Energy transport by convection

Convection in stars is a highly turbulent, 3-dimensional and non-local motion in compressible medium on dynamical timescales.

\[\text{Reynolds number } \text{Re} := \frac{v l_m}{\eta} \approx 10^{10}; \ \eta \text{ viscosity; } v \text{ speed of blobs } \approx 10^3 \text{ cm/s} = 10^{-5} v_{\text{sound}}; \ l_m = 10^9 \text{ cm; in laboratory: turbulence sets in when } \text{Re} > 100; \]

Presently, no full hydro-solution possible, only \(\nabla \) from local approaches. Most widely used is the **Mixing Length Theory** (by Prandtl, Böhm-Vitense, . . .).

The Mixing Length Theory equation (formulation of Kippenhahn & Weigert):

Fluxes and gradients, definitions:

\[
F = \frac{L_r}{4\pi r^2} = F_{\text{conv}} + F_{\text{rad}} \quad (1)
\]
\[
F = \frac{4acG T^4 m}{3\kappa P r^2} \nabla_{\text{rad}} \quad (2)
\]
\[
F_{\text{rad}} = \frac{4acG T^4 m}{3\kappa P r^2} \nabla \quad (3)
\]
\[
F_{\text{conv}} = \rho v c_P (DT) \quad (4)
\]

\(\nabla_{\text{rad}} \) is the gradient needed if energy would be transported by radiation only. Of course \(\nabla_{\text{rad}} > \nabla_{\text{ad}} \).

\(F_{\text{rad}} \) is the flux actually carried by radiation, even if there is convection. If convection is adiabatic, this vanishes.
The Mixing Length picture is the following: We assume (as for the discussion of convective instability), a blob starts somewhere with $DT > 0$ and loses identity after a typical mixing length distance l_m. It dissolves into its surroundings and deposits its energy there.

We consider some sphere at radius r and an average blob coming from below. On average that blob will have traveled $l_m/2$, so its excess temperature at r will be

$$\frac{DT}{T} = \frac{1}{T} \frac{\partial (DT)}{\partial r} \frac{l_m}{2} = (\nabla - \nabla_e) \frac{l_m}{2} \frac{1}{H_P}$$

where the gradients are those of the surroundings and of the element (e), and we used the definition of $H_P = -\frac{dr}{d\ln P} = \frac{P}{g\rho}$

$D\rho$ can be calculated from the equation of state, remembering that $DP = 0$ because of hydrostatic equilibrium between the element and the surrounding pressure;

$$\frac{D\rho}{\rho} = -\delta \frac{DT}{T}$$

the resulting buoyancy force is therefore $f_b = -gD\rho/\rho = g\delta DT/T$. The work done by it is (assume 50% have acted on the element over $l_m/2$) then

$$\frac{1}{2} f_b \frac{l_m}{2} = g\delta (\nabla - \nabla_e) \frac{l_m^2}{8H_P}$$
Again, assume half of this goes into kinetic energy of the element, the rest be used up for “pushing away” the surrounding. Then,

\[v^2 = g\delta (\nabla - \nabla_e) \frac{l_m^2}{8H_P} \] \hspace{1cm} (5)

and we can compute the convective flux

\[F_{\text{conv}} = \rho c_P T \sqrt{g\delta} \frac{l_m^2}{4\sqrt{2}} H_p^{-3/2} (\nabla - \nabla_e)^{3/2} \] \hspace{1cm} (6)

At this point we have to take into account that convection may not be adiabatic, so there will be some extra heat exchange with the surrounding. \(T_e \) changes due to adiabatic cooling and radiation losses,

\[\left(\frac{dT}{dr} \right)_e = \left(\frac{dT}{dr} \right)_{\text{ad}} - \frac{\lambda}{\rho V c_P v}, \]

or

\[\nabla_e - \nabla_{\text{ad}} = \frac{\lambda H_P}{8VvT c_P}. \] \hspace{1cm} (7)

\(\lambda \) describes the radiation loss relative to the blob’s energy. It can be formulated as

\[\lambda = S f = \frac{8a c T^3}{3\kappa \rho} DT \frac{S}{d} \]
with \(S \) and \(d \) being surface and diameter of the blob, and \(f \) the non-radial flux from the blob into the surrounding, for which the radiative transport equation equally holds. The temperature gradient in normal direction is approximated by \(\frac{\partial T}{\partial n} \approx 2DT/d \).

Using this expression for \(\lambda \) we obtain an expression in which the geometry of the blob appears in the form \(l_mS/Vd \), which would be \(6/l_m \) if the blob would be spherical with diameter \(l_m \). The usual approximation is

\[
\frac{l_mS}{Vd} \approx \frac{9/2}{l_m}
\]

With this and the expression for \(\lambda \) eq. (8) can be turned into

\[
\frac{\nabla_e - \nabla_{ad}}{\nabla - \nabla_e} = \frac{6acT^3}{\kappa \rho^2 c_P l_m v}
\]

(8)

We now have the 5 equations (1), (3), (5), (6), (8) for five variables: \(v, F_{\text{conv}}, F_{\text{rad}}, \nabla \) and \(\nabla_e \) in terms of \(P, T, \rho, l_m, \nabla_{ad}, \nabla_{rad} \), which are all local variables plus the unknown mixing length \(l_m \).

An analytical solution is possible. We define

\[
U = \frac{3acT^3}{c_P \rho^2 \kappa l_m^2} \sqrt{\frac{8H_P}{g\delta}}
\]

\[
W = \nabla_{rad} - \nabla_{ad}
\]

\[
\xi^2 = \nabla - \nabla_{ad} + U^2
\]
We first eliminate v with (5) from (8) and get
\[\nabla e - \nabla_{ad} = 2U \sqrt{\nabla - \nabla_e} \]

Another equation is obtained by eliminating the energy fluxes in (1), (2), and (3), using the definition of H_P and the hydrostatic equation:
\[(\nabla - \nabla_3)^{3/2} = \frac{8}{9} U (\nabla_{rad} - \nabla) \]

If we rewrite the l.h.s. of the first one as $(\nabla - \nabla_{ad}) - (\nabla - \nabla_e)$, one realizes that that is a quadratic equation for $(\nabla - \nabla_e)^{1/2}$ with the solution
\[\sqrt{\nabla - \nabla_e} = -U + \xi \]

We insert this in the second equation on the left hand side, and rewrite ∇ on the right hand side with the definition of ξ and now get the cubic equation of mixing length theory:
\[(\xi - U)^3 + \frac{8U}{9} (\xi^2 - U^2 - W) = 0 \] \hspace{1cm} (9)

W and U can be calculated at any point (local!) and the cubic equation can be solved for ξ. From this we get ∇, which is the final gradient established in the layer due to convection.
A useful quantity for diagnostic is
\[\Gamma := \frac{(\nabla - \nabla_e)^{1/2}}{2U} = \frac{(\nabla - \nabla_e)}{(\nabla_e - \nabla_{ad})} \]
is the ratio of energy transported by the blob over that lost from it, or the “efficiency” of the convection.

If \(U \) is small, \(\Gamma \) is large and almost all flux is transported by convection and the resulting gradient is \(\approx \nabla_{ad} \). If \(U \) is large, \(\Gamma \) is small, and – although transport is by convection – the resulting gradient is almost \(\nabla_{rad} \). In general, convection is superadiabatic:

\[\nabla = \nabla_{ad} + \delta \nabla \]

The equations still contain the mixing length, which is usually expressed as a multiple of the pressure scale height
\[l_m = \alpha_{MLT} H_p. \]
\(\alpha_{MLT} \) is the mixing-length parameter. It is of order 1, and is determined usually by solar models; numerical values are \(\alpha_{MLT} \approx 1.2 \cdots 2.2 \), most recently they cluster around 1.8. However, there is no physical model that can determine \(\alpha_{MLT} \).

Example for \(\nabla \): Sun, \(r = R_\odot/2, m = M_\odot/2, T = 10^7 \), \(\rho = 1, \delta = \mu = 1 \)
\[\rightarrow U = 10^{-8} \rightarrow \nabla = \nabla_{ad} + 10^{-5} = 0.4 \]
(as long as \(\nabla_{rad} < 100 \cdot \nabla_{ad} \))
at center, \(\nabla = \nabla_{ad} + 10^{-7} \).
Using MLT the various gradients for the Sun look like this:

...and for a $10M_\odot$ star they are shown on the left; the right panel displays the convective regions along the zero-age main-sequence.
Comments on Mixing Length Theory:

1. convection is turbulent with a spectrum of element sizes (and shapes)

2. MLT is purely local: overshooting from convective boundary or any other non-local effect is not included

3. MLT describes stationary situation: time-dependence of convection ignored

4. α_{MLT} is only average value; depth-, mass-, and composition-dependencies are all ignored, and not even empirically determined

5. there are several “flavours” of MLT (formulation, assumptions, hidden parameters, etc.), so α_{MLT} cannot be compared straightforwardly between different computations

6. empirical determination of α_{MLT} in fact also compensates for all other errors in physics that determine radius or temperature of star

7. MLT has worked surprisingly well!
Real convection:

1. Solar granulation (Big Bear Observatory):

2. Motion below photosphere from helioseismology (SOHO):
3. Downdrafts in simulations (Stein):