mass main-sequence stars, the energy released by
nuclear fusion in the centre is transported by convection, which
is the transport of energy by means of fluid motion. In deep con-
vective zones, convection determines the temperature gradient
and dominates the chemical mixing processes due to its effi-
ciency. Hence, convection is a crucial aspect of stellar structure
and evolution models.

Notwithstanding its importance, convection remains one of
the major uncertainties in stellar structure and evolution mod-
elling. The most commonly used description of convection
for stellar models is the so-called mixing-length theory (MLT;
Biermann 1932; Böhm-Vitense 1958). Despite its simplicity –
MLT is a local and time-independent theory – it has been used
very successfully over many years to model stellar interiors.
With ever-improving observational facilities and methods, how-
ever, more and more deficits of MLT have become apparent. One
of the main problems of MLT concerns the treatment of convec-
tive boundaries. When ignoring compositional effects, the accel-

eration drops to zero at the so-called Schwarzschild boundary,
while the velocity generally does not. From a theoretical point
of view, it has been shown that convective motions should pass
the Schwarzschild boundary and penetrate into the stable layers
(Roxburgh 1978, 1992; Zahn 1991). In stable layers, convective
motions are braked and the material carried with the flow mixes
with the surroundings. In the literature, different terms are used
to describe the processes at convective boundaries. Zahn (1991)
differentiated between thermally efficient and inefficient convec-
tion. Thermally efficient convection is able to modify the model
temperature gradient and is therefore referred to as sub-adiabatic
penetration. Thermally inefficient convection leaves the temper-
ature gradient unchanged while still mixing chemical elements.
Zahn (1991) referred to this as overshoot mixing. Finally, the
notion of convective entrainment refers to the continuous inges-
tion of material at convective boundaries into a convective region
(Turner 1986). This effect is found to represent the convective
boundary mixing in 3D simulations of an oxygen-burning shell
(Meakin & Arnett 2007).

In the MLT picture, the convective velocities drop to zero at
the formal Schwarzschild boundary, preventing convective mix-
ing beyond this point. In a physical configuration, however, only
the acceleration of fluid elements disappears, while the velocity
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generally remains finite. To include the effects of convective
overshooting in stellar models, additional descriptions have to
be applied. Early attempts were proposed by, for example,
Saslaw & Schwarzschild (1965) and Shaviv & Salpeter (1973).
For a critical review of these theories, we refer the reader to
Renzini (1987). The main effect of convective overshooting on
the stellar structure can be mimicked by introducing additional
mixing at convective boundaries during stellar evolution, which
we refer to as ad hoc overshooting. To account for the required
mixing, Freytag et al. (1996) introduced an additional diffusion
constant, which decreases exponentially as a function of the
distance to the Schwarzschild boundary. This is also known as
‘diffusive overshooting’. Although this approach was originally
based on 2D simulations of envelopes in A-type main-sequence
stars and DA-type white dwarfs that have thin convective zones
subject to strong radiative losses, it is commonly applied to all
convective boundaries in stellar evolution models.

When assuming instantaneous mixing, ad hoc overshooting
is commonly introduced by extending the chemical composi-
tion of the convective region by a certain fraction of the pres-
sure scale-height into the formally stable region. This approach
is also known as ‘step overshooting’. Neither of these descrip-
tions provides constraints on the temperature gradient in the
overshooting region or on the extent of this region.

Due to the high Reynolds numbers, convection is a highly
turbulent process. The dynamic timescales of the involved flows
are many orders of magnitude shorter than the nuclear timescales
of stellar evolution in most evolutionary phases. This poses seri-
ous problems for numerical descriptions of convection. Full 3D
hydrodynamic simulations are computationally expensive and
can cover physical time spans of the order of years only. In con-
trast, stellar evolution calculations usually need to be computed
over at least a couple of million years. At the same time, the com-
putational costs need to be low. Therefore, the direct inclusion of
3D hydrodynamics into stellar evolution calculations is not fea-
sible on present-day computers. This means that the effects of
convection need to be included in stellar evolution models by
some other means. One way to include the results of 3D sim-
ulations in 1D stellar evolution codes is via Reynolds-averaged
Navier-Stokes analysis, as outlined, for example, by Viallet et al.
(2013) and Arnett et al. (2015).

However, since 3D simulations suffer from the afore-
mentioned computing limitations, in practice this method
is essentially a variant of the Reynolds stress approach
(Keller & Friedmann 1925; Chou 1945; André et al. 1976;
Canuto 1992) and, more generally speaking, of turbulent con-
vection models (TCMs). The main idea of TCMs is to con-
struct higher order moment equations from the hydrodynamic
equations and reduce the dimensionality of the problem by
averaging over two spatial directions. These equations describe
the dynamics of convection. One main difference of TCMs
compared to MLT is the occurrence of transport terms. These
terms describe the transport of physical quantities, for exam-
ple the turbulent kinetic energy (TKE), by means of convec-
tive flows and naturally lead to the emergence of phenomena
such as convective overshooting without any ad hoc descrip-
tion. As these transport terms connect different layers, they
are often termed ‘non-local’. Furthermore, TCMs provide the
convective flux that allows the temperature gradient to also be
computed in the overshooting region. To date, a number of
TCMs have been developed for stellar astrophysics (e.g., Xiong
1978, 1986; Stellingwerf 1982; Kuhfuß 1986, 1987; Canuto
1992, 1993, 1997, 2011; Canuto & Dubovikov 1998; Li & Yang
2007). Due to the non-linearity of the Navier-Stokes equation,

higher order terms appear in the equations of the TCMs that
cannot be computed consistently within the set of equations. To
compute the higher order moments, so-called closure relations
need to be applied. These closure relations are one of the major
sources of uncertainty for any TCM. Ultimately, these closures
could be supplied by 3D simulations (Chan & Sofia 1989, 1996;
Kupka et al. 1999b, 2007a,b,c, 2008; Kupka 2007; Viallet et al.
2013; Arnett et al. 2015).

In this work we present the results of a TCM applied in a
stellar evolution code. We implemented the TCM by Kuhfuß
(1987) into the GARching STellar Evolution Code (GARSTEC;
Weiss & Schlattl 2008). The additional partial differential equa-
tions of the TCM are solved simultaneously with the stellar
structure equations via the commonly used Henyey method
(Flaskamp 2003). Using this implementation, we computed
stellar evolution models of low and intermediate mass main-
sequence stars from 1.5 to 8 M� and studied their convective
cores. For the present paper, surface convection zones are com-
puted with conventional MLT, but models using the Kuhfuß
TCM for envelope convection as well are already underway.
We demonstrate that the original description of the Kuhfuß-
convection model leads to erroneous convective properties. In
Kupka et al. (2022, hereafter Paper I), we show that the dis-
sipation rate of the kinetic energy plays an important role in
the description of turbulent convection. We implemented the
description of Paper I, and here we further show that it leads to
physically reasonable properties of convection in the framework
of the Kuhfuß convection model, which we briefly introduce and
review in Sect. 2. Its application in stellar models is the subject
of the following section. In Sect. 4 we compute stellar models in
a mass range from 1.5 M� to 8 M� with the new model and com-
pare its results with previously used models. Our discussion in
Sect. 5 analyses the origin of the structural differences between
the new 3-equation model and the standard 1-equation model of
Kuhfuß (1987) and reviews constraints on core sizes obtained
by other available methods. In our conclusions, in Sect. 6, we
provide a summary of the advantages and limitations of the new
model and an outlook on further developments.

2. Implementation of the Kuhfuß (1987) model

We implemented the Kuhfuß (1987) convection model as
described in Appendix A of Paper I into GARSTEC. This
includes the three partial differential equations for the TKE, ω,
the convective flux, Π, and the entropy fluctuations, Φ, as well
as the increased dissipation rate in the overshooting zones. We
refer to this model as the 3-equation model. For completeness,
we here repeat the final model equations:

dtω =
∇adT
Hp

Π −
CD

Λ
ω3/2 − Fω (1)

dtΠ =
2∇adT

Hp
Φ +

2cp

3Hp
(∇ − ∇ad)ω − FΠ −

1
τrad

Π (2)

dtΦ =
cp

Hp
(∇ − ∇ad)Π − FΦ −

2
τrad

Φ, (3)

where ∇ and ∇ad refer to the actual and adiabatic temperature
gradient, respectively. The substantial derivative is defined as
dt = ∂t + u · ∇. The radiative dissipation timescale is given as

τrad =
cpκρ

2Λ2

4σT 3γ2
R

.
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Non-local fluxes Fa are modelled as

Fa =
1
ρ

div
(
−αa ρΛ

√
ω∇ a

)
for a = ω,Π,Φ. The symbols CD, γR, αω, αΠ and αΦ are param-
eters. Kuhfuß (1987) suggested a value of CD = 8/3 ·

√
2/3

and γR = 2
√

3 to be compatible with MLT in the flavour of
Böhm-Vitense (1958) in the local limit of the model. The length
scale of TKE dissipation is denoted by Λ and is discussed in
detail below. Furthermore, cp refers to the specific heat capacity
at constant pressure, κ to Rosseland opacity and σ to the Stefan-
Boltzmann-constant. The variables T , ρ, and Hp are temperature,
density, and pressure scale height, as usual in stellar structure
models. For the details of the derivation and the definitions of
the symbols, we refer to the appendix A in Paper I and to Kuhfuß
(1987) and Flaskamp (2003).

2.1. The 1-equation model

In addition to the 3-equation model, Kuhfuß (1987) also sug-
gested a simplified version of his TCM (see also Kuhfuß 1986).
The number of equations is reduced to one by introducing the
following approximation for the convective flux:

Π = −αsΛ
√
ω

cp

Hp
(∇ − ∇ad). (4)

The parameter αs = (1/2)
√

2/3 has been calibrated to MLT and
Λ is again the length scale of TKE dissipation. As for the dissipa-
tion parameter CD, the parameter value of αs is obtained by cal-
ibrating convective velocities and fluxes of the local 1-equation
model to MLT analytically. This approximation of the convective
flux allows the convective flux from the ω equation to be elim-
inated such that it is only necessary to solve a single equation.
We refer to this model as the 1-equation model. When applying
the 1-equation model, the length scale for the dissipation of the
TKE is defined as Λ = αHp – with a freely adjustable parameter
α – throughout the rest of the paper, equivalent to the usual mix-
ing length. Additionally, we applied the reduction of the mixing
length towards the centre following Wuchterl (1995) to counter-
act the divergence of the pressure scale height in this region (see
Eq. (6) with βs = 1). For a value of order unity for α results are
indeed comparable to MLT results.

2.2. Convection equations

As most modern stellar evolution codes GARSTEC makes use
of the implicit Henyey scheme to solve the four stellar structure
equations (Henyey et al. 1964, 1965; Kippenhahn et al. 1967).
The equations describing convection by MLT are solved alge-
braically outside the four stellar structure equations. To incor-
porate the three equations describing the convection model,
Flaskamp (2003) extended the Henyey-scheme of GARSTEC
to solve for in total seven variables (four stellar structure vari-
ables plus three convection variables). A solution for both the
stellar structure and the convective variables is found by iter-
ating over all variables simultaneously. The coefficients of the
convection model depend on the stellar structure variables, such
that the behaviour of the convection model is strongly coupled
to the stellar structure. On the other hand, the stellar structure
is coupled to the convective variables through the temperature
gradient and the chemical composition. As described in Paper I
the temperature gradient of the stellar model is computed self-
consistently from the convective flux in each iteration (Eq. (A.7)

in Paper I). The chemical mixing in convective zones is com-
puted in the framework of a diffusion equation, alongside the
composition changes due to nuclear burning after the structure
equations have been solved. The diffusion constant is computed
from the TKE determined by the convection model. Following
Langer et al. (1985) the diffusion coefficient is computed as

D = αsΛ
√
ω, (5)

where we chose the same parameter αs as for the diffusion coef-
ficient of entropy in Eq. (4).

The equations can also describe time-dependent effects.
This was demonstrated for example by Flaskamp (2003), when
computing models through the core helium flash at the tip
of the red-giant branch, by Wuchterl & Feuchtinger (1998) in
an application to protostars and non-linear pulsations, and by
Feuchtinger (1999) for RR Lyrae stars. In this work, however,
we focus on main-sequence stars that evolve on the nuclear
timescale of hydrogen burning. This means that structural
changes are sufficiently slow to neglect time-dependent terms
and immediately solve for the stationary solution of the convec-
tion equations (left-hand sides of the TCM equations Eqs. (1)–
(3) are set to zero). By iterating for the stationary solution, the
code searches for the converged stellar structure and convec-
tion variables for a given chemical composition. When non-local
effects are included in the convection model, the stationary solu-
tion describes the overshooting zone self-consistently. Its extent
and temperature gradient are only constrained by the convection
model, without any external descriptions.

As described in Paper I and at the beginning of this section,
the Kuhfuß (1987) convection model contains a number of
parameters. The values for these parameters need to be set. As
described above, CD and γR are obtained by calibrating a local
model to MLT. The parameter values for the non-local terms
αω, αΠ and αΦ cannot be calibrated to MLT as they describe
intrinsically non-local effects. Kuhfuß (1987) suggested a default
value of αω = 0.25 by comparing kinetic energy and dissipa-
tion in a ballistic picture. No default values were given for the
parameters αΠ and αΦ in the non-local case. Although both the
1- and 3-equation models still contain a number of parameters,
they are advantageous compared to for example MLT because
the parameters describe physically more fundamental proper-
ties of the theory. For example, the parameter αω describes the
impact of the non-local flux of the TKE, which is responsible
for the extent of the overshooting region. However, compared to
diffusive overshooting or step overshooting αω does not set the
actual length scale of the overshooting. The extent of the over-
shooting is determined self-consistently from the solution of the
TCM equations. We further investigate the impact of these other
parameters below.

2.3. Dissipation rate

In Paper I we show that the original description of the dissipation
rate proposed by Kuhfuß (1987) leads to an excessively large
overshooting region. Therefore, in Paper I the dissipation rate
was increased by taking into account buoyancy waves as a sink
for the TKE. The increase in the dissipation rate was realised
through a modification of its associated dissipation length scale.
The dissipation rate is inversely proportional to this length scale,
ε = cεω3/2/Λ, such that a decrease in the latter leads to an
increase in the dissipation rate. This modification of the TKE
dissipation length scale was implemented through a harmonic
sum:
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1
Λ

=
1

αHp
+

1
βsr,

(6)

where the newly introduced parameter βs is defined as

βs = (1 + λsÑ)−1

and

λs = c4Λω−1/2, (7)

where c4 = c3/(c2cε) (Eq. (21) in Paper I). The parame-
ters c2 = 1.92 and c3 = 0.3 are model parameters from
Canuto & Dubovikov (1998) and cε is the dissipation parameter
of the convection model. The buoyancy frequency Ñ is computed
according to

Ñ2 =
g2ρ

p

(
∇ad − ∇ + ∇µ

)
,

assuming an ideal gas law. Here, ∇µ indicates the dimension-
less mean molecular weight gradient and g refers to the grav-
itational acceleration. Close to the stellar centre the pressure
scale height and in turn the dissipation length scale, Λ, if
defined through the pressure scale height, diverge. To avoid
this divergence, Flaskamp (2003) introduced the modification
by Wuchterl (1995) in the Kuhfuß model. This extension of the
model we also implemented equivalently to Eq. (6), but with
a constant parameter βs = 1. In unstably stratified regions, the
new correction factor is not applied and c4 = 0 as c3 drops to 0
(Canuto & Dubovikov 1998). Hence, the harmonic sum Eq. (6)
recovers the Wuchterl (1995) expression automatically. We note
that at this point where ∇−∇ad → 0, also Ñ → 0 and βs smoothly
transitions to 1, such that setting c3 = 0 does not introduce any
discontinuity. The harmonic sum Eq. (6) can be converted into
an equation for the dissipation length Λ. Rewriting Eq. (6) yields

Λ =
r

r + αHp
1
βs︸       ︷︷       ︸

<1

αHp, (8)

which immediately shows that the derived expression is in
essence a reduction factor for the mixing length. Plugging in the
definitions for βs and λs one finds the following expression:

Λ =
r

r + αHp

(
1 + c4Λω−1/2Ñ

)αHp.

This is a quadratic equation in Λ that can be solved to obtain
the reduced length scale. Here, we expressed the dissipation
rate timescale τ = 2ω/ε in terms of ω and Λ by noting that
ε = cεω3/2/Λ and τ = 2Λ/(cεω1/2), which allowed us to rewrite
an expression proportional to the ratio of TKE to buoyancy
timescales, τ/τb, into one proportional to Λω−1/2Ñ (we refer to
Paper I for details). The final model of Λ in the convection zone
reads

Λ(r) = −
r + αHp

2c4Ñω−1/2αHp
+

√[
r + αHp

2c4Ñω−1/2αHp

]2

+
r

c4Ñω−1/2

(9)

for ∇ < ∇ad, and

Λ(r) =

(
1

αHp
+

1
βcr

)−1

, (10)

for ∇ > ∇ad, where βc = 1. To obtain a physically reasonable,
positive dissipation length scale, Λ, the plus sign in front of the
square root in the solution of the quadratic equation has to be
chosen.

We note that the parameter cε takes different values in the
Canuto and Kuhfuß convection models. Here, we take cε = CD,
which is the dissipation parameter in the Kuhfuß model. In
unstably stratified regions with c4 = 0 Eq. (6) solves explic-
itly for Λ. In stably stratified regions, the parameter takes a
value of c4 ≈ 0.072 using the parameters c2 and c3 from
Canuto & Dubovikov (1998) and cε = CD.

As mentioned already in Sect. 3.6 in Paper I, the effect of
changing cε on changing c4 to some extent cancels out. We dis-
cuss this further in Appendix B.

3. Stellar models

We used GARSTEC to compute stellar models in a mass range
of 1.5–8 M� in the core hydrogen-burning phase. We used the
OPAL equation of state, OPAL opacities (Iglesias & Rogers
1996), extended by low temperature opacities by J. Ferguson
(private communication and Ferguson et al. 2005), both for the
Grevesse & Noels (1993, GN93) mixture of heavy elements. For
the initial mass fractions we chose X = 0.7 and Z = 0.02 for all
models. Convective chemical mixing was described in a diffu-
sive way. We used MLT plus diffusive overshooting as described
by Freytag et al. (1996) to evolve the models through an initial
equilibration to the beginning of the main-sequence phase. Then
we first switched to the 1- and subsequently to the 3-equation
model to generate a starting model for the computation with the
3-equation model. As we are interested in the effects of over-
shoot mixing, all models shown in the following were computed,
including the non-local terms in the 1- and 3-equation version of
the Kuhfuß theory.

For the diffusive overshooting, we used the default
GARSTEC parameter value of fOV = 0.02, which was cali-
brated by fitting GARSTEC isochrones to the colour-magnitude
diagrams of open clusters (Magic et al. 2010). The diffusion
coefficient is computed according to Eq. (C.1). For small con-
vective cores, excessively large overshooting zones can occur
when applying the ad hoc overshooting schemes due to the
diverging pressure scale height in the centre. To avoid such
unfavourable conditions, a reduced overshooting parameter
value is determined in GARSTEC, by applying a geometrical
cutoff depending on the comparison between the radial extent
of the convective region and the scale-height at its border. For
a brief discussion of different geometric cutoff descriptions, we
refer to Appendix C. For the results in this section, the ‘tanh’
cutoff according to Eq. (C.3) was used. For the parameter αω we
chose a value of 0.3 as this value results in a similar convective
core size as the ad hoc overshooting models for fOV = 0.02 in
the 5 M� model, which is in the middle of our mass range. For
the parameters αΠ and αΦ we chose the same value, assuming
that the non-local transport behaves similar for all convective
variables. We would like to point out that αω is an adjustable
parameter and an external calibration will be necessary. This is
discussed further below.

3.1. The 3-equation model

As a representative example, we first discuss the evolution and
the internal structure of a 5 M� model applying the 3-equation,
non-local convection theory. Figure 1 shows the profiles of
the TKE variable ω (panel a), the convective flux variable Π
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Fig. 1. Summary of the interior structure of the convective core of a
5 M� main-sequence model, calculated with the 3-equation model. The
dashed black line indicates the Schwarzschild boundary. The differ-
ent panels show: (a) the TKE, (b) the convective flux variable, (c) the
super-adiabatic temperature gradient, and (d) the diffusion coefficient
according to Eq. (5). The selected stellar model has a central hydro-
gen abundance of Xc = 0.6. The inset in panel b shows the region of
negative convective flux just beyond the Schwarzschild boundary.

(panel b), the super-adiabatic gradient ∇−∇ad (panel c), where ∇
is the temperature gradient resulting from the convection model,
and the diffusion coefficient according to Eq. (5) on a loga-
rithmic scale (panel d). The TKE clearly extends beyond the
Schwarzschild boundary, which we computed as usual as the
point where ∇ad = ∇rad. Such a behaviour cannot be observed in
MLT models, as it is a direct result of the non-local terms in the
Kuhfuß convection model. The associated diffusion coefficient
shows a rather high value beyond the Schwarzschild boundary
and throughout the overshooting zone. This increases the size
of the mixed convective core and therefore naturally creates an
overshooting zone. Given the profile of the diffusion coefficient,
the chemical mixing resembles the step overshooting rather than
the diffusive overshooting scheme. The convective flux vari-
able shows a region of negative flux beyond the Schwarzschild
boundary. In the lower panel of Fig. 2 the region of negative
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Fig. 2. Comparison of models (yellow lines) using MLT without over-
shooting to those computed with the 3-equation theory (blue lines) and
the 1-equation model (red lines). Panel a: compares the hydrogen pro-
files at an early stage on the main sequence, when Xc = 0.6 (solid
lines), and at the end of it (Xc ≈ 0; dashed lines). Panel b: convective
fluxes of an MLT model with diffusive overshooting (dotted black line),
a 3-equation model (solid blue line), and a 1-equation model (solid red
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convective flux is shown enlarged in the inset (likewise for the
convective flux variable Π in the middle panel of Fig. 1). This
is due to the braking of the convective motions in the stable,
radiative stratification. The extent and magnitude of the negative
convective flux are very comparable to early results from Xiong
(1986), who found that the convective flux penetrates less deeply
into the stable layers than for example the kinetic energy and has
a nearly negligible magnitude compared to the total flux.

Finally, panel c shows the super-adiabatic temperature gradi-
ent of this stellar model (we note the vertical scale). In the inner
part of the convection zone the model shows a very small super-
adiabatic gradient as it is expected for regions with convective
driving. At a fractional mass of about 0.05 the temperature gradi-
ent drops below the adiabatic value. In contrast to local models,
this point does not coincide with the formal Schwarzschild
boundary; however, the sign change happens substantially before
the formal boundary. At the formal Schwarzschild boundary,
the temperature gradient dropped to about O(10−3) below the
adiabatic value. The comparison of panels b and c shows that
there exists an extended region in the model in which the
convective flux is positive while the temperature gradient is
already sub-adiabatic. This region is also known as a Deardorff
layer (Deardorff 1966) and has been observed in simulations
of stellar convection (Chan & Gigas 1992; Muthsam et al.
1995, 1999; Tremblay et al. 2015; Käpylä et al. 2017;
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Kupka et al. 2018) or other Reynolds stress models (Kupka
1999a; Xiong & Deng 2001; Kupka & Montgomery 2002;
Montgomery & Kupka 2004; Zhang & Li 2012).

Such a layer cannot exist in convection models, which do
not have enough degrees of freedom. In MLT and the Kuhfuß 1-
equation model, the convective flux is directly coupled to the
super-adiabatic gradient and the convective velocities (Eq. (4)
for the 1-equation model). This of course inhibits any region in
which the convective flux and the super-adiabatic gradient have
a different sign like in the Deardorff layer and forces the convec-
tive flux and the TKE to have the same penetration depth. The
3-equation model lifts the strong coupling of convective flux and
super-adiabatic gradient by directly solving for two more vari-
ables (Π and Φ) and therefore allows for the existence of such
a layer. Deardorff (1966), in the case of atmospheric conditions,
argued that it is mainly the non-local term in the equation for
Φ that supports the positive heat flux for sub-adiabatic temper-
ature gradients (we also refer to Sect. 13 of Canuto 1992, and
references therein). The diffusion term FΦ in the equation for
the entropy fluctuations Eq. (3) acts as a source of entropy fluc-
tuations even though no local source (a super-adiabatic temper-
ature gradient) is present. This allows for the outward directed
transport of entropy fluctuations, which is a positive convec-
tive flux even in sub-adiabatic layers. This has little impact on
the stellar structure and evolution, as the temperature gradi-
ent remains nearly adiabatic, and the whole convection zone is
chemically well mixed. The existence of such a layer is therefore
expected, and confirms the physical relevance of the 3-equation
Kuhfuß model. The extent of this layer is difficult to determine
from a priori arguments, and asteroseismic analyses might pro-
vide observational constraints in the future.

In Fig. 3 we show the temperature gradients in the overshoot-
ing zone of the same 5 M� main-sequence model as in Fig. 1. At
the formal Schwarzschild boundary the model temperature gradi-
ent has already a slightly sub-adiabatic value as discussed previ-
ously. Beyond the Schwarzschild boundary, the model tempera-
ture gradient does not drop to the radiative gradient immediately.
Instead, it gradually transitions from slightly sub-adiabatic to
radiative values in a rather narrow mass range. As a consequence,
the model temperature gradient takes slightly super-radiative val-
ues in this transition region. However, the temperature gradient
reaches a radiative value well before the boundary of the mixed
region, indicated with the black dotted line in Fig. 3. Consider-
ing the small extent of the super-radiative region and the small
deviation from the radiative temperature gradient, the overshoot-
ing zone in the 3-equation non-local model is mostly radiative.
We would like to point out that the shape of the temperature gra-
dient is not subject to assumptions about the thermal stratifica-
tion (e.g., adiabatic, radiative or any gradual transition between
both) in the overshooting zone but instead is a result of the con-
vection model. In the transition region, the convective flux is neg-
ative due to the buoyancy braking, which effectively means that
energy transport by convection is directed inwards instead of out-
wards. This effect is counter-balanced by increasing the energy
transport by radiation, through an increased model temperature
gradient (e.g., Chan & Sofia 1996).

The temperature gradient of the 3-equation model is compara-
ble to results of different TCM approaches (Xiong & Deng 2001;
Li & Yang 2007) for the base of the solar convective envelope.
Both Zhang & Li (2012; their Figs. 6 and 7) and Xiong & Deng
(2001; their Fig. 8) find a temperature gradient that transitions
gradually from the adiabatic to the radiative value. They also find
a Deardorff layer with a degree of sub-adiabaticity at the for-
mal Schwarzschild boundary comparable to our findings. From
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Fig. 3. Temperature gradients in the overshooting zone of the same 5 M�
main-sequence model as in Fig. 1. The blue and orange lines indicate
the radiative (∇rad) and adiabatic (∇ad) temperature gradients, respec-
tively. The dashed green line indicates the model temperature gradi-
ent, ∇, obtained from the 3-equation non-local convection model. The
dashed black line indicates the Schwarzschild boundary, while the dot-
ted black line indicates the boundary of the well-mixed overshooting
region. The inset shows the three temperature gradients from the cen-
tre to the surface of the stellar model. The selected stellar model has a
central hydrogen abundance of Xc = 0.6.

the convective flux as presented in Xiong (1986) one also would
expect a similar temperature gradient in the overshooting zone.
Furthermore, the shape of the model temperature gradient is
also in qualitative agreement with the discussion in Viallet et al.
(2015). They argue that under the physical conditions in convec-
tive cores, in regions of overshooting efficient chemical mixing
and a gradually transitioning temperature gradient are expected.
In the 3-equation non-local model, the extent of the nearly adia-
batic overshooting zone is controlled by the shape of the negative
convective flux in the overshooting zone. For smaller (more neg-
ative) values of the convective flux (i.e. more efficient buoyancy
braking) the temperature gradient is expected to be closer to the
adiabatic value, while for larger (less negative) values it will be
closer to the radiative temperature gradient. In Eq. (1) the nega-
tive convective flux and the dissipation term act as sink terms in the
overshooting zone. Hence, the behaviour of the dissipation term
will impact also on the convective flux and in turn on the value
of the temperature gradient in the overshooting zone. In compu-
tations with the 1-equation non-local version of the theory, the
negative convective flux is the dominant sink term for the TKE
and the actual dissipation term is negligible (Fig. 8 of Paper I).
This leads to more negative values of the convective flux and thus
to a mostly adiabatic temperature gradient in the overshooting
zone. We discuss this in more detail in Sect. 5.1 (we also refer to
Fig. 10).
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Fig. 4. Dissipation length scale Λ (a) and dissipation rate (b) in a 5 M�
main-sequence model. The stellar model is the same as in Fig. 1. The
vertical dashed line indicates the Schwarzschild boundary of the model.

As discussed above and in Paper I, we implemented the
increase in the dissipation rate in the overshooting zone through
a decrease in the dissipation length scale, Λ. In the original ver-
sion, Kuhfuß (1987) modelled the dissipation of the TKE by a
Kolmogorov-type term (ε = CDω

3/2/Λ with Λ(r) as in Eq. (10)).
The dissipation length scale, Λ, describes the scale over which
the kinetic energy is dissipated such that in the Kolmogorov
model, at fixed TKE, a shorter length scale results in an increased
dissipation rate. In Fig. 4 we show the length scale, Λ (panel a)
and the dissipation rate (panel b) computed in the same stellar
model as in Fig. 1. At a fractional mass of about 0.05 the pro-
file of the dissipation length scale shows a slight kink in this
model, where the transition starts. At about 0.28 in fractional
mass, the dissipation length scale, Λ, drops to zero, which means
that convective motions stop at that point. This coincides with
the dying of the TKE beyond the Schwarzschild boundary, as
seen in Fig. 1, panel a. The onset of the decrease in the dissi-
pation length scale, Λ, also coincides with the sign change of
the super-adiabatic gradient (Fig. 1, panel c). Towards the cen-
tre of the model, the dissipation length scale, Λ, drops to zero as
well. This is a result of the Wuchterl (1995) correction, also used
in our implementation (cf. Paper I). We have also investigated
the prescription of Roxburgh & Kupka (2007) as an alternative
to that one of Wuchterl (1995) but found little difference with
respect to the overshooting region (we also refer to Paper I).

Parameter sensitivity. We explore some of the parameter depen-
dences in Appendix B. We studied the impact of the new param-
eter c4, appearing in Eq. (7) (and Eq. (21) in Paper I), on the
structure of the convective core. A comparison of TKE profiles
for different values of c4 is shown in Fig. B.1. The compari-
son demonstrates that although the parameter has some impact
on the overshooting extent, the main properties of the model
are not changed substantially. The parameter αω , appearing
in Eq. (1), controls the non-local flux of the TKE. Because
this flux is mainly responsible for the extension of the kinetic
energy beyond the Schwarzschild boundary, one expects that

this parameter impacts on the overshooting distance. Figure B.2
shows a comparison of different hydrogen profiles of a 5 M� star
computed with different values of αω. For a higher value of the
parameter, the size of the convective core is larger throughout
the evolution of the model. Smaller parameter values reduce the
convective core size. Although Kuhfuß (1987) provided a default
value for αω, this value is not known a priori from the theory.
Hence, a calibration will be necessary, for example from obser-
vations or 3D hydrodynamic simulations. The parameters of the
non-local terms in the Π and Φ equations αΠ and αΦ, appear-
ing in Eqs. (2) and (3), respectively, have a negligible impact on
the overshooting extent (Fig. B.4). Instead, they have a larger
impact on the temperature gradient as the variables Π and Φ are
more closely related to the temperature structure. By increasing
the parameter αΠ, the magnitude of the super-adiabatic gradient
increases, while the extent of this region stays the same. Decreas-
ing the value of the parameter αΦ is increasing the size of the
super-adiabatic region, therefore reducing the size of the Dear-
dorff layer, while the magnitude stays the same. This is expected
because the non-local term in the Φ equation is the one that
drives convection in the Deardorff layer.

3.2. Comparison to MLT

Mixing-length theory is still the most commonly used theory
to describe convection in stars. Therefore, we now compare the
results of the 3-equation model with results obtained from stan-
dard MLT, that is, without and with an additional treatment of
overshooting. The fractional hydrogen abundances early on and
at the end of the main sequence computed with the 3-equation
model and an MLT model without overshooting are shown in the
upper panel of Fig. 2. At the same central hydrogen abundance,
the fully mixed region of the 3-equation model always extends
past that of the MLT model. This is comparable to models that
include ad hoc overshooting beyond the formal Schwarzschild
boundary. In contrast to the ad hoc overshooting models, the
overshooting in the 3-equation model results from the solution
of the model equations. The lower panel of Fig. 2 shows a com-
parison of the convective fluxes in the 3-equation model and an
MLT model. Both models were selected to have the same central
hydrogen abundance. Ad hoc overshooting was included in this
MLT model, and tuned in such a way as to obtain a model with
the same core size as obtained from the 3-equation model. In the
bulk of the convection zone, both fluxes show very close agree-
ment. Beyond the Schwarzschild boundary, the narrow region
with negative convective flux in the non-local model can be iden-
tified. This region is shown enlarged in the inset.

Finally, in Fig. 5 we compare the evolutionary tracks of the
3-equation model, indicated by the solid blue line, with an MLT
model without ad hoc overshooting (yellow line) and an MLT
model including ad hoc overshooting (black line). The black
dot indicates the position of the stellar model with Xc = 0.6
discussed in Sect. 3.1 in Figs. 1–2. The computation of the 3-
equation model starts at the beginning of the main sequence from
an MLT model including diffusive overshooting as described
above and then evolves through core hydrogen burning up until
core hydrogen exhaustion. Compared to the MLT model, the
non-local model shows a higher luminosity throughout the main
sequence, as expected for the larger convectively mixed core.

3.3. Comparison to the 1-equation non-local models

In addition to the 3-equation non-local models, we also com-
puted stellar models in which convection was described by the
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Fig. 5. Evolutionary tracks in the Hertzsprung-Russell diagram of a
5 M� model computed with MLT (yellow line), ad hoc overshooting
(black line), the 3-equation, non-local model (blue line) and the 1-
equation, non-local model (red line). The black dot marks the model
selected at a central hydrogen abundance of Xc = 0.6.

1-equation model (Sect. 2.1). As before, we included the non-
local terms. Figure 6 shows a comparison of the TKE profiles
for the 1- and 3-equation, non-local models on a logarithmic
scale. The TKE on a linear scale can be found in Fig. A.1. The
models were selected at the same central hydrogen abundance to
ensure that they are in the same evolutionary stage. This shows
that the overshooting extent in the 1-equation non-local model
is very comparable to the 3-equation non-local model for the
same choice of the parameter αω. The overall behaviour of the
1-equation non-local model and the new 3-equation non-local
model looks very similar. The overshooting extent is clearly lim-
ited, and there is a steep drop in the TKE at the overshooting
boundary. Also, the absolute values of the TKE look compara-
ble in the bulk of the convection zone (Fig. A.1). We analyse the
absolute value of the TKE in more detail below. We note that this
result is obtained without tuning the parameters of the models.
For the parameters that both models have in common, the same
values were chosen. In the overshooting zone, the 3-equation
model has much smaller TKE than the 1-equation model. Never-
theless, the energies are still high enough to fully mix the over-
shooting region in the 3-equation model.

In the upper panel of Fig. 2 we compare the hydrogen pro-
files of the 1-equation model with the results from the 3-equation
model and an MLT model at the beginning and at the end of
the main sequence. As expected from the similar TKE profiles
shown in Fig. 6 the hydrogen profile of the 1-equation model
extends past the local MLT model and looks very similar to
the 3-equation model. Towards the end of the main sequence,
the 1-equation model has a smaller core than the 3-equation
model, leading to a slightly different slope in the hydrogen pro-
files. Likewise, the evolutionary track shown in Fig. 5 of the
1-equation model looks very similar to the 3-equation model.
Towards the end of the main sequence, the luminosity is slightly
lower owing to the smaller convective core. In the lower panel of
Fig. 2 we compare the convective flux of the 1-equation model to
the 3-equation model and an MLT model including ad hoc over-
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Fig. 6. Comparison of the TKE in the 1-equation non-local model and
the 3-equation non-local model with an enhanced dissipation rate of
TKE in a 5 M� main-sequence model on a logarithmic scale. The mod-
els have been selected to have the same central hydrogen abundance as
the model in Fig. 1. The 1-equation model computes Λ according to
Eq. (10).

shooting. As for the 3-equation model, the convective flux shows
close agreement with the other two models in the bulk of the
convection zone. Only in the overshooting zone, where the con-
vective flux becomes negative, discrepancies become apparent.
Compared to the 3-equation model, the zone of negative convec-
tive flux is more extended and the absolute value is larger, that is,
the convective flux is more negative. This can be attributed to the
parametrisation of the convective flux in the 1-equation model
according to Eq. (4). As discussed in Sect. 4 of Paper I (their
Fig. 8) the buoyancy term, proportional to the convective flux,
acts as the main sink term in the overshooting zone, requiring
larger absolute values in the overshooting zone. We would like
to note that this strongly negative convective flux in the over-
shooting zone will also cause the 1-equation model to have a
nearly adiabatic overshooting zone, as compared to the nearly
radiative overshooting zone in the 3-equation model.

4. Non-local convection for varying initial masses

We computed stellar models in a mass range of 1.5–8 M�, using
the 3-equation non-local model. The models were constructed in
the same way and using the same parameters as for the 5 M�
model presented so far. For comparison, we computed three
other sets of stellar models with different convection descrip-
tions: (i) with the Kuhfuß 1-equation model to compare the
results of the 3-equation model to a simpler TCM; (ii) with MLT
plus diffusive overshooting as described by Freytag et al. (1996)
to compare to one of the standard ad hoc descriptions of convec-
tive overshooting with the same parameter value fOV = 0.02 as
discussed above. Finally, (iii) we computed MLT models with-
out overshooting to compare the results to a local convection
theory. At least in terms of core size and temperature structure,
models using the local Kuhfuß theories would be equivalent to
MLT models. For the Kuhfuß theory, we used the same value of
0.3 for the parameter αω, as before. To allow for a comparison
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Fig. 7. Comparison of mixed core sizes of stellar models in units
of stellar mass, M∗, over a range of initial stellar masses computed
with different convection models. The models with ad hoc overshoot
include a geometric cutoff to limit the size of small convective cores
in lower mass stars. The models were selected to have a central hydro-
gen abundance of Xc = 0.6. The MLT models are computed without
overshooting.

across the mass range and the different convection descriptions,
the models were selected at the same central hydrogen abun-
dance of Xc = 0.6.

Figure 7 shows the sizes of mixed cores in models derived
from these four descriptions of convection and convective over-
shooting over a range of initial masses. For all masses under con-
sideration, the mixed core from the 3-equation model is larger
than the convective core from an MLT model, as expected. This
shows that when applying the 3-equation model, an overshoot-
ing zone emerges across the whole mass range investigated.
Comparing the 3-equation model to the 1-equation model and
the ad hoc overshoot model, the mixed core sizes show good
qualitative agreement. We repeat that this is achieved without
fine-tuning any of the involved parameters. The relative size of
the mixed cores decreases with decreasing stellar mass for all
four descriptions, but differences in the details between the dif-
ferent convection descriptions are evident. For higher masses,
the derived values for the mixed core sizes are almost identi-
cal among the ad hoc overshooting and the 1- and 3-equation
Kuhfuß models. For low stellar masses, the results show larger
discrepancies. Stellar models applying the 3-equation non-local
model have the smallest cores, and the core size decreases faster
with decreasing stellar mass than in the 1-equation models and
the ad hoc overshoot models. As the ad hoc overshoot model
was calibrated to observations, this allows at least for an indirect
comparison of the 1- and 3-equation model with observations.

In addition to the core sizes, we also analysed the absolute
values of the convective velocities. The Kuhfuß model does not
solve for the convective velocity itself, but rather for the TKE ω.
We approximated the mean convective velocity from the TKE
by assuming full isotropy:

vc,iso =

√
2
3
ω. (11)
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Fig. 8. Comparison of the maximum convective velocities for dif-
ferent convection models as a function of stellar luminosity. For the
Kuhfuß model, the isotropic convective velocity, vc,iso, is plotted. The
dotted lines indicate a linear fit to the logarithmic data. We note that
the data of the 1- and 3-equation Kuhfuß models (red and blue points,
respectively) are largely overlapping, as are the black and yellow dots.

When using MLT, the convective velocities were computed as

vc =
1
√

8

(
g

Hp

)1/2

Λ (∇ − ∇ad)1/2 ,

(e.g., Kippenhahn et al. 2012). The computation of convective
velocities is the same in MLT models with and without diffu-
sive overshoot, as the inclusion of ad hoc overshooting does
not impact on the description of convection. To compare MLT
and the Kuhfuß theories we evaluate the maximum convective
velocity in the convection zone. The maximum is reached well
within the Schwarzschild boundaries for all models, and there-
fore allows for a consistent comparison.

We show this comparison of the maximum convective veloc-
ities in the core as a function of stellar luminosity in Fig. 8. The
convection descriptions are the same as in Fig. 7. For all cases,
the scaling relation of the convective velocities has the same
slope. A linear fit (dotted lines) to the data results in a value
of ∼0.3 for all of them. However, the absolute values from the
Kuhfuß and MLT models differ by a constant factor of about
two, indicated by the offset between the two pairs of lines. This
difference in the absolute value is the result of two different
effects. The change of the mixing length has the largest impact
on the velocity. A reduced mixing length leads to an increased
dissipation rate and smaller velocities as a consequence. In the
Kuhfuß models we used a smaller value of α = 1 as obtained
by a solar calibration instead of α = 1.6 for the MLT models. In
addition, the mixing length is reduced towards the centre accord-
ing to the Wuchterl (1995) formulation (Eq. (6)). The convective
velocity is reduced further compared to the local MLT models by
taking the non-local terms into account, which act as a sink term
in the bulk of the convection zone. The slope of 0.3 is very close
to the vc ∝ L1/3 scaling relation expected from MLT. This com-
parison also demonstrates that the absolute values of the TKE are
very similar between the 1- and the 3-equation Kuhfuß theories
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over the full mass range. For the 5 M� model, this was already
apparent when comparing the TKE profiles in Fig. 6.

5. Discussion

5.1. Relation between 1- and 3-equation models

As discussed in Sect. 2.1 the 1-equation model is a simplification
of the 3-equation model, for which Kuhfuß (1987) assumed that
the convective flux is proportional to the super-adiabatic temper-
ature gradient and the square-root of the TKE. This allows the
removal of two of the three equations, namely for the entropy
fluctuations, Φ, and the velocity entropy correlations, Π. The
equation for the TKE ω remains unchanged. The approxima-
tion for the convective flux allows the temperature gradient to
be expressed as a function of the TKE. This couples the thermal
structure and the TKE very closely. In the 3-equation model, the
convective flux is evolved with an additional equation, which
reduces the coupling of the thermal structure and the TKE.
Despite the increased model complexity, the behaviour of the
TKE in the 1- and 3-equation model is quite similar, as seen in
Fig. 6.

In the bulk of the convection zone, both models result in
the same absolute value of the TKE. This can be also seen in
Fig. 8 by the agreement between red and blue points for a wider
mass range. It can be attributed to the similarity of the equa-
tions. The additional dissipation is not or only weakly operating
in the bulk of the convection zone. Hence, both the dissipation
and the non-local term have the same functional form. The con-
vective flux is adjusted such that a nearly adiabatic stratifica-
tion is achieved in both models; therefore, the buoyancy term
is also very comparable in the 1- and 3-equation models. As
soon as the temperature gradient becomes sub-adiabatic, which
happens already well within the Schwarzschild boundary in the
3-equation model, the dissipation by buoyancy waves is taken
into account. This means that the functional form of the dissipa-
tion term changes. Due to the difference in the thermal structure
in this region also the convective flux looks different. This leads
to a different solution for the TKE in the overshooting zone,
as is evident from Fig. 6 towards the edge of the convection
zone.

The main difference between the 1- and 3-equation model
is probably the temperature stratification that results from the
solution of the model equations. Due to the coupling of the con-
vective flux to super-adiabatic gradient and convective velocities
in the 1-equation model, the convective flux is forced to have the
same penetration depth into the stable layers as the TKE and at
the same time to have the same sign as the super-adiabatic gra-
dient. As seen in our models and pointed out by Xiong & Deng
(2001) this strong coupling leads to a nearly adiabatic temper-
ature gradient in the overshooting zone and prevents the exis-
tence of a Deardorff layer (we also refer to Paper I). Also, with
respect to other models of convection (e.g., MLT), the existence
of a large sub-adiabatic zone in the convective region for the
case of the 3-equation model is striking. To better understand the
behaviour of the temperature gradient in the overshooting zone,
we analyse it in terms of the Peclet number. The Peclet number
is the ratio of the timescales of radiative and advective transport
and can be interpreted as an indicator for convective efficiency.
A common definition of the Peclet number is

Pe =
u · l
χ
,

where u and l are a typical velocity and length scale of the con-
vective flow. The radiative diffusivity is defined as

χ =
16σT 3

3κρ2cp
.

As a typical convective velocity we again used the isotropic
velocity, Eq. (11). Due to the usage of typical scales for veloci-
ties and length scales that are not rigorously defined, the interpre-
tation of absolute values of the Peclet number remains difficult.
Hence, we only looked at ratios of the Peclet number to com-
pare different models. We also assumed that the length scale and
the radiative diffusivity are the same, when comparing different
models. Under these assumptions, it is easy to see that

Pe1

Pe3
∝

√
ω1

ω3
.

The ratio of the Peclet numbers obtained for the 1- and
3-equation models for a 5 M� main-sequence model is shown in
Fig. 9. In the bulk of the convection zone, the 1- and 3-equation
models have very similar Peclet numbers, which means the
transport of energy by convection behaves very comparably. In
the overshooting zone, however, the 1-equation model has a
Peclet number that is up to seven times higher than that of the
3-equation model. This indicates that convection as described by
the 1-equation model is much more efficient in the overshooting
zone than when described by the 3-equation model.

This change in efficiency also impacts the temperature gra-
dient. Following the approximation of the convective flux in the
1-equation model, the convective flux scales as Π ∝

√
ω. Using

the ratio of the Peclet numbers, one can therefore write a Peclet-
scaled convective flux,

Π3,Pe = Π1 ·
Pe3

Pe1
, (12)

to mimic the convective flux in the 3-equation model. The result-
ing convective flux is shown with a blue dashed line in the upper
panel of Fig. 10. Using this scaled convective flux, a scaled tem-
perature gradient can be computed, as illustrated by the green
dashed line in the lower panel of Fig. 10. For comparison, the
model temperature gradients of the 1- and 3-equation model are
visualised by a green dotted and solid line, respectively.

This comparison confirms that the reduced convective effi-
ciency obtained from the Peclet numbers is sufficient to change
the behaviour of the temperature gradient from nearly adiabatic
to more radiative in the overshooting zone, and implies that the
behaviour of the temperature gradient in the overshooting zone
can at least qualitatively be predicted from the TKE alone with-
out invoking the other convective equations for Π and Φ. The
fact that the region of negative values in the scaled convective
flux is more extended compared to the actual convective flux
from the 3-equation model is due to the different penetration
depths of TKE and convective flux in the 3-equation model. We
conclude that this is an important indication for internal consis-
tency of the model. It furthermore shows that the mostly radia-
tive temperature gradient in the overshooting zone is in fact a
result of reduced convective efficiency in the overshooting zone
in the 3-equation model. Following the terminology proposed by
Zahn (1991), in the 1-equation model the overshooting zone is
best described by sub-adiabatic penetration while the more inef-
ficient convection in the 3-equation model concerns overshoot-
ing of chemical element distributions only.

Considering the chemical mixing, both models result in a
more step-like chemical mixing profile. The extent of the mixed
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Fig. 9. Ratio of the Peclet numbers for the 1- and 3-equation models for
a 5 M� main-sequence model.

region is mainly dependent on the choice of the parameter αω,
as discussed in Appendix B. This parameter cannot be deter-
mined from first principles. As for the ad hoc descriptions of
convective core overshooting, a calibration of this parameter is
required, which is discussed below. Furthermore, the resulting
convective flux is also very similar in the bulk of the convection
zone and differences become only obvious in the overshooting
zone. Given the relative freedom in choosing αω and the similar-
ity in the mixing properties of both models, resulting stellar mod-
els are basically indistinguishable when comparing the chemical
structure. Once the observations become sensitive enough to the
thermal structure in the overshooting zone as, for example, with
the help of asteroseismology (Michielsen et al. 2019), it will
become possible to detect differences between both models. In
view of the general agreement between 1- and 3-equation model,
the application of the 1-equation model seems to be sufficient to
obtain the chemical structure from a non-local convection model.
The parameter αω can be tuned to obtain the correct size of the
convective core. However, the stratification obtained from the
1-equation model is less realistic.

5.2. Other constraints on core overshooting

To date, a range of different approaches to determining the extent
of convective cores has been followed. In this subsection, we
discuss a few examples of convective core size determinations.
The need for a larger mixed core was already recognised in
the 1980s. For example, Bressan et al. (1981) discussed it in
relation to the Hertzsprung-Russell-diagram of massive stars,
and Maeder & Mermilliod (1981) in relation to the Hertzsprung-
Russell-diagram of open clusters. In the latter case, isochrones
derived from stellar models that include core overshooting match
the morphology of the turn-off region better than models without
overshooting (Pietrinferni et al. 2004; Magic et al. 2010). The
comparison to observations showed further that the overshooting
distance in terms of pressure scale heights needs to increase with
mass in the range between 1.2 and ∼2 M�. This mass dependence
can be included explicitly in the computations by expressing the
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Fig. 10. Comparison of convective fluxes and temperature gradients
obtained from the Peclet-scaling and the 1- and 3-equation models.
Upper panel: convective flux as a function of fractional mass. The red
and blue lines show the results obtained from the 1- and 3-equation
model, respectively. The dashed blue line indicates the convective flux
scaled with the Peclet number according to Eq. (12). Lower panel: tem-
perature gradients as a function of fractional mass. The blue and orange
lines indicate the radiative and adiabatic temperature gradient, respec-
tively. The dotted and solid green lines indicate the temperature gradi-
ent as obtained by the 1- and 3-equation models. The dashed green line
shows the temperature gradient of the 1-equation model computed from
the scaled convective flux shown in the upper panel.

overshooting parameter as a function of the total stellar mass.
Alternatively, this mass dependence can also be introduced in
the stellar models by limiting the radial extent of the overshoot-
ing zone geometrically. In both cases, the parameter of the over-
shooting scheme effectively needs to increase with stellar mass.
For the TCM, however, this is a natural outcome without impos-
ing it.

Eclipsing binary systems offer an excellent opportunity to
put constraints on stellar physics. Claret & Torres (2019) used
a large sample of eclipsing binaries to determine the over-
shooting parameter as a function of mass. They find a clear
increase in the overshooting parameter (extent) with mass, even
though the statistical significance of this result has been debated
(Constantino & Baraffe 2018). In a detailed analysis, Higl et al.
(2018) addressed the evolution of the binary system TZ For-
nacis with an evolved red giant primary and a main-sequence
secondary star, both with masses of ∼2 M�. They find that a basi-
cally unrestricted overshooting extent, using the standard value
for the free parameter, is required to explain the evolution of this
system. This puts further constraints on the mass dependence of
the overshooting parameter.
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The high precision photometric data obtained from space
telescopes such as Kepler or CoRoT allowed further constraints
to be set on the stellar evolution models. Using asteroseismol-
ogy of g-mode pulsators, the convective core masses of inter-
mediate mass stars has been determined for larger samples of
stars (e.g., Pedersen et al. 2021; Mombarg et al. 2019). Simi-
larly, the seismology of p-mode pulsators allows the required
overshooting efficiency in lower mass stars to be determined
(e.g., Deheuvels et al. 2016; Angelou et al. 2020). In agreement
with the previously mentioned studies, they find that the rela-
tive mass of the mixed core needs to increase with stellar mass.
A more detailed comparison of the TCM models discussed in
this work with asteroseismic observations needs to be addressed
in future work. Finally, asteroseismology allows the temperature
gradient in the overshooting zone to be probed. Michielsen et al.
(2021) infer a predominantly radiative overshooting zone in a
∼3.5 M� main-sequence star, which is in agreement with the
temperature gradient obtained from the 3-equation model but
disagrees with the 1-equation model. However, they point out
that this result is only obtained for this single B-type star and
might not be generalisable for all B-type stars.

With the increase in computational resources in recent years,
more and more multi-dimensional hydro-simulations of stellar
core convection have been carried out (e.g., Meakin & Arnett
2007; Gilet et al. 2013; Edelmann et al. 2019; Higl et al. 2021).
These simulations confirmed, for example, the scaling of the
stellar luminosity with the third power of the convective veloci-
ties (e.g., Edelmann et al. 2019; Higl et al. 2021, and references
therein). In Higl et al. (2021) the authors calibrated the over-
shooting parameter fOV in GARSTEC to 2D simulations of core
convection in low and intermediate mass stars. By matching the
size of the mixed convective core in the 1D GARSTEC mod-
els to the size of the mixed region in the 2D simulations, they
find that the effective parameter of fOV needs to decrease with
stellar mass. To limit the size of the convective cores for small
stellar mass in the 1D models, they used the geometric ‘square’
cutoff according to Eq. (C.2). As they used the same stellar evo-
lution code as we do, this allows for a direct comparison of
the results. Higl et al. (2021) find that the size of the convec-
tive cores resulting from the 2D simulations need to be larger
than the GARSTEC models computed including the square cut-
off (Eq. (C.2)) at a constant overshooting parameter. This indi-
cates that the geometric square cutoff is too restrictive. As the
3-equation model predicts mixed core masses similar to the
GARSTEC models that include this geometric cutoff (Fig. C.1),
this indicates that our 3-equation model might be too restrictive
at this lower mass range as well.

Finally, other TCMs have been used to compute stellar evolu-
tion models including the effects of non-local convection. Xiong
(1986) computed stellar models in the mass range of 7–60 M�.
He found that by solving the convection equations, the TKE
extends beyond the formal Schwarzschild boundary and that this
also increases the size of the mixed region. The size of the well-
mixed region increases with increasing stellar mass. Both results
are in agreement with our findings employing the 3-equation
model. Xiong (1986) also found that the convective flux pen-
etrates much less deeply into the stable layers than the TKE.
The magnitude of the convective flux in this region is negligi-
ble, which causes the temperature gradient to be mostly radia-
tive in the overshooting region. This is in good agreement with
the decoupling of the thermal and the chemical structure we dis-
cussed in detail in Sect. 3 and Paper I. Zhang (2016) applied
the TCM by Li & Yang (2007) in a similar mass range as in
this work. They develop a simplified model comparable to the

1-equation model and find very good agreement between the full
model and the simplified version. Li (2017) applied the simpli-
fied TCM by Li (2012) to compute stellar models of a 5 M�
star and find an overshooting distance of about 0.2Hp, which
is comparable to the overshooting distance obtained with our
3-equation model.

6. Conclusions

In this work we present results of stellar structure and evolution
calculations using the TCM proposed by Kuhfuß (1987). We
implemented the Kuhfuß model into GARSTEC, which solves
the four stellar structure equations and the three equations of
the convection model simultaneously using the implicit Henyey
method. We computed main-sequence models of intermediate
mass main-sequence stars between 1.5 and 8 M� that consis-
tently compute the structure and evolution of the TKE, convec-
tive flux, and entropy fluctuations. This naturally includes the
effects of convective overshooting for the thermal and chemical
structure. In Paper I we demonstrate that the original 3-equation
model with a standard MLT prescription for the dissipation
length of TKE leads to convection zones that essentially extend
throughout the entire stellar interior. We therefore implemented
the dissipation by gravity waves as discussed in Paper I in addi-
tion to the original Kuhfuß model. We show that the Kuhfuß 3-
equation model with an increased dissipation rate results in mod-
els with physically reasonable overshooting distances. This indi-
cates that the dissipation was actually underestimated by the
original description, and that dissipation by gravity waves is a
relevant effect in core overshooting zones.

In Fig. 1 we show a summary of the TKE and flux and
the temperature gradient for a convective core of a 5 M� main-
sequence model. We find that the TKE extends beyond the for-
mal Schwarzschild boundary of convective neutrality. This is
the result of the non-local terms in the Kuhfuß model. The
convective flux shows a region of negative values beyond the
Schwarzschild boundary, which is, however, penetrating less
deeply into the stable layers than the TKE. As the convec-
tive motions are very efficient in mixing chemical elements, the
extended convective core has essentially the same composition
as the convective core. This can be seen in Fig. 2 (upper panel),
in which the hydrogen profiles at the end of the main sequence
of an MLT and a Kuhfuß 3-equation model are compared. In the
Kuhfuß model, this extension beyond the Schwarzschild bound-
ary is the outcome of the solution of the model equations and
not due to the inclusion of any sort of ad hoc overshooting. We
also compared the results of the full 3-equation model to the
simplified 1-equation model and find qualitative and quantitative
agreement of the TKE throughout a large part of the convection
zone. This is a result of the similarity of the model equations
and the chosen parameters, which are the same for both models.
In addition to the convective velocity and the associated mixing,
the temperature gradient is also part of the model solution. This
is another important difference compared to ad hoc descriptions
of convective overshooting, in which the temperature gradient
needs to be assumed separately and independently.

The analysis of the temperature gradient shows the exis-
tence of a Deardorff layer (Deardorff 1966), in which the
temperature gradient is sub-adiabatic and the convective flux
is still positive. The existence of the Deardorff layer has
been confirmed in different numerical simulations of stel-
lar convection (Chan & Gigas 1992; Muthsam et al. 1995,
1999; Tremblay et al. 2015; Käpylä et al. 2017) and other
Reynolds stress models (Kupka 1999a; Xiong & Deng 2001;
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Kupka & Montgomery 2002; Montgomery & Kupka 2004;
Zhang & Li 2012). Beyond the Deardorff layer, the convective
flux becomes negative as the result of the stable stratification
(cf. also Muthsam et al. 1995 and references in Canuto 1992).
In the overshooting region, the model temperature gradient
gradually transitions from a slightly sub-adiabatic to a radiative
value, exhibiting a small region with a super-radiative tem-
perature gradient (Fig. 3). However, this transition region is
rather narrow, such that the overshooting zone has a mostly
radiative temperature gradient. This is in agreement with very
recent results from asteroseismology (Michielsen et al. 2021).
In contrast to the 3-equation model, the overshooting zone of
the 1-equation model shows a mostly adiabatic temperature
gradient. As pointed out by Xiong & Deng (2001), this can be
attributed to the assumption of a full correlation between the
convective flux and the convective velocities, as is done in the
1-equation model (Eq. (4)). The approximation Eq. (4) does not
allow for a Deardorff layer, as the convective flux is proportional
to the super-adiabatic gradient. From a theoretical point of
view, the existence of a Deardorff layer can be attributed to the
non-local term of the Φ equation, Eq. (3), Deardorff (1966).
This shows that an independent equation for the convective flux
is required (see also Kupka 2020, Priv. comm.) and highlights
the necessity to consider more complex turbulence models, such
as the 3-equation model, to capture the temperature structure
in the overshooting zone more accurately. The comparison of
the Peclet numbers of the 1- and 3-equation models further
shows that the mostly radiative temperature gradient in the
overshooting zone of the 3-equation model can be explained by
the reduced TKE or velocities, respectively, compared to the
1-equation model. The narrow range of the transition region
from an adiabatic to a radiative temperature gradient can be
attributed to the shallower penetration of the convective flux
into the stable layers compared to the 1-equation model.

A comparison with stellar models that use MLT shows a
qualitative agreement of the TKE and the convective flux in the
part of the convection zone that is unstable according to the
Schwarzschild criterion (∇ad = ∇rad). For the convective flux,
we even find a very good quantitative agreement between the
Kuhfuß model and MLT in that region (Fig. 2, lower panel). The
convective velocities found in the Kuhfuß model are smaller than
in MLT by a factor of two. This qualitative agreement indicates
that the stellar structure has the largest impact on the convec-
tive properties in the bulk of the convection zone, irrespective of
the convection model in use. The nuclear energy released in the
centre determines the convective flux – about 80% of the local
flux in the centre – and the coefficients of the convection model
determine the absolute values of the other convective variables.
Differences appear in the overshooting zone, which is sensitive
to subtler changes in the convection model. In the overshooting
zone the stellar flux is mainly transported by radiation, and as
such the convective structure of this region is less constrained
by the stellar structure. It is, however, rather constrained by the
convection model.

The results of the 1- and 3-equation models over a broader
mass range show qualitative agreement with other overshoot
descriptions. For given values of αω and fOV, this is achieved
without fine-tuning any of the other model parameters, as we
used the closure parameters suggested by the authors of the
turbulence model (see Canuto & Dubovikov 1998, and refer-
ences therein). Tests of those parameters – for different phys-
ical scenarios – are published in the literature (Kuhfuß 1986,
1987; Wuchterl 1995; Canuto 1992; Canuto & Dubovikov 1998;
Kupka et al. 2007c). In Fig. 7 we show a comparison of mixed

hydrogen core sizes computed with diffusive overshooting, the
1-equation and the 3-equation model, and MLT. The compari-
son shows that the exact extent of the convective core depends
on the details of the model. For the same parameter choice of
the parameter αω at lower masses, the 3-equation model shows
a reduced amount of overshooting compared to the 1-equation
model, while the 3-equation models have larger cores at higher
masses. The newly introduced parameters that control the reduc-
tion of the dissipation length scale, Λ, are shown to have a mod-
erate impact on the overshooting extent. For its default overshoot
parameter, the diffusive mixing model produces even larger
mixed core sizes. Towards the lower end of the mass range, both
Kuhfuß models show a decrease in the mixed core size as imple-
mented by other methods to match observations from open clus-
ters and binaries (Claret & Torres 2019; Pietrinferni et al. 2004;
Magic et al. 2010). Higl et al. (2018) find that the overshoot-
ing parameter needs to increase more steeply with mass than
predicted by GARSTEC, including the geometric square cut-
off from the analysis of the TZ For binary system. In agree-
ment with the conclusion from the 2D simulations, (Higl et al.
2021), this indicates that the convective core size predicted by
the 1- and 3-equation model increases too shallowly with stel-
lar mass for a constant parameter αω. To match the observa-
tions and the results from the 2D simulations, this would require
modifying the parameter αω as a function of mass. Further con-
straints on the parameter αω can be obtained by comparing the
Kuhfuß model to results from asteroseismology of intermediate
mass stars.

However, such tuning of αω seems ill advised: the physical
incompleteness of the ad hoc model of convective overshoot-
ing, as an example, is well demonstrated by the shrinking of
the convective core size with mass for stars with M < 2 M�;
this not only requires an extra cutoff function (Eq. (C.2)) to
limit the convective core size to values compatible with obser-
vations, but also demands a more fine-tuned function (Eq. (C.3))
to pass such a stringent test. While applying a similar procedure
to αω as for fOV appears to be a convenient ad hoc solution to
match the observational data exactly, it provides no new insights
and requires redoing similar procedures in related, but different,
scenarios. Finding the physical reason for the remaining, now
already much smaller, discrepancies with the data, on the other
hand, might allow for a model that does not require such mea-
sures in other applications either (cf. also the discussion on such
requirements in Kupka & Muthsam 2017).

Our study of stellar models that apply the 3-equation model
from Kuhfuß (1987) shows that the resulting stellar structure
depends sensitively on the details of the convection model.
Although the original 1- and 3-equation theories are very closely
related, their application results in very different structures of
the convection zone (Paper I). We have demonstrated that mod-
ifying the dissipation term of the TKE can remedy this dis-
crepancy. The improved 3-equation model compares very well
with the 1-equation model, both in terms of the TKE and
the mixing properties. For applications in which the temper-
ature structure of the overshooting zone is not important, the
1-equation model describes the convective core similarly well
as the 3-equation model. The parameter αω allows us to obtain
the convective core size required to match with the observations.
Only when the thermal structure of the overshooting zone is of
major interest does a more complex convection model such as
the 3-equation model need to be used. A self-consistent predic-
tion of the detailed convective core structure appears to require
a physically more complete (and thus more complex) model. As
discussed above, at least three equations are required to allow
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for more complex phenomena, such as a Deardorff layer. In
Canuto & Dubovikov (1998), further partial differential equa-
tions for the dissipation rate and the vertical component of the
TKE are discussed. This potentially allows some of the simpli-
fications still present in the 3-equation model to be removed.
However, increasing the number of equations comes at the price
of increasing numerical complexity. Including these equations
in stellar structure and evolution models has to remain the task
of future work. Finally, a comparison with more and more real-
istic 3D hydro-simulations of convective cores will be useful
for placing further constraints on our TCM model, in partic-
ular to restrict closure conditions. This is presently underway
(Ahlborn & Higl, in prep.). The application of the extended
3-equation Kuhfuß model to stellar envelopes will be presented
in another forthcoming paper (Ahlborn et al., in prep.). In any
case, TCMs offer a convincing and feasible improvement of the
treatment of convection in 1D stellar models beyond the standard
MLT.
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Appendix A: Comparison of 1- and 3-equation
models

Figure A.1 shows the TKE in the 1- and 3-equation model on
a linear scale. Even though the TKE of the 3-equation model
has approximately the same extent as the 1-equation model as
seen in Fig. 6 it drops off faster. Despite the smaller values of the
TKE, the efficiency of the chemical mixing is still high enough to
fully mix the overshooting region. Therefore, the chemical pro-
files obtained from the 1- and 3-equation model are very compa-
rable.
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Fig. A.1. Comparison of the TKE of the 1-equation and 3-equation non-
local models in a 5 M� main-sequence model with limited dissipation
length scale, Λ, for the 3-equation model.

Appendix B: Parameter dependence

The model for the modification of the dissipation length scale
comes with a number of parameters (c2, c3, cε). These parame-
ters are not necessarily free, but were calibrated in the framework
of the convection models developed by Canuto (1992). These
parameters enter the equation of the reduction factor as a single
parameter, which was previously defined as c4. Given the dissi-
pation parameter of the 3-equation model, we find c4 ≈ 0.072
while for the dissipation parameter of the Canuto & Dubovikov
(1998) model c4 ≈ 0.2 as described in Paper I. As mentioned
already in Sect. 3.6 in Paper I, the effect of changing cε on
changing c4 to some extent cancels out in the calculation of Λ,
as cε appears in the denominator of c4 = c3/(c2cε) and in the
numerator of Λ = cεω3/2/ε. Hence, if c4 is adjusted according
to c4 = c3/(c2cε), a change of cε first of all influences the TKE
dissipation rate ε throughout the whole model and is not specif-
ically changing ε only within the overshooting zone. To check
what impact these parameters actually have on the result, we var-
ied their values. As they enter the equations as one parameter, we
only varied this effective parameter value c4 by ±60%. All other
parameters take their default values. The resulting profiles of the
TKE are shown in Fig B.1. It can be seen that the variation of the
parameter c4 leads to some noticeable variation in the TKE pro-
file. However, within these ranges, the models keep their prop-
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Fig. B.1. Comparison of the TKE as a function of fractional mass on
a logarithmic scale for different values for the parameter c4 in a 3-
equation non-local 5 M� main-sequence model with limited dissipation
length scale, Λ.

erty of a limited overshooting range. The direction of the varia-
tion can be explained by the theory as well. An increase in the
parameter will lead to a decrease in the dissipation length scale,
Λ. A decreased length scale leads in turn to an increased dis-
sipation. This reduces the overshooting, which can be observed
for the dark red line. For the case with a decreased parameter
value, the same argument applies in the opposite direction. The
expected behaviour can be similarly observed for the yellow line.

Apart from the new parameters for the reduction of the dis-
sipation length scale, Λ, the model still contains the original
parameters of the Kuhfuß model. Here, we focus on the param-
eter αω, which controls the flux of the TKE. In the 1-equation
non-local model, this parameter controls the extent of the over-
shooting region. Kuhfuß suggested a default value of αω = 0.25.
In Fig. B.2 we show three different hydrogen profiles for the
5 M� model at the same age. The parameter αω takes values of
0.1, 0.3 and 0.5. It can be clearly seen that the original property
of this parameter of controlling the overshooting extent is still
given.

In Fig. B.3 we show hydrogen profiles of a 5 M� star
at the end of the main sequence for different values of the
dissipation parameter CD = 0.79, 1, 2.18 and 3. We always
assume CD = cε , as both parameters have the same role in the
Canuto & Dubovikov (1998) and in the Kuhfuß model. Here, the
value of 0.79 refers to the default dissipation parameter from the
Canuto & Dubovikov (1998) model, while 2.18 is the numeri-
cal default value in the Kuhfuß model. The extent of the hydro-
gen profile is largest for the model computed with the small-
est dissipation parameter and smallest for the largest parame-
ter. This behaviour is expected, as a decreased dissipation allows
the TKE flux to extend farther out. Compared to the parame-
ter of the TKE flux αω, the impact of the dissipation parameter
on the overshooting extent is rather limited, as the variation is
much smaller when compared to the results shown in Fig. B.2.
The variation of the overshooting extent is also smaller, as one
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Fig. B.2. Comparison of the hydrogen profiles as a function of fractional
mass for different values for the parameter αω in a 3-equation non-local
5 M� main-sequence model with limited dissipation length scale, Λ.

could have expected from the comparison shown in Fig. B.1.
This is because by changing CD also c4 will change, while in
Fig. B.1 only c4 is changed. The effects of changing c4 and CD
partially compensate for each other, resulting in a smaller net
effect. Finally, one could find combinations of parameters αω
and CD that allow models with equal convective core sizes to be
obtained. In Fig. B.4 we show the impact of the parameter αΠ

and αΦ in the upper and lower panel, respectively. They both
have a negligible impact on the overshooting distance, which
is yet smaller than the impact of the dissipation parameter CD.
This indicates again that the parameter αω, which determines the
importance of the TKE flux, has the largest impact on the over-
shooting distance (we note that Fig. B.1 has a different scale for
the fractional mass axis).
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Fig. B.3. Comparison of the hydrogen profiles as a function of fractional
mass for different values for the parameter CD in a 3-equation non-local
5 M� main-sequence model with limited dissipation length scale, Λ.
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Fig. B.4. Comparison of the hydrogen profiles as a function of fractional
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non-local 5 M� main-sequence model with limited dissipation length
scale, Λ.
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Appendix C: Ad hoc overshooting for small
convective cores
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Fig. C.1. Comparison of mixed core sizes obtained with different
descriptions of convection and different geometric cuts to limit the over-
shooting (OV) for small cores in the ad hoc overshooting model.

Parametrised descriptions of overshooting like the diffusive
or step overshooting use the pressure scale-height at the
Schwarzschild boundary to define the overshooting distance. In
the description of Freytag et al. (1996) the diffusion coefficient
is computed according to

Dadhoc = D0 exp
(
−2z

fOVHp

)
, (C.1)

where fOV is an adjustable parameter and z is the radial distance
to the Schwarzschild boundary. The pressure scale-height is,
however, diverging towards the stellar centre. Hence, the inferred
overshooting distance for a fixed overshooting parameter will
increase for a decreasing convective core size as well as the size
of the mixed region. The resulting mixed core sizes for a fixed
parameter value have been shown to be too large when compar-

ing to observations (Pietrinferni et al. 2004; Magic et al. 2010).
To avoid the unphysical growth of the overshooting region, the
overshooting parameter needs to be artificially restricted. In
GARSTEC the unphysical growth of the overshooting zone is
prevented by comparing the size of the Schwarzschild core to
the pressure scale height and use the smaller one as the relevant
length scale. As usual, there are different ways to implement this.
Originally, Magic et al. (2010) suggested the following expres-
sion:

H̃p = Hp ·min

1, ( rCZ

Hp

)2 ,
where rCZ is the radius of the Schwarzschild boundary. A correc-
tion factor of the same type was also used in Higl et al. (2021)
when comparing GARSTEC results to 2D simulations, while
introducing a factor of two in the denominator:

H̃p = Hp ·min

1, ( rCZ

2Hp

)2 . (C.2)

As the size of the convective core is now compared to a length
scale twice as large as the original expression, the size of the
overshooting region is limited more strongly by Eq. (C.2). The
comparison to 2D simulations (Higl et al. 2021) as well as the
study of the eclipsing binary TZ For (Higl et al. 2018) reveal,
however, that this expression finally limits the size of the convec-
tive core too strongly. This led to the introduction of a different
functional form of the limitation:

H̃p = Hp ·min
(
1,

1
2

[
tanh

(
5
(

rCZ

Hp
− 1

))
+ 1

])
, (C.3)

which less strongly limits the core sizes at 2 M� but very quickly
limits the size of the mixed cores for smaller masses.

In Fig. C.1 we show a comparison of the mixed core sizes
obtained without any cut, with the square cut according to
Eq. (C.2) and with the tanh cut according to Eq. (C.3). For ref-
erence, results obtained with MLT and the 1- and 3-equation
models are shown in the same figure. As discussed above, the
square cut is more restrictive than the tanh cut at masses around
and above 2 M�. Only at a mass of 8 M� does the square cut
no longer restrict the convective core size. In contrast, the tanh
cut restricts the core size only marginally, already at 2 M�. For
lower masses below about 4 M�, the results of the square cut are
in good agreement with the 3-equation model.
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