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ABSTRACT
The parameter space for modelling stellar systems is vast and complicated. To find best-fitting models for a star one needs a
statistically robust way of exploring this space. We present a new machine-learning approach to predict the modelling parameters
for detached double-lined eclipsing binary systems, including the system age, based on observable quantities. Our method allows
for the estimation of the importance of several physical effects which are included in a parametrized form in stellar models,
such as convective core overshoot or stellar spot coverage. The method yields probability distribution functions for the predicted
parameters which take into account the statistical and, to a certain extent, the systematic errors which is very difficult to do using
other methods. We employ two different approaches to investigate the two components of the system either independently or
in a combined manner. Furthermore, two different grids are used as training data. We apply the method to 26 selected objects
and test the predicted best solutions with an on-the-fly optimization routine which generates full hydrostatic models. While we
do encounter failures of the predictions, our method can serve as a rapid estimate for stellar ages of detached eclipsing binaries
taking full account of the uncertainties in the observables.
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1 IN T RO D U C T I O N

Robust stellar modelling of observed stars requires precise knowl-
edge of the fundamental quantities of the objects. Foremost among
these quantities are mass and chemical composition, which define the
star’s evolution and fate. Additionally, radius, surface temperature
(or colour), and luminosity (or brightness) relate to the evolutionary
stage and the age of the star. Of increasingly higher importance
are pulsational properties, as these allow insight into the interior
structure via asteroseismic observations and analysis methods. From
a theoretical perspective, the models depend on the treatment of
physical effects, many of which are addressed with parametrizations
designed to approximate the processes at work and which, more
often than not, require some form of tuning or calibration. Examples
include dynamic convection, diffusive processes, and the influence
of magnetic fields. In addition, also unknown details of chemical
composition, such as precise helium content, add to the uncertainty
of the models. If one does not decide for a fixed set of parameters and
physical models, the parameter space for modelling stellar objects
becomes vast and complicated, and each new physical process or free
parameter considered further increases the dimensionality. However,
varying the physically motivated free parameters allows one to find
the best-fitting model while simultaneously gaining insight into the
physical processes relevant for stars. This is a common method of
choice to improve stellar structure theory.

� E-mail: brempl@mpa-garching.mpg.de

As the relationship between the observations of stars and their
internal properties are complicated and difficult to characterize
(Bellinger et al. 2016), the task of determining the best parameters
for modelling a star is a challenging one. With traditional methods
such as iterative optimization or grid-based modelling, one is forced
to run more and more models to explore the parameter space
sufficiently. This quickly becomes computationally unfeasible. As an
example, in Quirion, Christensen-Dalsgaard & Arentoft (2010), they
calculate a grid of 7300 stellar tracks totalling more than 5.8 million
models while varying only four initial parameters. Alternatively, one
could reduce the dimensionality of the problem, by omitting certain
physical processes, or by setting a calibrated value for the associated
free parameter(s) which may or may not reflect the object being
modelled.

In recent years, it has been shown that it is possible to reduce the
impact of many of these difficulties by employing machine learning
algorithms. These algorithms capture relationships in the data statis-
tically and use them to construct regression models which connect
the observational quantities of stars to their chemical, structural, and
evolutionary properties (Bellinger et al. 2016; Angelou et al. 2017).
Additionally, these regression models can be built from a reasonable
number of models and can be used to process entire catalogues of
stars at one time (Angelou et al. 2020). Furthermore, machine learn-
ing methods can provide an easy way of more robustly considering
statistical and systematic uncertainties without computing additional
grids (Silva Aguirre et al. 2015; Bellinger et al. 2019).

Previous studies have successfully used machine learning to infer
modelling parameters from observational data (Bellinger et al. 2016;
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Angelou et al. 2017; Bellinger et al. 2019; Angelou et al. 2020).
These studies focused on using fundamental observables along with
asteroseismic quantities to analyse single stars. The asteroseismic
quantities are necessary to provide additional information on the stars
and to break some of the degeneracy inherent in the stellar parameter
space. Another way to break some of the degeneracies is by analysing
binary systems as we have done in this study. Binaries, specifically
detached double-lined eclipsing binaries (DDLEBs), are ideal targets
to study because the mass and radius of both components can be
measured with a very high accuracy, the components are expected
to have very similar initial metallicities, and the components should
be co-natal, i.e. the components are the same age. These qualities
impose powerful constraints on the possible solutions for the system
and restrict the size and complexity of the parameter space that must
be considered.

In this paper, we apply machine learning regression in a new way
to analyse binary systems and present the results for 26 DDLEB
systems. The method utilizes machine learning models to produce
robust probability distribution functions (PDF) of the modelling pa-
rameters. This is then connected to an on-the-fly optimization search
for a deeper analysis of full hydrostatic models. The hydrostatic
models are compared to the measured radii of the components as
well as the luminosity ratio and effective temperature ratio of the
system to determine if the models match the observations. The main
purpose of the method is to determine the ages of the systems.
Unlike previous machine learning based methods, our algorithm
analyses both components of the system at the same time and uses
the full observational data of the system to predict the modelling
parameters. A machine learning algorithm which focuses on one
star at a time, similar to that of Bellinger et al. (2016), is also
utilized as a way of comparing our new method to an established
method.

Each method is trained on two separate grids of models which
consider different physics. The ‘canonical grid’ includes what could
be considered a standard set of physical processes and free param-
eters for stellar modelling. Specifically, it includes convective core
overshoot, diffusion for stars below 1.1 M�, varying mixing lengths,
and, of course, varying metallicity, helium abundance, and mass. The
so-called ‘extended grid’ additionally includes α-enhancement and
spot coverage.

The paper is organized as follows: in Section 2 DDLEB studies
will be discussed, including traditional methods and previous results
from the literature. Following this some background on random
forests will be presented. In the subsequent section, Section 3, the
details of the methods utilized in this study will be presented. The
important aspects of GARSTEC, the stellar evolution code used in
this study, will be introduced (Section 3.1), the system selection
criteria will be explained (Section 3.2), and the machine learning
methods will be discussed in detail (Section 3.3). Next, the results
for both methods and both grids will be shown and compared
(Section 4). A closer analysis of a chosen few systems will also
be done in this section. In Section 5, general conclusions about the
new approach regarding effectiveness, reliability, and advantages
will be established. Additionally, a special emphasis will be placed
on the overshoot parameter values and spot coverage and any
trends for these quantities. Finally, we outlay our conclusions in
Section 6.

2 BAC K G RO U N D

The use of DDLEB systems as tests of stellar evolution has been
common practice for decades. A common use of DDLEB systems

is to test the need for or extent of convective core overshoot in
stars.1 One of the classic reference papers is that of Schröder, Pols &
Eggleton (1997) who looked at ζ Aurigae systems to establish the
necessity or the amount of convective core overshooting.

In Lastennet & Valls-Gabaud (2002) a collection of DDLEB
systems were used in a general parameter study wherein the authors
attempted to ascertain the age and metallicity of the selected systems.
They find that their models can, within errors, fit most of their
systems. Crucially, they note a large degeneracy between age and
metallicity. According to the authors, the lack of metallicity mea-
surements limits a precise determination of the age regardless of how
accurate the other measurements are, and that ‘...the spectroscopic
measure of the metallicity in the components of these systems is
essential for this technique to be an efficient test of stellar evolution.’

Torres, Andersen & Giménez (2010) analysed 94 systems and
draw the same conclusion as Lastennet & Valls-Gabaud (2002), that
metallicity measurements are necessary for precise age determina-
tions of DDLEB systems. In addition, they find that the presence of
spots in certain systems is ‘confirmed beyond a doubt’ and stress
that the effect of spots must be addressed for accurate modelling,
especially regarding low-mass stars.

Both these issues were considered in Higl & Weiss (2017), where
19 DDLEB systems were studied. All systems were required to have
reliable compositional measurements to break the age-metallicity
degeneracy. This sets this study apart from most studies of this type
where metallicity is varied as a free parameter. For each system a
small grid of models was run with the GARSTEC stellar evolution
code (Weiss & Schlattl 2008) with three values for the mass,
and a selected small number of values for composition, overshoot,
spot coverage, and diffusion depending on the applicability of the
process to the star in question. This limited number of models
reduced the required computational effort, but at the same time
did not allow us to identify the truly best-fitting model and the
uncertainties in the physical parameters. The models were compared
to observations and best models were chosen largely based on age–
radius diagrams. They find that the agreement between models
and observations for some systems is improved by including one
or more of diffusion, overshoot, and spot coverage. We seek to
build on this study by more systematically exploring the parameter
ranges.

In their investigation, Higl & Weiss find no clear linear relationship
between mass and the convective overshoot parameter. The question
of whether or not there is a linear relationship between mass and
overshoot parameter is unresolved and often debated in the literature.
Stancliffe et al. (2015) and Constantino & Baraffe (2018) argue that
the uncertainties in the models are too large to claim that a linear
relationship exists. On the other hand, in a series of papers by Claret
and Torres (Claret & Torres 2016, 2017, 2018, 2019), they argue
that they find a linear dependence between mass and overshoot up to
around 2 M�, at which point it flattens out. More recently, in Viani &
Basu (2020), evidence for a linear mass-overshoot relationship is
also found.

These studies all exploit the constraints provided by DDLEB
systems in order to draw conclusions about the stellar models and/or
specific modelling parameters. Regardless of the specific aims, these
studies all face the same task: to explore the stellar parameter space
and to chose the point in that space which produces models that

1More generally the extent of a fully or partially mixed zone above the fully
convective core is tested. Convective overshoot may be the most likely, but
not unique effect to mix material beyond the Schwarzschild boundary
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most closely match the observations. One notes from these studies
that the dimensionality of the parameter space continues to grow
as more physical processes are considered necessary to accurately
model stars.

Three traditional ways of exploring the parameter space include
grid based search methods (Gai et al. 2011; Chaplin et al. 2014),
optimization methods (Metcalfe, Creevey & Christensen-Dalsgaard
2009), and in select cases Markov Chain Monte Carlo Methods
(MCMC) (Bazot, Bourguignon & Christensen-Dalsgaard 2012;
Jørgensen & Angelou 2019). A grid search requires a grid of tracks
to be run which covers the region of the multidimensional parameter
space where one believes the solution to be. A key characteristic
of this method is the grid density. The resolution of this method is
dependent on the density of the grid of parameters used (Bellinger
et al. 2016). Thus, to explore a large swath of the parameter space
or to explore a many-dimensional parameter space one needs to run
many tracks. Additionally, because the method does not scale well
one tends to underestimate the systematic uncertainty.

Optimization methods, on the other hand, use an optimization
algorithm to search the parameter space for the best model. These
methods are robust but are very computationally expensive requiring
many tracks to be run in order to explore the parameter space
sufficiently. In Metcalfe et al. (2009), a genetic algorithm is used and
the authors note that the algorithm is computationally demanding but
‘is usually hundreds or even thousands of times more efficient than
a complete grid’.

Finally, MCMC allows for a robust exploration of the parameter
space and yields reliable probability distributions for target param-
eters, but incurs a high computational cost to do so (Jørgensen &
Angelou 2019). In Bazot et al. (2012) an MCMC method is used to
infer the parameters of α Cen A. Their analysis required running 3
Markov chains of length 50 000. As a final note on these traditional
methods, a common weakness among optimization and MCMC
methods is that the procedure must be repeated in its entirety for
each new star that one would like to model.

In recent years computational power has caught up to the
algorithmic complexity of machine learning methods leading to
machine learning becoming ubiquitous in science (Carleo et al.
2019). Random Forests, the machine learning algorithm utilized in
this study, has been a particularly popular choice of algorithm due
to its wide applicability and fast training speeds. From classifying
the type of compact object in Low-mass X-ray binaries (Pattnaik
et al. 2021), to searching for trans-Neptunian objects (Henghes et al.
2021), to predicting modelling parameters of stars (Bellinger et al.
2016; Angelou et al. 2020), random forests have proven to be a useful
tool for astrophysicists.

Random forests (RF) is a supervised ensemble learning method.
This means that it requires a training data set from which it can
learn (supervised) and that it relies on combining the predictions
of a population of learning methods, in this case decision trees, in
order to make a prediction (ensemble) (Louppe 2014). Each decision
tree learns a set of rules for relating the features or input variables
to the targets or the variables to predict. Once the forest is trained
one can use it to predict the targets of unseen data points. For a
theoretical overview of random forests see Mehta et al. (2019) or
Hastie, Tibshirani & Friedman (2009).

Much of the groundwork for this study was laid out in Bellinger
et al. (2016) where they used random forests to predict the modelling
parameters of stars, e.g. age, mixing length, etc., from observational
quantities including asteroseismic quantities. They establish the
efficacy of using random forests to analyse stellar systems on the
main sequence and demonstrate the benefits of this method. They

find that random forests are substantially faster than other methods,
that the non-linear non-parametric regression which random forests
employ allow for a similar level of precision in comparison to
other methods with an order-of-magnitude fewer models being
required, that the method allows for a wider range of values and
a larger combination of stellar parameters to be investigated, and
finally that the statistical nature of the method allows for the
propagation of statistical errors and a more honest appraisal of the
systematic errors. Some of these ideas will be elaborated on more in
Section 3.3.

3 M E T H O D S

In this section, we begin by discussing GARSTEC, the stellar evolution
code used in this study. A full description of GARSTEC can be found
in Weiss & Schlattl (2008), but for the sake of brevity we will focus
only on the aspects of the code which are of greatest importance to
this study.

3.1 GARSTEC

3.1.1 Convective overshooting

When convective elements, for example plumes or eddies, encounter
a stable boundary a number of behaviours are possible (Zahn 1991).
One possibility is that the convective material might reach the neutral
buoyancy point, otherwise known as the Schwarzschild boundary,
with a non-zero velocity, and thus overshoot the convective boundary
as determined by mixing length theory (Kippenhahn, Weigert &
Weiss 2012). This process was historically referred to as overshooting
by the astrophysics community. However, overshoot is applied
in stellar models as catch-all for the various physical processes
(Angelou et al. 2020) which mix material beyond the stable boundary,
thus overshoot may have more than one meaning depending on the
context. Because of this there is a push in the literature to refer
to the specific overshooting process as penetration, as is done in
fluid dynamics, and to refer to the general extraboundary mixing
as convective boundary mixing, or CBM (Zahn 1991; Denissenkov
et al. 2013; Davis, Jones & Herwig 2019; Angelou et al. 2020).

Regardless of the name used or processes considered, the effi-
ciency of these extra mixing processes is unknown and as such is
implemented in stellar evolution codes as a parametrized process.
In GARSTEC, convection is handled by the standard mixing-length
formulation of Kippenhahn et al. (2012). Convective penetration
is implemented via the description by Freytag, Ludwig & Steffen
(1996). Their description is based on a diffusive overshoot mixing
model which is incorporated into GARSTEC with a diffusion constant,
derived from the convective velocity as estimated by mixing-length
theory, and an adjustable parameter fov. The standard value of fov

in GARSTEC is 0.02, determined by fitting isochrones to young open
clusters.

One complication of this prescription is that problems may occur
when running models for stars with very small convective cores. As
the pressure scale height, HP, grows ever larger towards the centre of
the star, the overshooting region would become unrealistically large.
This is handled in GARSTEC by reducing HP, effectively applying a
geometrical cut-off,

H ∗
P = HP min

{
1,

(
�RCZ

2HP

)2
}

, (1)

which ensures that the overshooting region is restricted to a fraction
of the radial extent of the convective zone, RCZ. This is particularly
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relevant for models on the lower main-sequence (M � 2 M�), which
have very small convective cores.

The implication of this correction is that the value of the convective
overshoot parameter which the user sets, the user-set overshoot
(USO) value, is not necessarily the value which the code uses, which
we call the effective overshoot (Angelou et al. 2020).

The effective overshoot is defined as the overshoot parameter value
which would lead to a convective core overshoot region that is the
size of the geometrically cut convective core overshoot region. For
more massive models on the main-sequence (M � 2 M�), the USO
value and the effective overshoot value are the same. However, for the
models where it is not, the effective overshoot will better describe
the behaviour of overshoot in the code. The relationship between
effective overshoot and USO is

Effective Overshoot = H ∗
P

HP
USO. (2)

Furthermore, the overshoot routine has been slightly modified in
a way that overshoot only occurs in the core convection zone and is
turned off for all other convective regions. If there is no convective
core present in a model, then the value of both overshoot values is set
to zero. Only core overshoot is considered because it is the overshoot
region which has the greatest impact on the evolution of the star and
we wish to study this effect specifically.

Finally, the quantity which the random forest ultimately predicts is
the median effective overshoot (MEO). This is a quantity which is the
same for every model in a track. It is calculated by finding the median
effective overshoot value of models in a particular track which have
a convective core. If there are no models with a convective core,
naturally the median effective overshoot is set to 0. The usage of the
median effective overshoot is of particular importance for predictions
for post-main sequence stars. These stars no longer have a convective
core and, thus, no core overshooting is occurring. However, their
evolution is still very much influenced by the effects of core overshoot
on the main sequence. The median effective overshoot allows for
some of this historical context to be available to the random forest.
Thus, it can predict an overshoot value which explains the whole
evolution and not just what the overshoot would be at that moment
in the evolution.

3.1.2 Diffusion

Diffusion is a slow process. Under solar conditions the characteristic
time it would take for an element to diffuse a solar radius is roughly
6 × 1013 yr (Thoul, Bahcall & Loeb 1994). Since the time-scale
for diffusion is large, the effects of diffusion are only important in
stars where its effect is not suppressed by a process with a shorter
time-scale. Rotational mixing, radiative diffusivity, and stellar wind
mass-loss have all been proposed as such a counteracting process
(Chaboyer, Demarque & Guenther 1999; Morel & Thévenin 2002).
Observationally, for stars with convective envelopes thinner than the
Sun, diffusion has been shown to be important. Additionally, it has
been shown that including diffusion in models of the sun improves
the agreement with observations of, among other things, surface
helium abundance (Salaris & Weiss 2001). Therefore, diffusion is
included in the training data only for stars whose mass is less
than 1.1 M�.

As described in Weiss & Schlattl (2008), diffusion is handled using
the description of Thoul et al. (1994). This approach assumes all
elements are ionized and neglects the effects of radiation pressure but
is otherwise quite general. As diffusion gradually reduces the surface

abundances of all elements heavier than hydrogen over time, the
initial surface abundances are an additional target for the RF. It must
predict the appropriate initial abundances such that the composition
of the surface matches the present observed metallicity, which may
not necessarily be the same for both components at the present
age.

3.1.3 Opacities and equation of state

All models were run using the OPAL-EoS equation of state (Rogers &
Nayfonov 2002). Likewise, OPAL opacities (Iglesias & Rogers
1996), extended by the Alexander and Ferguson molecular opac-
ity tables (Ferguson et al. 2005) for lower temperatures, and by
conductive opacities following Cassisi et al. (2007), were used for
all models. For α-enhanced mixtures, corresponding opacity tables
including this enhancement were used.

3.1.4 Alpha enhancement

It has long been known that the chemical composition of stars is a
function of place and time of origin. Through a myriad of studies in
the 70s and 80s, it became clear that α-element (oxygen, magnesium,
silicon, calcium, etc.) abundances are enhanced relative to iron in
most, if not all, low metallicity stars (Salaris, Chieffi & Straniero
1993). Additionally, the amount of overabundance is to first order
related to the metallicity.

In this way, α-enhancement, like metallicity, is a function of place
and time of origin. For this study, we chose to adopt an empirical
relation between metallicity and α-enhancement which would allow
us to assign α-enhancements based on discrete [Fe/H] bins. The
specific relationship used is that found in the Ness et al. (2013)
study of stellar populations of the Milky Way. Following the results
from panel 3 fig. 19 in that study, we have adopted the following
[Fe/H]-α-enhancement relationship:

α-enhancement =

⎧⎪⎪⎨
⎪⎪⎩

0.6, if [Fe/H] < −1.5
0.4, if − 1.5 < [Fe/H] < −0.5
0.2, if − 0.5 < [Fe/H] < 0.0
0.0, else.

(3)

In this way the α-enhancement can be assigned to stars based on
the metallicity predictions.

3.1.5 Spot model

For at least 40 yr, it has been clear that for low-mass stars (M <

1.1 M�), theoretical calculations underestimate the radius measured
in observations. Hoxie (1973) noticed a discrepancy of 30 per cent or
more. This discrepancy between models and observations is largely
attributed to the model’s lack of consideration of spot coverage. In
this paper, we apply the same spot model as Higl & Weiss (2017)
which is laid out in Spruit & Weiss (1986).

Spots inhibit the efficiency of convection near the surface of stars.
This causes a drop in the effective temperature of the star. In order
to compensate for the reduction in effective temperature, the star
is forced to expand to radiate its energy. Following the treatment
in Spruit & Weiss (1986), we account for the effects of spots by
introducing an effective spot coverage, fe, defined as,

fe = [
ba2 + c

(
1 − a2

)]
f (4)

f = fu + fp (5)
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Figure 1. The ZAMS for stars with and without spot coverage are shown.
All models with spots have an effective spot coverage of 75 per cent . In
the upper panel effective temperature is defined as the temperature of the
unspotted surface of the star. In the lower panel effective temperature is the
average temperature over the whole surface of the star. Numbers indicate
stellar mass in solar units. Lines of constant radius are plotted in dashed grey
lines as well.

a2 = fu

fu + fp
(6)

b = 1 − T 4
u

T 4
0

(7)

c = 1 − T 4
p

T 4
0

, (8)

where fu, Tu, fp, and Tp are the fractional areas and temperatures of
the umbrae and penumbrae, respectively, and T0 is the temperature
of the unspotted surface.

Fig. 1 shows the effect of a 75 per cent effective spot coverage
on the low-mass section of the zero-age main sequence (ZAMS). In
the top panel, the stars are plotted with Ts, the temperature of the
unspotted surface, and in the bottom panel they are plotted with the
average temperature over the whole surface, Teff. Fig. 2 shows the
same data but plotted on a Kiel diagram. In this plot, the effect on
the radii of the models is even clearer.

Spot coverage may be deduced from observations in a number
of ways. Using spectroscopy, one can analyse the TiO lines to
derive spot coverage (O’Neal et al. 2004). This technique only
works for M stars. Additionally, one can measure light curves for
stars and observe variations which are attributed to spots. Synthetic
light curves can then be produced with varying spot coverage
parameters and matched to the observations as was done in Morales
et al. (2009). The authors state, though, that ‘...such modelling is

Figure 2. A Kiel diagram of ZAMS with and without spot coverage. See
Fig. 1 for an explanation of plot elements.

fraught with difficulties and there is abundant literature discussing
problems of indeterminacy and non-uniqueness, particularly when
using data of limited quality’. Recently in Pan et al. (2021), Miller
et al. (2021), this method was used to deduce the spot coverage of
binary systems. In Section 4.2, we look at a system which has a
spot coverage estimate from observations and compare it to our
results.

3.2 Selecting systems

All systems chosen for this study adhere to five criteria. Criterion 1 is
that no component can be outside the mass range 0.25 M� < M∗ <

6.0 M�. Criterion number 2 is accurate and precise measurements.
The system must have mass and radius measurements which are
accurate to within at least 2 per cent. This criterion is in accordance
with Andersen (1991) where it is stated that this is the accuracy
limit for non-trivial results. The third criterion is that spectroscopic
abundances, luminosities, and effective temperatures must be avail-
able: a critical test is only possible when all quantities are known
(Andersen 1991). Requiring a measured metallicity and not varying
it as a free parameter makes this study different from many others
(Pols et al. 1997; Schröder et al. 1997; Lastennet & Valls-Gabaud
2002; Meng & Zhang 2014; Claret & Torres 2016), but it has been
shown that metallicity is essential for an accurate determination of the
age (Lastennet & Valls-Gabaud 2002; Torres et al. 2010). Criterion
number 4 is that the system must have a primary and a secondary
with different masses: a system with two stars that have the same
mass is trivial to find a solution for. All the systems in this study
have a mass ratio, q = MB/MA, that is less than 0.96. The final
criterion is that neither component can be on the pre-main sequence
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Table 1. Fundamental properties of all systems studied in this work. For each object the first and second line refer to the primary and secondary
component, respectively. Data are from the DEBCat catalogue (Southworth 2015). Note, no metallicity uncertainty was reported for RW Lac so
an uncertainty of 0.3 was adopted.

M/M� R/R� log(g) log(Teff) log(L/L�) [Fe/H]
System

AD Boo 1.414 ± 0.009 1.612 ± 0.014 4.173 ± 0.008 3.818 ± 0.008 0.64 ± 0.03 0.1 ± 0.15
1.209 ± 0.006 1.216 ± 0.01 4.351 ± 0.007 3.789 ± 0.008 0.28 ± 0.04 –

ASAS J065134-2211.5 0.956 ± 0.012 0.997 ± 0.004 4.421 ± 0.003 3.74 ± 0.008 − 0.09 ± 0.03 0.09 ± 0.13
0.674 ± 0.005 0.69 ± 0.007 4.589 ± 0.009 3.599 ± 0.012 − 0.96 ± 0.05 –

BG Ind 1.428 ± 0.008 2.29 ± 0.017 3.873 ± 0.005 3.803 ± 0.018 0.87 ± 0.07 − 0.2 ± 0.1
1.293 ± 0.008 1.68 ± 0.038 4.099 ± 0.02 3.823 ± 0.015 0.68 ± 0.08 –

BK Peg 1.414 ± 0.007 1.988 ± 0.008 3.992 ± 0.004 3.797 ± 0.006 0.74 ± 0.02 − 0.12 ± 0.07
1.257 ± 0.005 1.474 ± 0.017 4.201 ± 0.01 3.801 ± 0.006 0.49 ± 0.03 −

CoRoT 105906206 2.25 ± 0.04 4.24 ± 0.02 3.53 ± 0.01 3.829 ± 0.01 1.53 ± 0.04 0.0 ± 0.1
1.29 ± 0.03 1.34 ± 0.01 4.3 ± 0.02 3.789 ± 0.011 0.36 ± 0.05 −

EF Aqr 1.244 ± 0.008 1.338 ± 0.012 4.28 ± 0.007 3.789 ± 0.006 0.36 ± 0.011 0.0 ± 0.1
0.946 ± 0.006 0.956 ± 0.012 4.453 ± 0.011 3.715 ± 0.009 − 0.227 ± 0.02 −

EW Ori 1.173 ± 0.011 1.168 ± 0.005 4.372 ± 0.005 3.783 ± 0.007 0.22 ± 0.03 0.05 ± 0.09
1.123 ± 0.009 1.097 ± 0.005 4.408 ± 0.005 3.771 ± 0.007 0.12 ± 0.03 −

FL Lyr 1.21 ± 0.008 1.244 ± 0.023 4.331 ± 0.016 3.796 ± 0.008 0.33 ± 0.095 − 0.07 ± 0.09
0.951 ± 0.004 0.9 ± 0.024 4.508 ± 0.023 3.74 ± 0.019 − 0.18 ± 0.08 −

HAT-TR-318-007 0.448 ± 0.001 0.455 ± 0.004 4.774 ± 0.0057 3.504 ± 0.015 − 1.715 ± 0.06 0.3 ± 0.11
0.272 ± 0.004 0.291 ± 0.002 4.9442 ± 0.0039 3.491 ± 0.015 − 2.151 ± 0.062 −

IM Vir 0.981 ± 0.012 1.061 ± 0.016 4.379 ± 0.014 3.754 ± 0.008 − 0.012 ± 0.034 − 0.1 ± 0.25
0.664 ± 0.005 0.681 ± 0.013 4.594 ± 0.017 3.628 ± 0.013 − 0.867 ± 0.056 –

KIC 5640750 1.515 ± 0.033 14.06 ± 0.12 2.323 ± 0.007 3.656 ± 0.007 1.871 ± 0.029 − 0.29 ± 0.09
1.292 ± 0.017 1.853 ± 0.023 4.014 ± 0.01 3.767 ± 0.015 0.555 ± 0.06 –

KIC 7821010 1.277 ± 0.017 1.276 ± 0.011 4.332 ± 0.007 3.827 ± 0.01 0.47 ± 0.04 0.1 ± 0.08
1.221 ± 0.016 1.21 ± 0.014 4.359 ± 0.009 3.817 ± 0.011 0.39 ± 0.05 –

KIC 8410637 1.472 ± 0.017 10.595 ± 0.049 2.556 ± 0.003 3.663 ± 0.008 1.656 ± 0.03 0.02 ± 0.08
1.309 ± 0.014 1.556 ± 0.01 4.171 ± 0.005 3.783 ± 0.014 0.468 ± 0.058 –

KIC 9540226 1.39 ± 0.031 13.431 ± 0.17 2.326 ± 0.01 3.661 ± 0.007 1.854 ± 0.03 − 0.31 ± 0.09
1.015 ± 0.016 1.034 ± 0.014 4.416 ± 0.01 3.765 ± 0.015 0.042 ± 0.061 –

Kepler-35 0.888 ± 0.005 1.028 ± 0.002 4.3623 ± 0.002 3.749 ± 0.011 − 0.027 ± 0.043 − 0.34 ± 0.2
0.809 ± 0.004 0.786 ± 0.002 4.5556 ± 0.0016 3.716 ± 0.008 − 0.387 ± 0.02 –

LL Aqr 1.196 ± 0.001 1.321 ± 0.006 4.274 ± 0.004 3.784 ± 0.003 0.332 ± 0.014 0.02 ± 0.04
1.034 ± 0.001 1.002 ± 0.005 4.451 ± 0.004 3.756 ± 0.004 − 0.019 ± 0.016 –

OGLE-LMC-SC9-230659 3.598 ± 0.038 32.832 ± 0.023 1.962 ± 0.005 3.699 ± 0.006 2.783 ± 0.025 − 0.24 ± 0.11
3.429 ± 0.03 23.399 ± 0.032 2.235 ± 0.011 3.702 ± 0.009 2.5 ± 0.036 –

RW Lac 0.928 ± 0.006 1.186 ± 0.004 4.257 ± 0.003 3.76 ± 0.008 0.14 ± 0.03 − 0.3
0.87 ± 0.004 0.964 ± 0.004 4.409 ± 0.004 3.745 ± 0.012 − 0.1 ± 0.05 –

SW CMa 2.239 ± 0.014 3.014 ± 0.02 3.8298 ± 0.0065 3.914 ± 0.008 1.566 ± 0.032 0.55 ± 0.15
2.104 ± 0.018 2.495 ± 0.042 3.967 ± 0.015 3.908 ± 0.008 1.38 ± 0.035 –

TZ For 2.057 ± 0.001 8.341 ± 0.11 2.915 ± 0.023 3.693 ± 0.003 1.57 ± 0.02 0.02 ± 0.05
1.958 ± 0.001 3.97 ± 0.08 3.539 ± 0.037 3.803 ± 0.005 1.36 ± 0.03 –

V501 Mon 1.646 ± 0.004 1.888 ± 0.029 4.103 ± 0.013 3.876 ± 0.006 1.007 ± 0.027 0.01 ± 0.06
1.459 ± 0.002 1.592 ± 0.028 4.199 ± 0.016 3.845 ± 0.006 0.743 ± 0.043 –

V530 Ori 1.004 ± 0.007 0.98 ± 0.013 4.457 ± 0.012 3.777 ± 0.007 0.016 ± 0.032 − 0.12 ± 0.08
0.596 ± 0.002 0.587 ± 0.007 4.676 ± 0.01 3.589 ± 0.013 − 1.154 ± 0.053 –

V636 Cen 1.052 ± 0.005 1.018 ± 0.004 4.444 ± 0.004 3.771 ± 0.006 0.05 ± 0.03 − 0.2 ± 0.08
0.854 ± 0.003 0.83 ± 0.004 4.532 ± 0.005 3.699 ± 0.009 − 0.41 ± 0.04 –

VZ Hya 1.271 ± 0.006 1.314 ± 0.005 4.305 ± 0.005 3.809 ± 0.01 0.48 ± 0.04 − 0.2 ± 0.12
1.146 ± 0.007 1.112 ± 0.007 4.405 ± 0.006 3.799 ± 0.01 0.24 ± 0.04 –

WASP 0639-32 1.155 ± 0.004 1.834 ± 0.023 3.974 ± 0.011 3.801 ± 0.003 0.685 ± 0.018 − 0.33 ± 0.1
0.783 ± 0.003 0.729 ± 0.008 4.607 ± 0.01 3.732 ± 0.006 − 0.392 ± 0.028 –

YZ Cas 2.263 ± 0.012 2.525 ± 0.011 3.988 ± 0.004 3.979 ± 0.005 1.672 ± 0.022 0.1 ± 0.06
1.325 ± 0.007 1.331 ± 0.006 4.311 ± 0.004 3.838 ± 0.015 0.552 ± 0.061 –

or past the helium flash. Consequently, a system satisfying all of
these criteria makes for an ideal test of the methods used in this
study. All the systems in this study can be found in the DEBCat
catalogue (Southworth 2015). The complete list of systems selected
can be seen in Table 1.

3.3 Machine learning

The machine learning aspect of this study can be broken up into
three steps: generating training data, running that data through one
of two RFs, and producing hydrostatic models based on the RF’s
predictions.
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3.3.1 The model grids

Two grids were used as training data for the random forests.
They differ from one another both in which physical processes are
considered as well as in the ranges that certain parameters are allowed
to take. For the ‘canonical grid’ the following parameter ranges are
allowed:

(i) Mass: [0.2–6.0] M�
(ii) Initial metallicity: [1e-4–0.03]
(iii) Mixing length parameter: [1.2–2.7]
(iv) Overshoot (USO): [1e-6–0.05]

For the ‘extended grid’ the parameter ranges are:

(i) Mass: [0.2–6.0] M�
(ii) Initial metallicity: [1e-4–0.03]
(iii) Mixing length parameter: [1.566–1.914]
(iv) Overshoot (USO): [1e-6–0.05]
(v) Effective spot coverage: [1e-3–1.0]
(vi) α-enhancement: [0.0, 0.2, 0.4, 0.6] 2

Note that in both grids diffusion is considered for stars below
1.1 M�, but we do not vary the diffusion efficiency. Additionally,
the initial helium abundance in both grids is determined from the
metallicity via the Y–Z scaling relationship with a slope of 1.4
(Peimbert, Carigi & Peimbert 2001; Balser 2006).

3.3.2 Generating training data

As a first step to any supervised machine learning algorithm, one
must acquire the training data from which the algorithm will learn.
The training data were produced by generating a grid of 5000 stellar
tracks, each with varying initial parameters. The tracks were evolved
until they reached the helium flash or an age of 16 Gyr. A separate
grid of stellar tracks is generated for both the canonical and extended
grids.

The grid of initial conditions was constructed via the Sobol
sequence, a quasi-random number generation scheme which picks
out points in the hyperrectangle which encloses the parameter space.
This method fills the parameter space as quickly and evenly as
possible (Bellinger et al. 2016).

With the initial conditions for the 5000 tracks selected and the
tracks run, the next step is to combine all the data. One must be careful
to sample data points from the tracks intelligently to avoid biasing the
random forest towards the phases of evolution which require more
models to be computed. To do this, we use the Hungarian algorithm
(Kuhn 1955) in the same way as in Bellinger et al. (2016). The
algorithm selects evenly sampled points based on central hydrogen
content for the main sequence and based on age for the post-main
sequence. In the end, one has 64 main sequence data points and 64
post-main sequence data points which are as close to evenly spaced
as is possible. If the star never reaches the post-main sequence then
128 main sequence points are selected.

Up to this point both random forest methods involve the same
steps, but this is the point where they diverge. As such we will first
discuss the single star random forest method. The section following
that will be dedicated to the binary random forest method.

2The α-enhancement values are assigned based on the metallicity as described
by equation (3)

Figure 3. An example of the PDFs generated by the random forest when
making a prediction for each of the 10 000 realizations of the observations.
Shown here are the PDFs for the YZ Cas system.

3.3.3 Single star random forest

As it is, the data are ready to use in the single star random forest
method. Further work must be done to prepare the data for the second
method. This will be discussed in the next section (Section 3.3.4).

The single star random forest (SSRF) method is an RF regressor
which fits and predicts the targets for the two components indi-
vidually. Before training the forest, the features and targets for the
regressor must be chosen. The selected features are mass, radius,
effective temperature, metallicity, luminosity, and surface gravity.
The targets are age, initial helium content, initial metallicity, mixing
length, median effective overshoot, and effective spot coverage.
Additionally, the age of the primary is passed to the secondary as a
feature since being co-natal is a known constraint of the problem.

Before the data are passed to the regressor it is first passed through
two RF classifiers which label the star based on its evolutionary phase
(main sequence, sub-giant branch, or red-giant branch) and whether
or not it has a convective core. The training data for the regressor
is afterwards limited to models in this evolutionary phase plus the
next nearest evolutionary phase and with that type of core. Doing
this simplifies the parameter space which the regressor has to regress
over.

At this point, the observed quantities of the target system are
passed to the random forest so it can make predictions. However,
instead of passing just the mean for each measurement of the system
and having the RF make one prediction, we assumed a Gaussian error
for the measurements, and we used the measurement uncertainties
to generate 10 000 realizations of the measurements which are fed
to the RF. The RF in turn makes 10 000 predictions for each of
the targets for the system. This yields a PDF for each target and
in turn an estimation of the error on our predictions. In Fig. 3 an
example of such a distribution of predictions is shown. In this way,
we can propagate the statistical error through the RF. Because of the
systematics we consider one should expect that the uncertainties of
this method will be larger than those of other traditional methods.

3.3.4 Binary random forest

The binary random forest (BRF) differs from the SSRF in one
key way: the BRF analyses both components of the system at the
same time. For this purpose, the training data have to be prepared
differently.
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For both the SSRF and BRF method the training data initially
consist of evenly sampled points from all 5000 tracks. Now this data
must be used to generate training data for binary systems. In other
words, each data entry in the new training data set must contain
information about two stars instead of one. We accomplish this in
the following way. One model is picked from the training data at
random and is assumed to be the primary. Then, the remaining data
are parsed to look for potential secondaries for this star. The criteria
used to select the secondaries are

(i) Mprimary > Msecondary.
(ii) Both components must have the same α-enhancement.
(iii) The age of the secondary must be within 10 per cent of the

age of the primary.
(iv) The initial metallicity of the secondary must be within

10 per cent of the metallicity of the primary.

With the allowed secondaries found, a data entry for each combina-
tion of this primary with one of the secondaries is made. This is done
for every model of the original training data until a new set of binary
training data set is created. It is clear that in this way we force the
training data systems to be co-natal and of similar initial chemical
composition and, by extension, will force the predictions to be as
well. This is due to our underlying assumption about the nature of the
binary systems. Since these constraints are imposed, bad predictions
will be identified via the validation procedure (Section 3.3.5) instead
of by checking for whether the components are co-eval as is usually
done in the traditional methods. Having done this, though, the even
sampling which has been achieved up to this point is destroyed.
Therefore, a new method must be employed to regain the even
sampling.

To evenly sample the binary data, the following algorithm was
applied. First, an empty histogram for each parameter is prepared
with a pre-defined number of bins and a maximum allowed content
for each bin. Next, binary data points are selected randomly and the
bins which the parameters would fit in are checked. If the inclusion
of this data caused any of the parameter bins to overflow, the binary
system is thrown away; if not, the binary system is kept. In the end,
the histograms will be as flat as possible, and the data will be evenly
sampled.

The evenly sampled BRF training data can now be used to train
the BRF in the same way as in the SSRF method. The features
are mass, radius, effective temperature, metallicity, luminosity, and
surface gravity for each component, and the targets are age, initial
helium content, initial metallicity, mixing length, median effective
overshoot, and effective spot coverage for each component.

As before, we add Gaussian noise to the measurements and feed
the 10 000 points to the BRF to get a PDF for each target. For this
method no pre-regression classifiers are used as it was determined
they did not affect the quality of the predictions.

3.3.5 Running validation tracks

At this stage, we have a PDF for the age and the modelling parameters
for a system, but we do not know which specific values will lead to
the best-fitting hydrostatic model. Furthermore, RFs, like all machine
learning algorithms, are fallible, and it is good practice to test the
predictions to ensure they are indeed accurate. This process involves
running evolutionary tracks, which we call ‘validation tracks’, based
on the RF’s predictions.

Two different approaches were used for this purpose. For the
SSRF and the BRF canonical-grid results, a straightforward method

was utilized. Parameters for the validation tracks were drawn from
the distributions which the RFs produced and evolutionary tracks
with those parameters were run. The best tracks were chosen based
on a reduced χ2 function. Measured luminosity ratio, effective
temperature ratio, and radii of the components are treated as the
expected values and compared to the values from appropriate model
pairs from the validation tracks. By appropriate model pairs, we
mean model pairs which contain one model from the primary and
one model from the secondary which are close to each other in age.
The ratios of luminosity and effective temperature are used instead
of the individual values because the ratios are directly determined
from the DDLEB light curves, whereas the individual values require
modelling and assumptions to obtain (Higl & Weiss 2017). Hence,
the ratios are the more dependable values.

The second approach is more sophisticated and involves an opti-
mization search which is constrained to the region of the parameter
space corresponding to the distribution of predicted values from the
RF. Since the optimization search is heavily constrained compared to
the full parameter space, the computational cost of an optimization
search, which was discussed earlier, is not so overbearing. The
optimization search looks for the modelling parameters which result
in evolutionary tracks which minimize the objective function, which
is the reduced χ2 function already discussed for the previous
approach. This approach was used on the results from the BRF trained
on the extended grid. The optimizer is part of the HEPHAESTUS code
(Jørgensen & Angelou 2019) which was updated for this study.

The optimization algorithm used in the parameter search was
a genetic algorithm. Genetic algorithms abstract concepts from
Darwin’s theory of natural selection to a generalized optimization
problems (Charbonneau 1995). By viewing sets of parameters as
chromosomes and the individual parameter values as genes, one is
able to view the optimization problem through the lens of evolution.
The algorithm incorporates three key aspects of evolution: fitness,
inheritance, and variation. The fitness of a chromosome is the value
of the function to be optimized when it is evaluated with the genes of
that chromosome. In our case, the fitness is the value of the reduced
χ2 function of the tracks when run with a particular parameter
set. Inheritance is done by finding the most fit chromosomes in a
population and selecting, randomly or otherwise, genes from the
parents as the genes for the offspring. This step is also referred to
as genetic crossover or recombination. Finally, variation is handled
by setting a certain mutation probability and mutating/changing a
gene’s value based on that probability. For more information on
genetic algorithms, Goldberg (1989) is a standard textbook on the
subject and Metcalfe et al. (2009), Bischoff-Kim & Metcalfe (2011)
describe the application of a genetic optimizer in an astrophysical
context. A downhill simplex algorithm was also tested, but the genetic
optimizer proved to be more suitable for our purposes.

4 R ESULTS

As a first step in presenting the results we will discuss the general
agreement between the methods and grids. The full tables of
predictions and best-fitting validation/optimization models for both
methods and both grids can be found in Appendix A. Table A2 shows
the results for both methods using the canonical grid and Table A1
shows the results for both methods using the extended grid.

Both methods, regardless of the grid being used as training data,
are able to find a solution to a majority of the systems analysed.
Based solely on the reduced χ2 values, the results are as follows:
The canonical SSRF fits 17 systems well, the canonical BRF fits
13 systems well, the extended SSRF fits 18 systems well, and the
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Figure 4. Relative error scatter plots for both the SSRF (a) and BRF (b)
methods using the canonical grid. The data points are the relative error of
the best-fitting model to the observations. The error bars correspond to the
observational error on the quantity. fL is the luminosity ratio and is defined
as fL = log (L2/L�)/log (L1/L�). Similarly, the effective temperature ratio is
defined as fTeff = log (Teff2/TTeff1). For the age plots, the predicted age from
the age distribution and the 1σ deviation of the predicted distribution are
treated as the ‘observed’ value and error, respectively. The dashed line in
each plots shows the median absolute deviation of the data.

extended BRF fits 19 systems well. Whether these solutions are valid
is a question we will come to later. In Figs 4 and 5 one can see the
relative error of the best-fitting models to the observational/predicted
quantities, radius, luminosity ratio (fL), effective temperature ratio
(fTeff), and age, for all methods and grids for all systems. The error
bars are the 1σ measurement errors. For the age plots (lower right-
hand plot in each panel) in Figs 4 and 5, the age of the best-fitting
model is compared to the prediction from the RF to determine an
error and the error bars denote the 1σ region of the age prediction.
If the method were perfect then all the data points would line on
the y = 0 line of these plots. The dashed line in the plots shows the
median absolute deviation of the data to visualize how much the data
deviates from the y = 0 line. It is clear that there are a few very strong
outliers which pull the line away from y = 0. However, most of the
data points do in fact lie along y = 0, particularly if the error bars are
taken into consideration.

Despite the general success of the methods and grids, there
are clear differences in the predictions for certain systems. The

Figure 5. As Fig. 4, but for the extended grid.

differences between the grids are largely what one would expect.
The canonical grid’s validated results are generally older and have
a different metallicity as compared to the extended grid. This is
not surprising since the extended grid has both spot coverage and
α-enhancement included. The spots inflate the radius causing the
star to reach the observed radius earlier in its evolution and the
α-enhancement leads to different Z values for the same [Fe/H].
Furthermore, the additional parameters in the extended grid allow for
solutions to be found for systems which the canonical grid struggles
with, e.g. IM Vir, V530 Ori, V636 Cen, and YZ Cas. In most cases,
the spot coverage is the key parameter which allows for a solution
to be found. For YZ Cas, though, the α-enhancement is the deciding
factor (see below).

Comparing the SSRF and BRF methods, two differences in the
predictions stand out. First, the BRF generally predicts higher
spot coverage, particularly for the secondary. Secondly, the initial
metallicity predictions are often different between the methods. The
difference is not only in the actual value predicted but also in the
difference in metallicity between the components. The SSRF allows
for a larger difference in metallicity between the components (see, for
example, the predictions for IM Vir with the canonical grid). This is
not a coincidence, since no constraints were placed on the metallicity
difference between the components for the SSRF method, whereas
in the BRF method, a metallicity difference constraint was imposed
when combining the single star data into binary system data.
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Table 2. The predicted parameters from the random forests as well as those of the best-fitting validation tracks for both methods and both grids for YZ Cas.

Age (Myr) Y Z αMLT MEO fe M∗/M� α-enhancement Reduced χ2

Method Component

Canonical Grid
SSRF
Predictions Primary 449 ± 16 0.267 ± 0.002 0.0156 ± 0.0015 1.954 ± 0.038 0.00423 ± 0.00061 – – – –

Secondary 449 ± 16 0.272 ± 0.003 0.0193 ± 0.0023 2.126 ± 0.099 0.00067 ± 0.00023 – – – –
Validation Primary 501 0.267 0.0165 1.925 0.00416 – 2.287 – 44.008

Secondary 501 0.273 0.0182 2.130 0.00065 – 1.337 – 44.008
BRF
Predictions Primary 485 ± 10 0.265 ± 0.001 0.0145 ± 0.0008 1.876 ± 0.039 0.00324 ± 0.00068 – – – –

Secondary 488 ± 10 0.265 ± 0.001 0.0145 ± 0.0008 1.956 ± 0.024 0.00082 ± 0.00015 – – – –
Validation Primary 498 0.267 0.0142 1.788 0.00313 – 2.286 – 12.286

Secondary 498 0.267 0.0141 1.917 0.00077 – 1.331 – 12.286
Extended Grid
SSRF
Predictions Primary 447 ± 14 0.268 ± 0.002 0.0166 ± 0.0011 1.738 ± 0.007 0.00326 ± 0.00051 0.00 ± 0.00 – – –

Secondary 447 ± 14 0.270 ± 0.002 0.0176 ± 0.0015 1.733 ± 0.022 0.00041 ± 0.00032 0.12 ± 0.05 – – –
Validation Primary 478 0.270 0.0149 1.742 0.00319 0.00 2.287 0.2 1.267

Secondary 475 0.267 0.0156 1.713 0.00035 0.10 1.326 0.2 1.267
BRF
Predictions Primary 497 ± 11 0.266 ± 0.001 0.0152 ± 0.0006 1.761 ± 0.010 0.00368 ± 0.00058 0.00 ± 0.00 – – –

Secondary 498 ± 10 0.266 ± 0.001 0.0151 ± 0.0006 1.729 ± 0.007 0.00085 ± 0.00017 0.15 ± 0.03 – – –
Validation Primary 493 0.267 0.0152 1.745 0.00519 0.00 2.279 0.2 1.086

Secondary 496 0.267 0.0144 1.730 0.00080 0.15 1.311 0.2 1.086

This is the reason that the SSRF occasionally outperforms the BRF.
The SSRF has more freedom in a very impactful parameter, and it
uses this freedom to find models which the BRF cannot. However,
a binary system with two components whose initial metallicity are
significantly different is not what one expects theoretically. Thus,
if either method predicts that the components should have clearly
different initial metallicities, that is a red flag which suggests that
the predictions are not an accurate representation of the system in
question even if the reduced χ2 value for the system is very good. If
one considers solutions where the difference in the metallicity of the
components is � 8 per cent to be appropriate solutions and others to
be invalid, then the total number of systems appropriately fit by each
method becomes: 10 for the canonical SSRF, 12 for the canonical
BRF, 12 for the extended SSRF, and 19 for the extended BRF.

There are a few systems which are of particular interest and warrant
a more in-depth discussion. The first of these systems is YZ Cas.

4.1 YZ Cas

YZ Cas consists of a metallic-lined A2 primary (2.263 ± 0.012 M�)
and an F2 dwarf secondary (1.352 ± 0.007 M�). The large mass
difference between the components makes it an important test of our
method. Pavlovski et al. (2014) note that stellar evolutionary models
are unable to match the properties of the system. Photospheric mea-
surements suggest a roughly solar composition while evolutionary
models imply a metallicity of 0.009. They find models with the lower
metallicity yield an age estimate of 490–550 Myr. Lastennet & Valls-
Gabaud (2002) ascertain that models with Z = 0.018, Y = 0.293, age
= 446, and Z = 0.02, Y = 0.280, and age = 416, depending on
the code used for the isochrones, produce accurate results. Claret &
Torres (2018) also find two potential solutions depending on which
element mixture they use. In one case they conclude the system has Z
= 0.01 and an age of 525 and 565 Myr for the primary and secondary,
respectively, and with another mixture they determine Z = 0.012 and
an age of 492 Myr for the primary and 522 Myr for the secondary.
Given the number of inconsistent results for this system it is worth
looking at how the various methods and grids fair for this system.

Looking at the results in Table 2, one notices that both methods
are able to find a solution when using the extended grid, while
neither method finds a good solution using the canonical grid. Since
neither component is in a mass range where spot coverage plays
an important role, these results imply that α-enhancement is likely
important in modelling this system. This could be related to the
unusual abundances of the system. Pavlovski et al. (2014) measured
the abundances of 20 and 25 elements for the primary and secondary,
respectively. They notice an overabundance in elements such as Na,
Al, S, Zn, Y, Zr, and Ba for the primary. Additionally, the secondary
appears to have an [Fe/H] � 0.05 while the primary has an [Fe/H]
� 0.3. It is possible that increasing the α-enhancement mimics the
effect of the overabundance of these mostly non α-elements in the
primary. Additionally, in looking at the elemental abundances for
the secondary, there does appear to be a slight overabundance of O
([O/H] = 0.2 ± 0.14) and S ([S/H] = 0.14 ± 0.05). This may explain
why including α-enhancement improves the modelling of this system
despite the fact that the system is likely not α-enhanced.

Focusing on the results from the BRF using the extended grid and
the genetic algorithm optimizer, one can see the optimizer found
the best solution to be one where the primary’s metallicity is slightly
higher than the secondary’s. This is in agreement with the abundance
analysis of Pavlovski et al. (2014).

Our result is not fully consistent in both age and metallicity with
any of the previous studies’ results. The age we determined is in
strong agreement with what was stated in Claret & Torres (2018),
though they use a lower metallicity. That being said, our result is
quite consistent with the observations of the system. The radii of both
components are on the lower edge of the 1σ region at the optimized
ages (Fig. 6a), which are themselves squarely in the 1σ region of
the age prediction from the random forest. Additionally, both the
luminosity ratio and effective temperature ratio for the optimized
models are in the 1σ region (Fig. 6b).

4.2 IM Vir

IM Vir is a G7 + K7 binary system with a 0.981 ± 0.012 M� primary
and a 0.664 ± 0.005 M� secondary. Morales et al. (2009) studied the
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DLEB analysis via machine learning 1805

Figure 6. Age–radius diagram (top) and luminosity ratio versus effective
temperature ratio plot (bottom) for the BRF optimized result for the YZ Cas
system. Hatched or shaded regions represent the 1σ intervals for observed or
predicted quantities, and the star marker denotes the best-fitting model.

spectra and light curves of the system and found both components
to be larger, by 3.7 per cent and 7.5 per cent, and cooler than models
predict making it a good candidate for testing our spot model. They
determine, using standard models, that the primary agrees well with a
Z = 0.025 ([Fe/H] = 0.15) track at an age of about 8 Gyr. Using these
parameters, though, the secondary would be implausibly old. The
authors then switch to a different set of models which use a correction
factor which is applied to the radius (β) and effective temperature
(β−1/2) to account for the chromospheric effects (β1 = 1.035 and
β2 = 1.07). Doing this, Morales et al. achieve a ‘near-perfect fit’ at
an age of 2.4 ± 0.5 Gyr and [Fe/H] ≈ −0.3. They even estimate the
spot coverage of the components from their observations and arrive
at 5.2 per cent and 9.5 per cent spot coverage for the primary and the
secondary, respectively. No errors are reported for these quantities.

In Table 3, one sees that when using the canonical grid, both
methods struggle to find a good solution. The SSRF method comes
close to a good solution but only when the initial metallicity of the
secondary is set 10 per cent lower than the primary’s. Using the
extended grid, which allows for spot coverage, both methods find
very good fits to the observations. The secondary’s radius is matched
almost perfectly at the optimized age, while the primary’s radius is
nearing the lower edge of the 1σ region (Fig. 7a). In Fig. 7(b) one
can see that the optimized models match both the luminosity and
effective temperature ratios from observations.

Nevertheless, the methods differ greatly in their results. The SSRF
finds a solution for the system which is 0.3 Gyr younger but with a
metallicity 0.06 higher than the BRF solution. However, the ages
are actually in agreement well within 1σ and the metallicities are
in agreement within 2σ . This is because the uncertainties in many
of the key quantities, e.g. age and initial metallicity, are very large
for this system. The source of this discrepancy is the very uncertain
metallicity measurement for this system ([Fe/H] = −0.1 ± 0.25).
In order to better constrain the possible solutions for this system a
more accurate metallicity measurement is required.

Together these results corroborate the fact that spot coverage is
necessary to model this system. In fact, this system has among the
highest spot coverage predictions of any system in this study. Notably,
it is much higher than the estimation by Morales et al. (2009). To
test what effect the spot coverage might have on the other predicted
parameters, another set of predictions was made for this system. In
this new set of predictions the spot coverage which the BRF was
allowed to predict was restricted; it was not allowed to predict a spot
coverage greater than 25 per cent. The BRF predicted the system then
to be older and more metal rich with a spot coverage of 8 per cent
for both components. This spot coverage is in line with the estimates
of Morales et al. (2009). This parameter set does not match the
observations as well as the other BRF results. In Fig. 8, one sees
the primary’s radius is matched well as are the system’s luminosity
and effective temperature ratios. However, the secondary’s radius
is roughly 2σ too small. This suggests the spot coverage might be
underpredicted. Furthermore, restricting the spot coverage pushes
the predictions for the other parameters, most notably the age, even
farther from those of Morales et al. (2009).

4.3 KIC 9540226

KIC 9540226 is a binary with a primary (1.39 ± 0.031 M�) on the
red giant branch (RGB) and a main-sequence secondary (1.015 ±
0.016 M�). Brogaard et al. (2018) compared the measured parame-
ters to calculated theoretical isochrones and determined the age of
the system to be 3.1 ± 0.6 Gyr. The difference in evolutionary stage
between the primary and the secondary for this system makes it an
interesting test of our methods, particularly for overshoot predictions.
Furthermore, due to the evolutionary state of the primary it also shows
the necessity of considering median effective overshoot.

In Table 4, one can see that both methods using both grids are
able to find a solution for this system. Though the SSRF solutions
have components whose initial metallicities differ by 10 per cent and
9 per cent for the canonical and extended grid, respectively. As such,
these predictions should be met with scepticism.

Between the grids, the predictions from the BRF method differ.
The age predictions are consistent within errors, but the metallicity
predictions vary. The BRF using the extended grid predicts a higher
metallicity as well as including an α-enhancement. Additionally, the
mixing lengths for validated tracks are lower for the extended BRF.
Furthermore, the extended BRF predicts the secondary to have a
fairly high spot coverage. Ultimately, the quality of the fit is the
same for both grids using the BRF method. The age result from the
optimized models is in complete agreement with that of Brogaard
et al. (2018).

Focusing on the BRF extended grid results, the models match
the observations well. Specifically, despite the rapid increase of
the radius of the primary along the RGB, the age–radius diagram
(Fig. 9a) displays a convincing agreement, with the primary’s radius
only slightly above the 1σ region. Furthermore, the luminosity and
effective temperature ratios of the models are in good agreement

MNRAS 507, 1795–1813 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/507/2/1795/6324594 by M
ax-Planck-Institut für Astrophysik und Extraterrestrische Physik user on 15 Septem

ber 2021



1806 B. A. Remple, G. C. Angelou and A. Weiss

Table 3. The predicted parameters from the random forests as well as those of the best-fitting validation tracks for both methods and both grids for IM Vir.

Age (Myr) Y Z αMLT MEO fe M∗/M� α-enhancement Reduced χ2

Method Component

Canonical Grid
SSRF
Predictions Primary 7414 ± 903 0.273 ± 0.006 0.0180 ± 0.0036 1.851 ± 0.161 0.00000 ± 0.00000 – – – –

Secondary 7414 ± 903 0.271 ± 0.005 0.0162 ± 0.0031 1.621 ± 0.092 0.00000 ± 0.00000 – – – –
Validation Primary 8053 0.274 0.0176 1.842 0.00000 – 0.965 – 1.371

Secondary 8048 0.271 0.0159 1.479 0.00003 – 0.673 – 1.371
BRF
Predictions Primary 7783 ± 874 0.273 ± 0.004 0.0179 ± 0.0028 1.879 ± 0.091 0.00000 ± 0.00000 – – – –

Secondary 7851 ± 873 0.273 ± 0.004 0.0177 ± 0.0028 1.899 ± 0.048 0.00000 ± 0.00000 – – – –
Validation Primary 6782 0.266 0.0170 1.876 0.00000 – 0.997 – 2.514

Secondary 6778 0.281 0.0164 1.825 0.00000 – 0.674 – 2.514
Extended Grid
SSRF
Predictions Primary

5547 ± 1036
0.270 ± 0.004 0.0158 ± 0.0026 1.772 ± 0.018 0.00000 ± 0.00000 0.24 ± 0.08 – – –

Secondary
5547 ± 1036

0.269 ± 0.004 0.0151 ± 0.0027 1.748 ± 0.023 0.00000 ± 0.00000 0.47 ± 0.09 – – –

Validation Primary 5536 0.262 0.0211 1.753 0.00000 0.31 1.005 0.0 1.001

Secondary 5536 0.277 0.0207 1.768 0.00000 0.38 0.667 0.0 1.001
BRF
Predictions Primary 5854 ± 942 0.271 ± 0.004 0.0166 ± 0.0024 1.732 ± 0.014 0.00000 ± 0.00000 0.23 ± 0.06 – – –

Secondary 5817 ± 944 0.271 ± 0.004 0.0164 ± 0.0025 1.776 ± 0.015 0.00000 ± 0.00000 0.52 ± 0.05 – – –
Results Primary 5809 0.262 0.0156 1.722 0.00000 0.26 0.972 0.2 1.000

Secondary 5812 0.267 0.0156 1.789 0.00000 0.52 0.667 0.2 1.000
BRF (limited
Spots)
Predictions Primary 7311 ± 722 0.271 ± 0.002 0.0164 ± 0.0016 1.738 ± 0.008 0.00000 ± 0.00001 0.09 ± 0.02 – – –

Secondary 7224 ± 739 0.270 ± 0.003 0.0160 ± 0.0017 1.775 ± 0.020 0.00000 ± 0.00000 0.12 ± 0.01 – – –
Validation Primary 7676 0.272 0.0160 1.743 0.00001 0.08 0.956 0.2 1.827

Secondary 7679 0.274 0.0156 1.768 0.00000 0.08 0.671 0.2 1.827

Table 4. The predicted parameters from the random forests as well as those of the best-fitting validation tracks for both methods and both grids for KIC 9540226.

Age (Myr) Y Z αMLT MEO fe M∗/M� α-enhancement Reduced χ2

Method Component

Canonical Grid
SSRF
Predictions Primary 3064 ± 257 0.258 ± 0.002 0.0095 ± 0.0015 1.834 ± 0.080 0.00156 ± 0.00040 – – – –

Secondary 3064 ± 257 0.265 ± 0.003 0.0125 ± 0.0021 1.689 ± 0.135 0.00000 ± 0.00000 – – – –
Validation Primary 3029 0.259 0.0103 1.893 0.00153 – 1.429 – 1.002

Secondary 3024 0.261 0.0114 1.690 0.00000 – 1.015 – 1.002
BRF
Predictions Primary 3089 ± 298 0.259 ± 0.002 0.0096 ± 0.0015 1.966 ± 0.102 0.00121 ± 0.00083 – – – –

Secondary 3097 ± 294 0.260 ± 0.002 0.0096 ± 0.0014 1.969 ± 0.062 0.00003 ± 0.00004 – – – –
Validation Primary 3136 0.258 0.0096 2.055 0.00100 – 1.404 – 1.006

Secondary 3136 0.259 0.0092 1.902 0.00000 – 1.019 – 1.006
Extended Grid
SSRF
Predictions Primary 3030 ± 201 0.259 ± 0.002 0.0097 ± 0.0012 1.768 ± 0.018 0.00348 ± 0.00149 0.00 ± 0.00 – – –

Secondary 3030 ± 201 0.265 ± 0.003 0.0128 ± 0.0020 1.771 ± 0.022 0.00000 ± 0.00000 0.22 ± 0.07 – – –
Validation Primary 3095 0.258 0.0081 1.754 0.00394 0.00 1.378 0.2 1.000

Secondary 3095 0.262 0.0089 1.835 0.00010 0.20 1.001 0.2 1.000
BRF
Predictions Primary 3288 ± 263 0.262 ± 0.002 0.0120 ± 0.0013 1.765 ± 0.021 0.00240 ± 0.00145 0.00 ± 0.00 – – –

Secondary 3261 ± 260 0.263 ± 0.002 0.0119 ± 0.0013 1.724 ± 0.011 0.00003 ± 0.00004 0.37 ± 0.03 – – –
Validation Primary 3210 0.263 0.0119 1.788 0.00058 0.00 1.413 0.2 1.005

Secondary 3207 0.260 0.0122 1.709 0.00002 0.38 0.990 0.2 1.005

with observations. Even the regular Hertzsprung–Russell Diagram
(Fig. 9c) shows a satisfactory fit to the secondary and the primary,
which just passed ‘the bump’ on the RGB.

5 D ISCUSSION

To evaluate the BRF method we have presented, at least three things
need to be considered: effectiveness, reliability, and advantages. We
will first discuss effectiveness, in other words, does the method work

as intended? The primary concern is whether or not the RF is able
to learn enough from the training data in order to create accurate
regression models. The quality of the regression models determines
the quality of the predictions for the validation tracks. As has been
shown for a few systems, the RF is able to produce accurate regression
models connecting the observational quantities to the targets of
interest. It should be made clear that ‘accuracy’ in this context is
judged by whether or not the predictions produce models which
match the observations. It is also worth noting that the observed
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Figure 7. As Fig. 6 but for the IM Vir system.

parameters themselves do not have a dependence on our models,
however they may be dependent on certain other theoretical models.
Thus, one has to either accept the errors as they are reported, attempt
to asses the systematic uncertainties oneself, if one believes they are
not already included, or ignore these parameters when determining
the fit quality. In most cases we have chosen to accept the reported
errors. The luminosity and effective temperature of the individual
components have already been mentioned as quantities which are
model dependent. This is why we have ignored their contribution to
the quality of the fit and used the ratios for determining the best-fitting
models instead. Finally, there is the possibility that the observed
parameters depend on another stellar evolution code. This could be
the case, for example, with stellar age determinations. However, we
do not believe we use any such quantities in our study. For a more
detailed look into how the observations and analysis of these systems
is done see Andersen (1991), Torres et al. (2010).

The next aspect is reliability. As one can see by looking at
Table A1, the method is quite reliable. For 19 of the 26 systems,
the optimization models match the observations very well with the
optimized parameters often being within 1 or 2σ of the predicted
mean. However, there are some systems for which a good solution is
not found. There are a number of reasons why a solution might not
be found. One, the system may violate one of our assumptions. A
number of assumptions are made about each system including that
the components are co-natal and that they are and always have been
detached and non-interacting, which may not be the case. Two, it
could be that to properly model the star one has to consider the effect

Figure 8. As Fig. 6 but for the IM Vir system with limited spot coverage.

of a physical process which was not accounted for in the training
data, such as rotation. Three, low-mass (M∗ � 0.8 M�) component
predictions are less reliable than higher mass component predictions.
The tables in Appendix A show that often when a system has a
component with a mass below approximately 0.8 M� all methods
and grids are more likely to struggle to find a solution. One example
of this is the system HAT-TR-318-007. One can see in Table A2 and
Table A1 that none of the methods/grids are able to find a solution to
this system. Furthermore, the age of the best-fitting model found does
not match the predictions from the random forests. The other two
systems which proved to be the most problematic for the extended
BRF method were TZ For and OGLE-LMC-SC9-23065, both of
which are more evolved systems. TZ For is infamous for being a
difficult system to model (Higl et al. 2018). Thus, it is likely that
that this system either violates one of our underlying assumptions or
that there is a physical process at work which we do not account for.
In the Higl et al. (2018) paper they state that using the Y–Z scaling
relationship with a slope of 2 prevents the system from being fit and
that a reduction of the slope to 1 was found to be necessary in order
to fit the system. Thus, the slope of 1.4 used in this study may be
too large for this system. In addition, the overshoot value which they
find for the best-fitting models is higher than what is predicted by
the RFs.

The reason that the BRF and SSRF age predictions are less accurate
for stars in this mass range is because of the almost irrelevant
evolution over 16 billion years, such that the RF is unable to
distinguish between the star when it is young and the star when it is
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1808 B. A. Remple, G. C. Angelou and A. Weiss

Figure 9. Top 2 panels are same as in Fig. 6 but for the KIC 9540226
system. Bottom panel is a Hertzsprung–Russell Diagram (HRD) for the BRF
optimized result for the KIC 9540226 system. Coloured regions and star
markers have the same meaning as in the other panels.

old. As an example, for a 0.37 M� star, the change in radius (R/R�),
luminosity (log L/L�), and effective temperature (logTeff) over the
course of 16 billion years is 0.016, 0.063, and 0.005, respectively.
This corresponds to 4.5 per cent of the final radius, 3.1 per cent of the
final luminosity, and 0.1 per cent of the final effective temperature.
Increasing spot coverage by 3–4 per cent would cause an equal
magnitude change to these variables. Given the small changes in the

values of the features and the freedom the RF has to explain these
small changes by altering other parameters such as metallicity or
spot coverage, it is easy to see how the RF could interpret the change
of these variables as simply noise. Consequently, the star would look
identical to the RF throughout its evolution.

Finally, one must consider the advantages and disadvantages of
this method, particularly in comparison to the already established
SSRF method. One advantage of the SSRF method is that it is easier
to identify failed systems. As explained in the previous section, if the
SSRF predicts that the components of a binary system should have
significantly different initial metallicities this is an indication that
the method has failed to make quality predictions for this system.
In the BRF method this is less likely happen due to the metallicity
difference constraints that were imposed during the data processing
stage. Therefore, one has to run validation tracks in order to determine
if the predictions are good.

The BRF, though, has numerous advantages, not the least of which
is that is sees the full observations of a system. Because the BRF can
analyse the features for both components it should, in theory, be
able to make more informed predictions about the targets of the
system. Indeed this is the case. The number of systems for which
an appropriate solution is found for each method are: 10 for the
canonical SSRF, 12 for the canonical BRF, 12 for the extended SSRF,
and 19 for the extended BRF. Thus, for both grids the BRF method
outperforms the SSRF method. Additionally, the BRF method using
the extended grid and the optimizer finds solutions to 50 per cent
more systems than any of the other methods.

In comparison to the traditional methods, the main benefit of
the BRF method is time. After the one-time cost of generating the
training data, the BRF method can be used to predict the targets for
a whole catalogue of stars in minutes as supposed to the hours or
even days needed by the other methods to predict the parameters for
a single star. The speed of this method means it can be leveraged
to great effect in analysing some of the vast amounts of data
generated from various sky surveys (Abazajian et al. 2009; Gaia
Collaboration 2018). The usage of machine learning methods with
various applications on the data sets of large surveys has become
common practice. Domı́nguez Sánchez et al. (2018) use machine
learning methods to determine the morphology of galaxies using data
from the Sloan Digital Sky Survey, Bloom et al. (2012) use machine
learning to detect transients and variable stars using the data from a
multitude of surveys, and Castro-Ginard et al. (2018) use machine
learning to search for open clusters using Gaia data to list but a few
examples. As long as the data include the necessary parameters for the
stars, our method can be used to generate PDFs for the parameters
of thousands of DLEB systems quickly. Additionally, it is worth
repeating that this method allows for a more honest appraisal of
systematic and statistical errors than is possible with most traditional
methods.

In addition to comparing methods, this study affords us the
opportunity to discuss the prevalence and degree of the physical
processes accounted for in the training data. Here we concentrate
specifically on the amount of convective core overshoot: Since there
is no reason to believe that overshoot is not present at all convective
boundaries, one would expect all systems with a convective core
to have a non-zero value of the MEO parameter. Indeed, this is
reflected in the results for both methods. Moreover, high predicted
MEO values were rare. In the training data, the USO parameter was
allowed to be as high as 0.05, yet the highest MEO value obtained
from the validation tracks is around 0.021.

A few systems in our study are useful for testing the quality of
overshoot predictions. BG Ind is one such system where the primary
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DLEB analysis via machine learning 1809

Figure 10. The median effective overshoot (MEO) parameter versus mass
plots for the BRF method for both the extended grid (top) and canonical grid
(bottom). The blue points and associated error bars are the mean and 1σ

deviations from the predictions of the random forest. The orange points are
the overshoot values of the corresponding best-fitting validation/optimization
models. The green line shows a linear fit to the data in the mass range 1.2 M�–
2.0 M�. The Pearson correlation coefficient, RP, and Spearman correlation
coefficient, RS for this mass range are also reported.

is at the end of the main sequence where overshoot should have a large
effect on its evolution. BG Ind is matched well by both methods and
grids with moderate amounts of overshooting in both components.
For the BRF using the canonical grid the MEO values are 0.003 and
0.0004 for the primary and secondary, respectively, while using the
extended grid the MEO values are 0.0006 and 0.0002. This trend
of the primary having a higher MEO value than the secondary is
present in most systems. The only exception is SW CMa where the
secondary’s MEO value is larger than the primary’s. Furthermore,
the greater the mass difference between the components, the greater
the difference in MEO values. Other good test case systems, such as
KIC 5640750, were not well matched by either method.

Another point which can be addressed by the overshoot data is the
question whether a linear relationship between mass and overshoot
is found (see discussion in Section 3.1.1). Fig. 10 shows plots of the
MEO parameter value versus mass for the best-fitting tracks for each
component for both methods. The plots also show a linear fit to the
data in the mass range of 1.2 M� − 2.0 M�. The Pearson correlation
coefficient, RP, and Spearman correlation coefficient, RS, are also
reported for this mass range. Based on the Spearman coefficients,
there is indeed a positive correlation between mass and overshoot.
However, given the Pearson correlation coefficient values as well as
the uncertainties in the method, a linear relationship can be neither
confirmed nor ruled out. Fig. 11 is the same plot but for the median
effective step overshoot (MESO). This is calculated in the same way
as was the median effective overshoot but the exponential overshoot
parameter used in GARSTEC has been converted to a overshoot
parameter for a step overshoot formalism. This is done to match
the quantity which is plotted in other studies. One can see that the
plots are quite similar, but with the step overshoot values being
roughly 10 times higher. Importantly, the Pearson and Spearman
coefficients are both higher in the case of Fig. 11. However, the
Pearson correlation coefficient is still not large enough to confirm a
linear relationship.

In addition to overshoot, spot coverage is also of particular interest
in this study. Both methods predict some amount of spot coverage
for all stars where spot coverage is possible. As one would expect,
the low-mass stars are predicted to have a higher spot coverage, and

Figure 11. Same as Fig. 10 but for the median effective step overshoot
(MESO) parameter. MESO was not predicted by the random forests so no
error bars are plotted.

Figure 12. Effective spot coverage versus mass plots for both methods for
the extended grid. The blue points and associated error bars are the mean and
1σ deviations from the predictions of the random forest. The orange points are
the overshoot values of the corresponding best-fitting validation/optimization
models. The left-hand panel is the SSRF and the right-hand panel is the BRF.

after a certain mass the stars are predicted to have no spot coverage.
These trends are plainly visible in Fig. 12. Furthermore, one can see
that the spot coverage is predicted to be quite high for some systems
(as high as 57 per cent). It remains to be seen how realistic these high
spot coverage predictions are and how ubiquitous, or not, spots are
in low mass systems. O’Neal et al. (2004) observed spot coverages
of up to 42 per cent, which is lower than the highest spot coverage
predicted in this study, but places the predictions within the realm
of possibility. Given the simplicity of the spot model and the non-
varied parameters included in equation (4), a rough agreement with
observations and realistic values is all one can expect.

There are a few key systems in this study which are promising
candidates for needing spot coverage, including FL Lyr. Lastennet &
Valls-Gabaud (2002) were unable to find a satisfactory solution for
this system which they suspected was due to a lack of a spot model in
their study. Both methods used in our study were able to find solutions
to this system by including spot coverage. IM Vir is also a notable
example because of the study by Morales et al. which analysed this
system with a spot coverage model. This allows us to compare our
results with another result that also accounts for spots. Our methods
obtain an age that is roughly twice as high as Morales et al. (2009) and
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Figure 13. A plot of the mixing length parameters of the optimized models
for the BRF method for every system. The points are colour-coded to denote
which value is the primary and which is the secondary.

has a much higher spot coverage. Unfortunately, the large uncertainty
in the metallicity measurements prevents constraining the solution
further. Overall, the spot model allowed lower mass systems to be
fit well, however, more work needs to be done in this area to better
understand which systems have spot coverage and how much spot
coverage is reasonable.

Spot coverage is a physically motivated parameter for lower mass
systems so the fact that including it in our models improves the
solution for certain systems is expected. However, for a number
of systems in this study the validated tracks have a very high spot
coverage. Extreme values for the predicted parameters is a possible
indicator that something is amiss with the modelling. Spots are
just one manifestation of plasma/magnetic physics observable at
the surface. The fact that the spot coverage is very high for some
systems suggests that other physical processes or parametrizations
are necessary. For instance, it is possible that there are effects on
the EOS that we are not considering or that the spot model we have
implemented is too rudimentary.

As a final note on the parameters of the validated models of this
study, the mixing length parameter will be briefly discussed. There
are a number of studies (Trampedach et al. 2014; Magic, Weiss &
Asplund 2015) which have calibrated the 1D mixing length parameter
from 3D simulations. They find that the mixing length parameter
varies with the star’s parameters including effective temperature,
surface gravity, and metallicity. Many studies (see Eggenberger et al.
2004; Joyce & Chaboyer 2018; Jørgensen & Angelou 2019, and
others) have attempted to model α Cen and have found that the
mixing lengths must differ between the components. Specifically, the
secondary must have a higher mixing length than the primary. This
motivated us to explore the mixing length values of the optimized
models of the BRF method for our systems. In Fig. 13, one can see
the mixing length parameter values for the primary and secondary of
each system for the optimized validation tracks of the BRF method.
The components of AD Boo have the highest difference between their
mixing length parameters at roughly 0.1. Additionally, for 17 of 26
systems the mixing length parameter is smaller for the secondary
than for the primary.

6 C O N C L U S I O N S

In this study, we have introduced a new machine learning approach
for predicting the modelling parameters of DDLEB systems. The

method uses a random forest to build regression models which relate
the observable quantities of a system to the parameters needed as
input for evolutionary tracks. The random forest is connected to an
on-the-fly genetic optimizer to produce hydrostatic models based on
the predictions. The method is unique because the random forest
analyses both components of a system at the same time and thus has
the full set of observables for the system from which to inform its
predictions, hence why it is referred to as the binary random forest
(BRF) method. A random forest method where only one component
is analysed at a time, the SSRF method, is also used for comparison.

Two grids were used as training data: a canonical grid where
mass, metallicity, core overshooting, and mixing length were varied
and an extended grid where also α-enhancement and spot coverage
were varied. Once trained, each RF was used to analyse 26 cho-
sen detached double-lined eclipsing binary (DDLEB) system. The
DDLEB systems were selected based on five criteria: masses of both
components must be between 0.25 M� and 6 M�, mass and radius
measurements accurate to within 2 per cent, measured luminosities,
effective temperatures, and metallicities, q = M2/M1 < 0.96, and no
component can be on the pre-main sequence or past the helium flash.
The random forests use the measured masses, radii, luminosities,
effective temperature, surface gravity, and metallicities as inputs, or
features, and predicts the initial helium content, initial metallicity,
spot coverage, median effective overshoot, mixing length, and age
of each component.

These machine learning methods have a number of advantages
over existing approaches. First, RFs can be trained in seconds and are
therefore much less computationally expensive than other methods.
Secondly, these methods allow for an investigation of wider range
and combination of parameters to be explored. Finally, by passing
10 000 Gaussian perturbed realizations of the measurements of the
system to the random forest and having the random forest make a
prediction for each, the statistical error is propagated through the
method and an estimation of the statistical error on the predictions is
possible.

We find that the BRF is unable to reliably predict parameters for
stars under ≈ 0.8 M�, because of their insignificant evolution with
time, but for stars more massive than this the BRF method using
the extended grid works a majority of the time. In total, the method
finds a solution for 19 of 26 systems. For the stars which are above
this mass and which are not fit well, it is possible that other physical
processes, such as rotation, are needed to model them properly. It
is also possible that these systems violate one of our assumptions
(co-eval and no interaction).

One target of the RF was median effective overshoot (MEO). The
BRF predicted some amount of overshoot for all stars which have
a convective core. Moreover, particularly high MEO values were
rarely predicted and rarely were needed in the best-fitting models.
Furthermore, based on the MEO values from the optimized tracks
for each system, we find a positive correlation between mass and
core overshoot, but whether that relationship is linear or not remains
unanswered.

Another target of particular interest was spot coverage. The
inclusion of spot coverage allowed us to fit systems which previous
studies had failed to fit, for example, FL Lyr. In the case of IM Vir,
we also obtained very different results compared to a previous study
where spot coverage was also taken into account. Even limiting spot
coverage to more align with what was used in the previous study
does not reconcile the differences in predictions.

Ultimately, the new approach is successful but there is room for
improvement. Specifically, improving the results for low-mass stars
would be important.
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APPENDI X A : TABULATED RESULTS

Here are the collated results for both methods and both grids for
every system. Table A2 show the results for both methods using the
canonical grid and Table A1 shows the results for both methods using
the extended grid.
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Table A2. The predicted parameters from the random forests as well as those of the best-fitting validation tracks for both methods using the canonical grid.
The full table is available online.

Age (Myr) Y Z αMLT MEO M∗/M� Reduced χ2

System Method

AD Boo SSRF Predictions 1928 ± 228 0.275 ± 0.004 0.0214 ± 0.0031 1.913 ± 0.145 0.00081 ± 0.00037 – –
1928 ± 228 0.274 ± 0.003 0.0205 ± 0.0023 1.956 ± 0.097 0.00068 ± 0.00055 – –

SSRF Validation 1939 0.283 0.0225 1.981 0.00076 1.413 1.004
1938 0.280 0.0216 1.904 0.00056 1.221 1.004

BRF Predictions 2029 ± 260 0.275 ± 0.003 0.0218 ± 0.0023 1.992 ± 0.159 0.00122 ± 0.00041 – –
2028 ± 255 0.276 ± 0.003 0.0214 ± 0.0023 1.914 ± 0.061 0.00082 ± 0.00040 – –

BRF Validation 1993 0.270 0.0214 2.116 0.00119 1.431 1.010
1991 0.273 0.0209 1.867 0.00075 1.221 1.010

ASAS J065134-2211.5 SSRF Predictions 7629 ± 732 0.278 ± 0.002 0.0209 ± 0.0015 1.831 ± 0.100 0.00000 ± 0.00000 – –
7629 ± 732 0.278 ± 0.002 0.0209 ± 0.0015 1.640 ± 0.048 0.00000 ± 0.00000 – –

SSRF Validation 8392 0.274 0.0213 1.717 0.00000 0.944 8.520
8388 0.283 0.0230 1.581 0.00007 0.684 8.520

BRF Predictions 7790 ± 537 0.278 ± 0.002 0.0209 ± 0.0012 1.847 ± 0.091 0.00000 ± 0.00000 – –
7767 ± 532 0.278 ± 0.002 0.0210 ± 0.0015 1.928 ± 0.039 0.00000 ± 0.00000 – –

BRF Validation 8556 0.280 0.0186 1.886 0.00000 0.933 10.500
8557 0.283 0.0183 1.872 0.00006 0.680 10.500

BG Ind SSRF Predictions 2828 ± 215 0.265 ± 0.003 0.0145 ± 0.0022 1.887 ± 0.087 0.00109 ± 0.00048 – –
2828 ± 215 0.261 ± 0.002 0.0117 ± 0.0017 1.816 ± 0.186 0.00048 ± 0.00030 – –

SSRF Validation 2733 0.264 0.0133 1.869 0.00104 1.425 1.060
2736 0.266 0.0120 1.700 0.00032 1.300 1.060

BRF Predictions 2614 ± 137 0.263 ± 0.002 0.0131 ± 0.0015 1.840 ± 0.095 0.00305 ± 0.00108 – –
2602 ± 139 0.263 ± 0.002 0.0129 ± 0.0014 1.902 ± 0.079 0.00057 ± 0.00032 – –

BRF Validation 2676 0.263 0.0129 1.927 0.00304 1.429 2.723
2676 0.266 0.0127 1.901 0.00048 1.307 2.723

BK Peg SSRF Predictions 2526 ± 52 0.268 ± 0.002 0.0166 ± 0.0012 1.551 ± 0.058 0.00269 ± 0.00068 – –
2526 ± 52 0.265 ± 0.002 0.0146 ± 0.0015 1.557 ± 0.117 0.00017 ± 0.00008 – –

SSRF Validation 2527 0.266 0.0151 1.607 0.00262 1.428 1.007
2522 0.269 0.0136 1.546 0.00013 1.252 1.007

BRF Predictions 2578 ± 80 0.267 ± 0.002 0.0160 ± 0.0012 1.680 ± 0.065 0.00284 ± 0.00049 – –
2599 ± 80 0.267 ± 0.002 0.0157 ± 0.0012 1.901 ± 0.053 0.00033 ± 0.00014 – –

BRF Validation 2722 0.268 0.0158 1.712 0.00265 1.409 1.194
2726 0.270 0.0143 1.834 0.00027 1.266 1.194

CoRoT 105906206 SSRF Predictions 793 ± 30 0.275 ± 0.003 0.0215 ± 0.0024 2.043 ± 0.089 0.00194 ± 0.00075 – –
793 ± 30 0.272 ± 0.004 0.0190 ± 0.0030 1.690 ± 0.154 0.00031 ± 0.00018 – –

SSRF Validation 777 0.279 0.0205 1.961 0.00191 2.220 1.110
774 0.279 0.0196 1.805 0.00022 1.343 1.110

BRF Predictions 755 ± 57 0.273 ± 0.003 0.0198 ± 0.0024 1.960 ± 0.130 0.00337 ± 0.00229 – –
753 ± 57 0.273 ± 0.003 0.0196 ± 0.0023 1.874 ± 0.048 0.00055 ± 0.00019 – –

BRF Validation 740 0.279 0.0206 2.050 0.00270 2.260 1.055
740 0.275 0.0202 1.918 0.00053 1.349 1.055
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