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ABSTRACT

We introduce the public version of the BAyesian STellar Algorithm (BASTA), an open-source code written in PYTHON to determine
stellar properties based on a set of astrophysical observables. BASTA has been specifically designed to robustly combine large
data sets that include asteroseismology, spectroscopy, photometry, and astrometry. We describe the large number of asteroseismic
observations that can be fit by the code and how these can be combined with atmospheric properties (as well as parallaxes and
apparent magnitudes), making it the most complete analysis pipeline available for oscillating main-sequence, subgiant, and red
giant stars. BASTA relies on a set of pre-built stellar isochrones or a custom-designed library of stellar tracks, which can be
further refined using our interpolation method (both along and across stellar tracks or isochrones). We perform recovery tests
with simulated data that reveal levels of accuracy at the few percent level for radii, masses, and ages when individual oscillation
frequencies are considered, and show that asteroseismic ages with statistical uncertainties below 10 per cent are within reach if
our stellar models are reliable representations of stars. BASTA is extensively documented and includes a suite of examples to
support easy adoption and further development by new users.

Key words: asteroseismology —methods: numerical — methods: statistical — stars: fundamental parameters.

how determining fundamental properties of stars has become the

1 INTRODUCTION cornerstone of research for a variety of subjects.

Obtaining reliable properties of field stars is of paramount importance
for many fields in astrophysics. An accurate characterization of
exoplanets requires precise knowledge of the parent star radius and
mass, the ultimate fate and evolutionary remnant of a star can only be
determined if we know its initial mass, and the study of the formation
and evolution of our Galaxy is incomplete without the distribution
of stellar ages across the Milky Way. These are just examples of
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Empirical methods to determine physical characteristics of stars
are restricted to targets where e.g. years of monitoring are feasible
(eclipsing binaries), or their bright apparent magnitude allows the
measurement of the angular diameter (interferometry). This severely
limits the number of stars where these techniques are applicable,
and demands the development of methods in which some measured
quantities (e.g. stellar effective temperature, surface composition,
and luminosity) are compared to model predictions to infer stellar
properties (such as age).

The advent of large-scale stellar surveys providing a myriad of
data for thousands of stars across the Galaxy has led to the further
development of algorithms that can combine different data sets to
determine stellar properties. These algorithms vary in the approach
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used to extract the final parameters of stars (e.g. machine-learning,
neural networks, Bayesian inference), the method to determine
uncertainties (e.g. confidence intervals, Gaussian errors, Monte Carlo
sampling), and the set of stellar tracks or isochrones considered
in the analysis. Moreover, the possible combinations of input data
are different for these codes: while some rely on spectroscopic,
photometric, and astrometric data (e.g. StarHorse (Queiroz et al.
2018), MADE (Das & Sanders 2019), others have the capability of
including asteroseismic information [e.g. PARAM (Rodrigues et al.
2017), Isoclassify (Huberetal. 2017), and AIMS (Rendle et al.
2019)]. The latter point is of key importance: due to their dependence
on the internal stellar structure, reproducing the observed pulsation
properties allows for a determination of the stellar radius, mass,
and age of solar-type stars and red giants to a level of precision
that cannot be achieved when fitting only atmospheric properties.
Asteroseismology has therefore become an invaluable tool for a large
variety of studies thanks to the rapidly increasing amount of data
available since the launch of the space-missions CoRoT, Kepler, and
TESS, which will continue to ramp up as future missions such as
PLATO 2.0 (Rauer et al. 2014) begin to acquire data.

The irruption of asteroseismology in the scene of stellar properties
determination poses tremendous challenges to fitting algorithms due
to the large variety of oscillation quantities that one can try to
reproduce. In stars whose driving mechanism is stochastic excitation
from their outer convective envelopes (called solar-like oscillators,
see e.g. Chaplin & Miglio 2013, for a review), the so-called
global asteroseismic parameters can almost always be determined
if oscillations are detected. If the data are of sufficient quality,
individual frequencies of oscillation (or combinations of them) can
be reproduced in main-sequence stars, as well as modes of mixed
character that dominate the information content in subgiants. More
evolved red giants present a much richer spectrum of pulsation,
where state-of-the-art fitting algorithms reproduce only a subset
of the observed frequencies while also considering a probe of
the stellar core in the form of a gravity-mode period spacing. It
is clear that fully exploiting the richness of asteroseismic data
from solar-like oscillators requires algorithms capable of fitting a
large variety of oscillation properties, which become relevant at
different evolutionary stages and are strongly dependent on the
data quality available. Moreover, these data should be supplemented
with knowledge of the stellar effective temperature, a measurement
of chemical composition, and ideally a determination of lumi-
nosity or absolute magnitude from astrometric and photometric
data.

With this in mind we have developed the BAyesian STellar
Algorithm (BASTA), originally introduced in Silva Aguirre et al.
(2015). BASTA is a fitting tool written in PyTaon (Van Rossum &
Drake 2009) designed to take advantage of the large variety of data
obtained by large-scale ground-based surveys and space missions
to precisely characterize stars. It has been built in a flexible way
that allows the user to choose any combination of input data to
be fit and, to the best of our knowledge, it is the fitting code that
includes the largest number of global asteroseismic quantities and
individual frequency diagnostics for solar-type stars, subgiants, and
red giants. Other codes do not include information from individual
oscillation frequencies (e.g. Isoclassify and PARAM), or glitch
properties (e.g. AIMS), or simply do not take any asteroseismic
input (e.g. StarHorse and MADE). Moreover, BASTA allows to
simultaneously reproduce spectroscopic, photometric, astrometric,
and asteroseismic data in a self-consistent manner, and is the only
code where parallaxes can be fitted directly in addition to e.g.
individual oscillation frequencies without the need of transforming
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the astrometric information into a luminosity estimate. BASTA can
run using publicly available compilations of stellar isochrones or
tailor-made sets of evolutionary tracks with a wide combination of
input physics.

BASTA has been extensively used to determine stellar proper-
ties of both asteroseismic and non-seismic exoplanet host stars
discovered by Kepler (Silva Aguirre et al. 2015; Lundkvist et al.
2016; Bonomo et al. 2019), K2 (Johnson et al. 2018; Persson et al.
2018; Van Eylen et al. 2018a; Hjorth et al. 2019a ; Korth et al.
2019; Lund et al. 2019), TESS (Gandolfi et al. 2018; Huber et al.
2019), and MASCARA (Talens et al. 2018; Hjorth et al. 2019b).
The sample of precise asteroseismic parameters originally derived
in Silva Aguirre et al. (2015) has enabled detailed studies of e.g.
exoplanet eccentricities (Van Eylen & Albrecht 2015) and the radius
gap (Van Eylen et al. 2018b; see also Fulton et al. 2017). Since then,
the applications of BASTA have been extended to a large variety
of studies across fields of astrophysics such as characterization
of asteroseismic targets (e.g. Serenelli et al. 2017; Silva Aguirre
et al. 2017, 2020b; Stokholm et al. 2019), Galactic archaeology (e.g.
Casagrande et al. 2016; Silva Aguirre et al. 2018; Spitoni et al. 2019,
2020; Nissen et al. 2020), open clusters (e.g. Lund et al. 2016; Stello
et al. 2016; Arentoft et al. 2019), and the study of physical processes
in stars such as rotation, convective overshoot, and magnetic activity
(e.g. van Saders et al. 2016; Booth et al. 2017; Hjgrringgaard et al.
2017). It has also been shown to be one of the most accurate pipelines
available in tests using artificial data of main-sequence stars (Reese
et al. 2016).

In this paper we introduce the public version of BASTA. We
describe the Bayesian approach followed when determining stellar
properties, the compilations of stellar track and isochrones available,
the main features and capabilities included in the code, and present
validation results of the fitting algorithm using artificial data.

2 THE BAYESIAN FRAMEWORK

We use Bayesian statistics for stellar properties inference. In this
framework, Bayes’ theorem combines our prior knowledge about the
model stellar parameters @ (which includes e.g. mass, radius, and
age) with the information given by the data D (such as measurements
of effective temperature, metallicity, and oscillation frequencies),
to provide the posterior probability distribution of model stellar
parameters,

r@p) = "LIAPO) M

(D)

Here, P(D|®) or the likelihood is the probability of observing the
data given the model parameters, P(®) or the prior is the probability
of parameters without seeing the data, and P(D) or the evidence is
the total probability of observing the data (which is a normalizing
constant).

We define the likelihood assuming Gaussian-distributed uncer-
tainties on all observables except the magnitudes (see Section 4.2.2).
BASTA is developed with great emphasis on enabling the user
to fit a variety of observables including the ones coming from
spectroscopy (e.g. effective temperature, T, surface metallicity,
[Fe/H], and logarithm of surface gravity, log(g)), astrometry and
photometry (e.g. parallax, o, and apparent magnitudes, m,), and
asteroseismology (e.g. large frequency separation, Av, frequency
of maximum power, vy, individual oscillation frequencies, v, and
their combinations, ry, 19, 702, ro12, and ;). Note that there are
correlations among some of these observables which we account for
in the fitting process using the corresponding covariance matrix.
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To this purpose, we define the full likelihood as the product of
likelihoods of groups of observables, D;,

P(D|®) =[] P(Di|®). )

The group likelihoods are computed using the expression (except for
distances, see Section 4.2.2 below),

1
P(D;|®) = Jae] P (=x7/2), ?3)

where |C;| is the determinant of the covariance matrix, and

1
)(,~2 = ﬁ, (Oi,obs -

oi,mod)T C:1 (Oi,obs - oi,mod) . (4)
In equation (4), note the division by the number of observables,
N;. Although its inclusion is ad hoc in a statistical sense, it can be
useful in artificially reducing the weight of a group of observables
(normally the individual oscillation frequencies). In BASTA, the user
can choose to turn-off this division.

The user can specify an informative prior on stellar mass as given
by the initial mass function (IMF). There are several versions of IMF
included in BASTA (Salpeter 1955; Miller & Scalo 1979; Kennicutt,
Tamblyn & Congdon 1994; Scalo 1998; Kroupa 2001; Baldry &
Glazebrook 2003; Chabrier 2003). To decrease the computation
time, the user can pre-select a region of the grid for which the
likelihoods are computed. This selection can be made on any
available grid properties with user-defined tolerances. Technically,
this is equivalent to assuming specific non-informative priors on
certain stellar parameters.

We can use the computed posterior probability P(®|D) to derive
the marginalized posterior for any model stellar parameter 6 using
the expression,

P@|D) = /P(@, O'|D)wed®, (5)

where @' represents all the model parameters except 6. The weight
we 1is used to account for the volume of the parameter space
occupied by the model characterized by @O, i.e. half the distance
to its neighbouring points in all dimensions used to generate the grid
(see further details in Section 3).

3 GRIDS OF STELLAR MODELS

The functionalities of BASTA rely on the use of collections of stellar
evolution tracks or isochrones to extract the properties of stars by
means of Bayesian inference. In its current version BASTA runs over
publicly available sets of isochrones and tracks as well as custom-
computed ones, which we process and store in Hierarchical Data
Format version 5 (HDF5) and make available upon request. The
functionalities and adopted input physics for each case are described
in the following subsections.

3.1 BaSTI isochrones and tracks

Stellar properties can be determined with BASTA making use of the
recently updated library ‘a Bag of Stellar Tracks and Isochrones’
(BaSTI'). This compilation consists of evolutionary tracks and
isochrones that are available for four distinct science cases defined
by the inclusion of different physical processes as given in Table 1.
We give a brief description of its main features in this section, and

Uhttp://basti-iac.o0a-abruzzo.inaf.it
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Table 1. Science cases of BaSTT tracks and isochrones available in BASTA.
Columns show combinations of convective core overshooting (Aoy), micro-
scopic diffusion (Dgifr), and mass loss (1). See the text for details.

Case Aov Dyigt n

1 No No No
2 Yes No No
3 Yes No Yes
4 Yes Yes Yes

refer the reader to Hidalgo et al. (2018) and Pietrinferni et al. (2021)
for additional details.

The prescription for convective core overshooting consists of
instantaneous mixing beyond the region formally defined by the
Schwarzschild criterion, keeping the radiative temperature gradient
in this region. In the case of main-sequence models with convective
core, the overshoot region is defined by the distance A,, x H,, where
H, is the local pressure scale height and A, is a free parameter.
It has been set equal to 0.2, decreasing to zero when the mass
decreases below a certain value. The approach used for decreasing
Aoy from its maximum value to zero depends on both the chemical
composition and stellar mass (see section 2.2 of Hidalgo et al. 2018,
for details). During the core-helium burning stage, regardless of the
considered science case, core mixing is modelled by accounting for
semiconvection and suppression of breathing pulses.

The science case including atomic diffusion follow the prescription
of Thoul, Bahcall & Loeb (1994), while mass-loss is taken into
account in the formulation of Reimers (1975) with an efficiency
of the free parameter 1 set to 0.3. The temperature stratification
in the outer stellar layers is given by the Vernazza, Avrett &
Loeser (1981) formulation, but for the case of very-low mass stellar
models for which outer boundary conditions based on accurate
model atmospheres have been adopted (see Hidalgo et al. 2018;
Pietrinferni et al. 2021, for a detailed discussion on this topic). For
the adopted physical framework and solar heavy element distribution
(see Section 4.2.1 below), the calibration of a Standard Solar Model
(SSM) sets the value of the mixing length parameter oy, and of
the initial solar metallicity and He abundance. At the solar age, the
BaSTI SSM? matches the solar luminosity and radius as well as the
present (Z/X), abundance ratio with a value for the mixing length
parameter oy = 2.006 (we refer to Hidalgo et al. 2018, for details
about the properties of the BaSTI SSM).

The BaSTI stellar models are available both for the Caffau
et al. (2011) solar heavy element mixture, and for an o —element
enhanced mixture® ([o/Fe] = +0.4). For each selected metallicity,
the corresponding initial helium abundance has been obtained by
adopting an He— enrichment ratio equal to AY/AZ = 1.31, and a
primordial He abundance equal to Yp = 0.247. From the calibration
of an SSM the resulting initial solar abundances are Z;,;; = 0.01721
and Yiy = 0.2695. From the compilation of 21 metallicities initially
available with the release of the BaSTI models, we have increased
the resolution in chemical composition and age by interpolating
metallicity points for all science cases using the available online
routine provided by the BaSTI team.

The current release of the BaSTTI library also contains evolution-
ary tracks spanning masses from 0.1 Mg to 15 Mg. For a subset of

2We note that the BaSTI SSM has been calculated starting from the pre-main
sequence and including diffusion of He and heavy elements.

3The computation of a stellar model grid for an & —depleted mixture is in
progress.
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these (ranging from ~ 0.7 Mg, to 4.0 M with the lower limit being
metallicity dependent) the full interior structure is also provided
throughout the evolution. The number of structures stored* at each
mass varies with metallicity, ranging from ~300 individual models
at the high-mass end to more than 9000 structures at the low-mass
end. These are stored in the standardized £ gong format described in
the website’ of the Aarhus Red Giants Challenge (Silva Aguirre et al.
2020a). The availability of interior structures allows us to compute
oscillation frequencies and determine asteroseismic observables as
described in Section 4.1.

Our grids of BaSTT isochrones and tracks reach ages up to 16 Gyr,
which allow us to properly construct the posterior distributions of old
stars without risking the appearance of an edge effect (see e.g. Valle
et al. 2014, 2015).

3.2 Custom-computed evolutionary tracks

While the use of publicly available compilations of tracks and
isochrones (such as BaSTI) makes it easy to compare the BASTA
results with those from other fitting codes, it poses a limit on our
flexibility to explore different combinations of input physics and nu-
merical implementations. For this reason, we developed algorithms
that calculate and process user-defined grids of evolutionary tracks
with any combination of input physics and make them readily usable
with BASTA. The limitations on the input physics are given by the
features available in an evolutionary code, and currently we support
the usage of GARSTEC (Weiss & Schlattl 2008) and the latest publicly
available version of MESA (Paxton et al. 2011, 2013, 2015).

In the case of GARSTEC, our running version of the code has
experienced a number of developments since the published version
of Weiss & Schlattl (2008). Updated nuclear reactions from Solar Fu-
sion II are available (Adelberger et al. 2011), and electron screening
of nuclear reactions now also covers the intermediate regime using
the prescriptions of Dewitt, Graboske & Cooper (1973) and Graboske
et al. (1973). The definition of convective boundaries follows the
recipe of Gabriel et al. (2014), and includes a treatment of semicon-
vective mixing as described in Silva Aguirre et al. (2011). GARSTEC
can couple on-the-fly distilled information from the Stagger grid
of 3D-hydrodynamical simulations of stellar atmospheres during
the evolution (Jgrgensen et al. 2018; Mosumgaard et al. 2018,
2019; Jgrgensen & Weiss 2019). The prescription in GARSTEC for
overshoot consists of a diffusive process with a diffusion constant
given by

-2z
D(z) = Dy exp (fHP ) , 6)
where the constant Dy is derived from the mixing length theory
convective velocities, z is the radial distance from the edge of the
convective zone, fis a free efficiency parameter, and Hp is the pressure
scale height. For small convective cores the overshooting efficiency
is limited using a geometrical cut-off factor g, that scales the local
pressure scale height as follows:

. Raf )’
Hp = min HP,HP . (7)
gculHP

Here R, is the radial thickness of the convective zone. The default
value of the free parameter is g., = 2, and it can be modified to

4The complete data base of interior structures is publicly available at the
BaSTI URL repository.
Shttps://github.com/vaguirrebkoch/aarhus_RG_challenge
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allow finer control over the size of small convective cores, a desired
feature in e.g. studies constraining the extent of convective cores
using asteroseismic data (Silva Aguirre et al. 2013; Deheuvels et al.
2016).

We have two different approaches for grid sampling. In the
first, which is the conventional approach, we compute tracks on
a predefined mesh of stellar parameters. The mesh points are
typically equally spaced along each parameter. The stellar model
grids calculated in this manner are known as Cartesian grids. In the
second approach, we sample the parameter space uniformly using
a quasi-random number generator described in Sobol (1967). Note
that quasi-random number generators perform better than pseudo-
random number generators, specifically in high-dimensional spaces,
as the latter provides more clumpy distributions. We refer to grids
computed in this way as Sobol grids.

We can generate Cartesian and Sobol grids over a number of stellar
parameters including mass (M), initial helium abundance (Yiy;),
initial metallicity ([Fe/H]iy;), alpha enhancement ([« /Fe]), mixing-
length (omrr), and overshoot and mass-loss (). The parameters used
to generate the grid define the dimension of the weight we included
in our marginalized posterior distribution (see equation 5). Note
that we construct grids over [Fe/H];, (instead of initial metal mass
fraction), because this quantity is well constrained by the observed
metallicity, and hence allows convenient choice of the parameter
space over which one needs to calculate a grid to model the observed
star. We can either treat Y;y; as a free parameter similar to other stellar
parameters, or determine it from the [Fe/H];,; assuming values for the
primordial helium abundance (default Y, = 0.248; Fields et al. 2020),
and the helium-to-metal enrichment ratio (default AY/AZ =1.4). The
default values can be changed by the user. In the case of GARSTEC,
we have implemented alpha enhanced and depleted mixtures of the
Asplund et al. (2009) solar abundances, ranging from [« /Fe] = —0.2
to [ae/Fe] = 0.6 in steps of 0.1. We adopt consistent opacity tables
from OPAL for high-temperatures (Iglesias & Rogers 1996) and the
Ferguson et al. (2005) opacities in the low-temperature regime.

4 AVAILABLE FITTING PARAMETERS

One of the core features of BASTA is its ability to handle inhomo-
geneities in the available data as long as they are contained in the grid
model parameters. BASTA can easily deal with heterogeneous input
and provide a robust set of stellar properties based on the likelihood
of the models in its grids. In the following sections, we describe the
quantities available for fitting asteroseismic, photometric, spectro-
scopic, and astrometric data. A complete and up-to-date list of code
parameters can be found in the code documentation (available on
GitHub).

4.1 Asteroseismology

The wealth of data from main-sequence and red giant stars provided
by asteroseismic space missions has driven the development of
BASTA towards the study of solar-like oscillators. These are stars
whose oscillations are excited by the same mechanism as in the
Sun, and comprise the vast majority of targets where asteroseismic
quantities are available. For solar-like oscillators, there are several
observables that the user can select to be reproduced by the models
and fit with BASTA. In all grids of stellar models currently sup-
ported (see Section 3), theoretical oscillation frequencies have been
computed using the Aarhus adiabatic oscillation package (ADIPLS;
Christensen-Dalsgaard 2008).
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4.1.1 Global asteroseismic quantities

The number of asteroseismic properties that can be extracted from
the power spectrum of a given star depends on the length of the
observations, the target’s apparent magnitude, and its evolutionary
state (since the time-scale for oscillations scales with the intrinsic
luminosity, see e.g. Kjeldsen & Bedding 1995,2011. If the data reveal
the signal of the oscillations, two basic seismic observables that can
be readily extracted are the average large frequency separation (Av)
and the frequency of maximum power v,,c. These quantities, also
known as the global asteroseismic parameters, scale approximately
with stellar properties as follows:

(av) \* b
<<Av@>) e ®

e (1) (T ) ®
Vmavo Mo \Ro Tetr.o ’

where (Avg), Vimax, @» and Tefr, o are the values measured in the Sun.
As (Av) and v, are normalized to these reference solar values, they
can be specified by the user. By default, BASTA adopts (Avg) =
135.1 uHz and vy, o = 3090 Hz from Huber et al. (2011).

There is extensive literature devoted to the testing and validating
the scaling relations by using independent constraints in stellar
masses and radii from e.g. binary stars, clusters, interferometry, and
parallaxes (see e.g. Huber et al. 2012, 2017; Miglio et al. 2012; Silva
Aguirre et al. 2012; White et al. 2013; Gaulme et al. 2016; Brogaard
et al. 2018; Sahlholdt & Silva Aguirre 2018; Sahlholdt et al. 2018, to
name a few). There is general agreement that the scaling relations are
accurate to within a few percent, but as it is clear from equations (8)
and (9) these extrapolations from the solar values do not take into
account variations with chemical composition nor the evolutionary
stage of the star.

To address some of these issues, several prescriptions have
been proposed to correct the (Av) scaling relation, while the
equation for vy, is purely empirical and no corrections across
the range of interest in T and [Fe/H] have been derived yet
(but see Belkacem et al. 2011, for an initial explanation on the
theory behind equation 9). We have implemented in BASTA four
additional determinations of the average large frequency separation
that aim at further decreasing the level of systematic deviation in
the scaling relation equation (8). A detailed comparison between
the performances of each prescription can be found in Viani et al.
(2019).

The first two determinations consist of a linear fit as a function of
radial order to the model individual frequencies of £ = 0 weighted by
a Gaussian centred at vy, the only difference being the adopted Full
Width at Half Maximum of 0.25v,,, (White et al. 2011) or 0.66v%:88
(Mosseret al. 2012a). The average large frequency separation (Av) is
determined from the slope of this fit and is meant to mimic as close
as possible the manner in which this quantity is derived from the
observations. This average large frequency separation is available
for the grids of stellar models where we compute the individual
oscillation frequencies (see Sections 3.1 and 3.2). As a by-product
of this calculation we obtain the dimensionless offset € that can be
used to correct for differences between the observed and model radial
order (see Section 4.1.2 below).

The other two determinations are those of Sharma et al. (2016)
and Serenelli et al. (2017) who, based on the same principle of
the White et al. (2011) approach, have computed a correction
factor across the Hertzprung—Russell Diagram for the value of (Av)
obtained from equation (8) that depends on the mass, metallicity,

MNRAS 509, 4344-4364 (2022)

effective temperature, and evolutionary state (hydrogen-core or-
shell burning or core-helium burning) of the star. These corrections
can be computed for any grid of stellar tracks or isochrones, as
they are independent of the availability of theoretical oscillation
frequencies.

As a final remark, we note that when defining the solar reference
values (Avg) and v,y o in equations (8) and (9) there is an implicit
assumption that fitting a target with those values of (Av) and v,y
(and solar temperature and metallicity) will result in a star of 1 Mg
and 1 Ry (but not necessarily solar age, as this depends on the
input physics used to construct the models). To ensure this level of
consistency, all theoretical values of (Av) in our grids of models are
re-scaled by a factor given by the fraction (Avg)/(Avg)grid, Where
(Avg)gia 18 the average large frequency separation computed from
the individual £ = 0 modes of a solar model computed with the same
input physics of the corresponding grid using the full width at half
maximum (FWHM) of White et al. (2011).

4.1.2 Individual oscillation frequencies

If the time-series of observations is of sufficient signal-to-noise
ratio and resolution, it is possible to extract individual oscillation
frequencies characterized by radial order n and angular degree ¢ (see
e.g. Davies et al. 2016; Lund et al. 2017). For stellar disc-integrated
observations, as it is the case of the space missions, geometrical
cancellation suppresses the signal from all modes except those with
low degree £ < 3. If the asymptotic theory can be applied to describe
the oscillation (e.g. Tassoul 1980), modes of odd and even degree are
separated by ~(Av)/2. As aresult, the observed oscillation spectrum
contains one mode of each degree £ = 1, 2, 3 between two consecutive
¢ = 0 modes. Departures from this asymptotic description occur e.g.
in the presence of mixed modes (see Section 4.1.5).

Most current stellar evolutionary models use a rudimentary de-
scription of the outer-most layers of stars with convective envelopes
(e.g. the mixing-length theory of Bohm-Vitense 1958), leading to
systematic frequency shifts in the oscillation modes when compared
to observations (Christensen-Dalsgaard et al. 1996). In order to
correct for this effect, a so-called surface correction needs to be
applied to the model frequencies. There are three prescriptions for
the surface corrections implemented in BASTA and all include power-

law dependence on frequency. They aim at obtaining the corrected

model frequencies v from the original model frequencies vModel

by determining the corresponding fitting coefficients of the power-
law correction to make them as close as possible to the observed
frequencies vﬁ?s.

The first prescription is the empirical power-law correction from

Kjeldsen, Bedding & Christensen-Dalsgaard (2008):

b

cor _.model _ ¢ ”rItI}Odel

rvn ¢ vn £ = : ’ (10)
5 s Q V()

in which a and r are the fitting coefficients, b is a fixed exponent, and
Vo is a reference frequency, typically chosen to be the frequency of
maximum power V. Q is the ratio between the inertia of the mode
and the theoretical inertia that a radial (¢ = 0) mode would have at
that frequency, determined by linear interpolation.

The other implemented corrections are the two physically moti-
vated surface corrections from Ball & Gizon (2014), first their cubic
correction:

model Jvo)>

as(v.
ugor — ymodel _ D0 (an
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Figure 1. Echelle diagram of the main-sequence star 16 Cyg A and the subgiant star HR 7322. The coloured circles show the observed oscillation modes (red:
£ =0, green £ = 1, blue: £ = 2) from Lund et al. (2017) and Stokholm et al. (2019), respectively, while the coloured symbols with a black outline show the
modes predicted from model with the highest likelihood (same colour coding), corrected using the combined surface correction from Ball & Gizon (2014) and
scaled using the observed Av of the star. The size of the symbols from the model is scaled inversely with their normalized mode inertias: the larger the symbol,
the greater the probability of the mode being observed. The lighter coloured symbols with no outline are not matched to any observation, but still predicted by

the model.

and secondly their combined correction, adding the cubic correction
from above to an inverse term:

cor _ model a—l(”m()del/ vo)~" + a3(vﬂodel/ )
el = e = ; . (2

In these corrections, a_; and a3 denotes the fitting coefficients, and /
is the scaled mode inertia, typically normalized at the stellar surface
as (Aerts, Christensen-Dalsgaard & Kurtz 2010),

_ 4y (6P + e+ DI pordr
M (& (R)P + £ + DIgR)P]

where &, and &, are the radial and horizontal components of the
displacement, pq is the unperturbed stellar density, M is the total
stellar mass, and R is the photospheric radius.

When fitting individual oscillation frequencies, it iS necessary
to correctly match each observed mode with its corresponding
theoretical counterpart of identical radial order n as the surface
correction and thus the computation of the likelihood of the model
depend on the difference in frequency between the observed and
modelled frequency of the same radial order and angular degree.
Identifying the radial order in the observations of main-sequence

, (13)

stars is relatively straight forward using the dimensionless offset €
(White et al. 2012), and BASTA has an option for the user to apply
a suitable correction to the radial order of the observed frequencies,
if desired. An example of the best-fitting model found by BASTA
when fitting the individual oscillation frequencies of the Kepler target
16 Cyg A is shown in Fig. 1.

4.1.3 Frequency combinations

Combinations of frequencies have been long used in asteroseismic
analysis to isolate the signature of a given stellar region and extract
detailed information about the structure of a star (e.g. Roxburgh &
Vorontsov 2003; Oti Floranes, Christensen-Dalsgaard & Thompson
2005; Cunha & Metcalfe 2007; Silva Aguirre et al. 2011). A simple
example of this is the large separation between modes of same angular
degree and consecutive overtone, Avy(n) = v, ¢ — v, _1, ¢, Which
is related to the mean stellar density (cf. equation 8). In BASTA we
have included a number of combinations as fitting parameters such
as the small-frequency separation:

dpp(n) = vp0 — Vp_12, (14)
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Figure 2. Ratios and glitch signatures for 16 Cyg A as a function of oscillation frequencies. In the top panel, the black and green circles represent the observed
ratios rpp and rqp, respectively, while the black and green diamonds show the corresponding quantities for the best-fitting model (see the legend). In the bottom
panel, the circles represent the sum of the observed glitch signatures from the helium ionization zone and the base of convection zone, while the diamonds show
the same for the best-fitting model.

the 5-point small-frequency separations: the usage of ry; or rjp in combination with r(, to form the series g,

or ryp, respectively. Here, the underlying problem is in the use of

1
do1(n) = g(”n—l.o —4v,_11 4+ 6v,0 — 4V, 1+ Vagi0) (15) conventional numerical methods to estimate the inverse of covariance
| matrices, which turns out to be highly inaccurate if these are ill-
dyo(n) = —g(\)nilql — 4,0+ 6V, —4Vp10+ Vart1), (16) conditioned. We overcome this issue by using the Moore—Penrose

pseudo-inverse (see e.g. Strang 2006) of the covariance matrices in

the frequency separation ratios: the likelihood. The pseudo-inverse is calculated using singular value

do(n) decomposition and sets singular values to zero when these are below
rop(n) = Avi(0) 17 a threshold that is defined relative to the largest singular value.
doy(n) The approach devised in BASTA to handle frequency combina-
ro1(n) = , (18) tions attempts to give the user as much flexibility as possible while
An(n) keeping the statistical approach robust, and allows fitting any of
rlO(n) — dm(n) , (19) these quantities (d()l, dm, d()g, o1, 10, Y02, Y0105 70125 rloz) as desired.
Avg(n + 1) In all cases the user only needs to provide the individual oscillation

frequencies and BASTA will calculate the needed combinations. It
is possible to supply the code with the necessary correlations across

and the set of ratios (g, 7912, and ryp:

roto = {ro1(n), rio(n), rot(n + 1), rip(n + 1), ...}, (20 terms, and if these are not given then BASTA calculates them by
doing 10 000 Monte Carlo realizations drawn from random Gaussian
rorz = {ro1(n), roz(n), ro1(n + 1), ra(n + 1), ...}, 2D distributions of the individual frequencies. An example of the fit to
the frequency ratios obtained for 16 Cyg A is shown in the top panel
rie = {roa(n), rio(n), roa(m + 1), rip(n + 1), ...} (22) of Fig. 2.

There are strong correlations between combinations including five
individual frequencies, and Deheuvels et al. (2016) showed that the

. . . . . 4.1.4 Acoustic glitches
set 9o results in almost singular covariance matrices with large

condition numbers that can lead to overfitting the data as recently
suggested by Roxburgh (2018). Instead, the latter study recommends
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There are regions inside solar-like oscillating stars where the sound
speed changes at length scales substantially shorter than the local
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wavelengths of the acoustic waves. These regions are known as
acoustic glitches in the stellar structure, and the two most promi-
nent are the helium ionization zone and the base of the envelope
convection zone. Glitches in the acoustic structure of stars leave
tiny signatures in the observed oscillation frequencies currently
detectable from space borne missions (see e.g. Miglio et al. 2010;
Mazumdar et al. 2012) as well as from ground-based facilities (see
e.g. Bedding et al. 2010; Grundahl et al. 2017). The bottom panel of
Fig. 2 shows an example of glitch signatures as seen in the oscillation
frequencies of 16 Cyg A observed by the Kepler satellite.

The detection of the glitch signatures can provide useful informa-
tion about stellar interior, e.g. they can be used to measure the location
of the base of envelope convection zone as well as to infer the surface
helium abundance (see e.g. Mazumdar et al. 2014; Verma et al.
2014, 2017, 2019; Verma & Silva Aguirre 2019). The perturbation
to the oscillation frequencies due to acoustic glitches can be derived
using the asymptotic theory of stellar oscillations (see e.g. Houdek
& Gough 2007),

8V = Apeve 5 8" sin(47 ey + Yie)
Acz .
+ = sinm ez + Yez). (23)

where the two terms on the right-hand side represent contribu-
tions from the helium and base of the convection zone glitches,
respectively. The parameters Ape, Ape, The, and ¥y, depend on
the properties of the helium ionizing layers, whereas Acz, Tz, and
Yz depend on the properties of the base of the convection zone.
The parameter t¢y is of particular importance as it provides an
estimate of the acoustic depth of the base of the convective envelope.
Another quantity of interest is the average amplitude of helium glitch
signature,

v _Qr2A2 2
f 2 AH ve 87 Af. v dv
v €

" dy

v
AHe[ef&rzA%{ev% _ e*SnzAlz_levg] (24)
N 1672A% [V, — vi] ’

(Ay) =

which has been used in the past to measure the envelope helium
abundance of solar-type stars.

We have implemented in BASTA the capability to fit the observed
glitch parameters. The helium and convection zone glitch parameters
are extracted from oscillation frequencies using the Method A of
Verma et al. (2017) and Verma et al. (2019). Briefly, in Method A,
we modelled the total oscillation frequency,

4
0 =" bi(@)n* + sv, (25)

k=0

where the first term represents the smooth component of oscilla-
tion frequencies while the second term arises from glitches (see
equation 23). The polynomial coefficients bi(£) are determined
together with the glitch parameters by fitting equation (25) to the
oscillation frequencies using non-linear optimization method based
on Broyden—Fletcher—Goldfarb—Shanno (BFGS) algorithm (see e.g.
Fletcher 1987). To estimate the uncertainties in the glitch parameters,
we repeat the fitting process using 1000 realizations of the individual
oscillation frequencies and estimate the full covariance matrix. The
uncertainties in the glitch parameters correspond to the square root
of the diagonal terms in the matrix, which are consistent with the
error bars obtained from the Hessian matrix.

In the current implementation, we do not use the parameters
associated with the base of convection zone glitch in the stellar
properties determination as it is typically difficult to reliably extract
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them from the contemporary frequency precision for two reasons:
(1) the small amplitude of the base of convection zone signature, and
(2) the issue caused by aliasing (Mazumdar & Antia 2001). Having
said that, it is straightforward to modify the current implementation
to use the glitch parameters related to the base of convection zone.

4.1.5 Mixed modes and the frequency matching routine

As stars evolve beyond the core-hydrogen burning phase their
oscillation pattern develop irregularities: when the helium core
contracts as a product of stellar evolution, the frequency of the g
modes increases and interactions between the p-mode behaviour near
the surface and the g-mode behaviour near the core take place. Modes
can experience mixed properties and exchange nature, causing these
so-called mixed modes to deviate from the regular oscillation pattern
of the p modes and thus to be visible in an échelle diagram as avoided
crossings.

Mixed modes have a substantial diagnostic potential as they are
sensitive to properties of the stellar core. However, mixed modes
complicate the analysis of individual frequencies as this departure
from simple asymptotic theory results in the presence of more
than one non-radial mode of a given angular degree between two
consecutive £ = 0 modes, and some of these theoretically predicted
mixed modes do not reach observable amplitudes. This complicates
the matching of model modes to observed modes, which can lead to
incorrect computations of the surface correction and of the likelihood
evaluation of the given model.

To address this issue we note that the amplitude of a mode
can be roughly estimated from the mode inertia (see equation 13).
The frequency fitting procedure in BASTA uses a mode matching
algorithm, where the observed modes are matched to their most-
likely counterpart in the model using their frequencies as well as their
inertias as a proxy of the likelihood of observability. We describe the
matching procedure and assumptions in the following paragraphs.

The frequency matching routine is based on mode counting. Even
though the extracted frequencies can be uncertain at times as they
depend on the power spectrum background and systematic effects in
the pipeline, these effects do not change the relative ordering of the
modes. An £ = 1 mode and an £ = 0 mode will not exchange order
due to effects such as the surface effect. Due to the physical nature
of the radial modes, avoided crossings do not occur in the pattern
of the ¢ = 0 modes. We therefore use the observed radial modes
to define a number of frequency intervals. If higher angular degree
modes are observed outside the frequency range encompassed by the
radial modes, the frequency binning is extended to lower and higher
frequencies in steps of Av.

BASTA counts how many modes of a given angular degree ¢ #
0 are present in each frequency bin between two consecutive radial
modes. When there is an equal number of model and observed modes,
the modes are matched based only on frequency. We note in passing
that this is the typical case for main-sequence stars that do not present
avoided crossings. If there are more observed modes than modelled
modes in a given range, the model is rejected as it fails to accurately
describe the observed pattern.

If, between two £ = 0 modes, j modelled modes exist with inertias
I} < ... < I; and k observed modes of same angular degree with
Jj > k, we need to select kK modelled modes to match one-to-one to
the observed modes. This is usually the case when avoided crossing
takes place in the model, but not all mixed modes have high enough
amplitudes to be observed. Intuitively, one might think to just pick
the £ modelled modes with the lowest inertia as they should have the
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highest likelihood of being observed. However, small differences in
inertia might cause this to result in a miss-matching. Instead, BASTA
selects two inertia thresholds @ and b (with a < b) and subdivides the
modelled modes into a set A with inertias less than a, a set B with
inertia between a and b, and a set C for inertias greater than b. The
set A thus contains modes that are likely to be detected, while set C
contains modes that are unlikely to be observed, and set B contains
modes that are somewhere in between.

By picking all modes in A and a subset of B such that kK modes are
selected in total, the modes can be matched one-to-one in frequency
to the observed modes. Specifically, the thresholds a and b are chosen
based on the k’th smallest modelled inertia /;: a is [;/10 and b is 101.
This ensures that |A| < k < |A| + |B|, where |A| is the number of
modes in the set. Each possible match is evaluated based on the total
L, distance in frequency space and the subset of B that minimizes
this metric is chosen. This match between the observed and modelled
modes will then be used in the following surface effect and model
likelihood computation.

Fig. 1 shows the échelle diagrams for two examples of as-
teroseismic fitting to individual frequencies using this matching
algorithm. The code can nicely reproduce the observed oscillation
pattern of the main-sequence star 16 Cyg A, and also follow the
rapid evolution of a distinct dipole mixed mode in the bright F6
subgiant star HR 7322. Further examples of matching the mixed-
mode pattern in subgiant stars are given in Section 6 and Appendix B
below.

4.1.6 Period spacing

The observed power spectra of red-giant stars exhibit a complex
pattern due to the presence of mixed modes. As described above,
mixed modes behave as gravity modes in the inner regions of the
star and as acoustic modes in the outer layers, and hence their
observations provide a unique opportunity to probe the conditions
deep in the stellar core (see e.g. Beck et al. 2011; Bedding et al. 2011;
Mosser et al. 2012b). The detection of the mixed modes makes it
possible to measure the gravity mode period spacing, and currently
measurements of the asymptotic period spacing for the dipole modes
are available for several thousands of Kepler red-giant stars (see e.g.
Stello etal. 2013; Mosser et al. 2014; Datta et al. 2015; Vrard, Mosser
& Samadi 2016).

We can use the observed dipole mode asymptotic period spacing
in BASTA as a quantity to be fitted. The corresponding asymptotic
period spacing for the models is computed according to the formula,

-1
AP, = v/ar? </ ﬁdr) , 26)
r

where N is the Brunt-Viisild frequency, r the radial coordinate,
and the integration is performed over the radiative interior. A few
necessary considerations regarding the integral in equation (26): (1)
the integrand has a numerical singularity, and (2) tabulated values of
r have variable step size. These make rectangle and trapezoidal rules
for the integration inaccurate (particularly if the step size is not very
small), and the Newton-Cotes formulas with higher order accuracy
inapplicable. For this reason, we use an adaptive Gauss—Kronrod
quadrature method (7-points Gauss rule combined with 15-points
Kronrod rule) to compute the integral with high accuracy (Kronrod
1965). This requires the values of the integrand at intermediate r
(other than the tabulated values), which is obtained using the basis
spline interpolation.
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4.2 Atmospheric properties

4.2.1 Surface chemical composition

Fitting the observed surface chemical composition requires certain
assumptions about the relation between measured number density
ratios of a given element and the metal mass fraction used to construct
stellar models. For a given grid of evolutionary tracks or isochrones
characterized by hydrogen, helium, and metal mass fractions (X 4+ Y
+ Z = 1), BASTA assumes the following mapping:

[M/H] = log,, (4 ) o
[Fe/H] = [M/H] — corr ([«/Fe]). 28)

The equations above depend on the solar heavy element distribution
adopted to construct the grid, and a correction factor corr([c/Fe])
which is determined by comparing stellar tracks with and without
the inclusion of alpha-elements enhancement (see Salaris, Chieffi
& Straniero 1993). These correction factors, valid when all alpha-
elements are equally enhanced, change according to the considered
solar mixture. We have determined them for the fixed alpha en-
hancements of [«/Fe] = 4+0.4 in the Grevesse & Noels (1993) and
Grevesse & Sauval (1998) solar mixtures, as well as all the available
values of [«a/Fe] for the Asplund et al. (2009) solar composition
(see Section 3.2). We adopt corr([er/Fe]) = 0.3016 as given by
Pietrinferni et al. (2021) when dealing with the Caffau et al. (2011)
compilation, which is appropriate for an alpha-enhancement value
of [a/Fe] = +0.4.

Under these assumptions, all custom-constructed grids used in
BASTA are mapped from the input [Fe/H];,; and [« /Fe] into [M/H]
using equation (28), and then the ratio (Z/X)medel is determined using
equation (27). The BaSTI models on the other hand follow the
inverse procedure where we use their initial mass fractions of X
and Z as given in their data base to determine [M/H] following
equation (27), and [Fe/H] is then calculated for the corresponding
case of [« /Fe] using equation (28) and the solar mixture of Caffau
etal. (2011). This procedure ensures that all surface abundance ratios
are computed in a consistent manner, but it is up to the user to ensure
that the combination of input values of [Fe/H];;; and [«/Fe] are
reasonable for observed stars. We note in passing that the surface
abundance by mass of elements such as *He, '?C, 1*C, N, and '°O
are also available in our custom-computed grids.

4.2.2 Synthetic photometry, parallaxes, and distances

All grids of stellar models available in BASTA (cf. Section 3) can
be mapped from the theoretical H-R diagram to various photo-
metric systems using bolometric corrections (BCs) tables provided
by Hidalgo et al. (2018). This allows us to determine synthetic
magnitudes in more than 15 photometric systems including those
that are of relevance for asteroseismic and exoplanet studies (e.g.
Kepler and TESS passbands), compilations of bright stars (Tycho-2
and Hipparcos), large photometric surveys (e.g. 2MASS, Skymapper,
sloan, and VISTA), and naturally all Gaia data releases. A list of the
photometric systems currently available in BASTA is provided in
Table Al.

BASTA supports the inclusion of parallaxes as a fitting parameter
together with at least one apparent magnitude m,. The evaluation
is then done by comparing the grid-model absolute magnitude
M;, computed from the bolometric luminosity and effective tem-
perature using bolometric corrections, to the measured absolute
magnitude computed from the apparent magnitude m,, an estimate
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Figure 3. Left: Kiel diagram depicting BaSTI isochrones colour-coded according to their correspondence to each fitted parameter. Right: Resulting log (g)
probability density function as predicted in each filter, as well as the joint distribution obtained from equation (2; dashed line). See the text for details.

of extinction, and the distance modulus from the observed parallax
u = 5Slog (d) — 5. The computation of the observed absolute magni-
tude undergoes multiple transformations and thus the assumption of
this value being normally distributed like the other fitting parameters
is weak. Instead this parameter is evaluated by constructing the
likelihood distribution of M, and including it in the calculation of
the posterior using equation (2).

The procedure when parallax is included as a fitting parameter is
as follows. In the first step, BASTA constructs prior distributions in
distance and apparent magnitude using their observed values. The
distance distribution is analytically calculated from the measured
parallax and its associated uncertainty using the exponentially de-
creasing space density prior with a scale length of 1.35 kpc described
in Bailer-Jones (2015) and Astraatmadja & Bailer-Jones (2016). For
the apparent magnitude m,, we assume a normal distribution with the
observed values of m, and its uncertainty as the mean and standard
deviation, respectively.

In the second step, BASTA samples over the distance and apparent
magnitude distributions to calculate the reddening. When multiple
distributions are considered it is difficult to properly sample the
tails of all distributions if one just draws samples following the
distributions and let the number density of the samples determine the
probability density function. If we draw samples from two normal
distributions, then the odds of drawing values at e.g. 3 standard
deviations away from the mean in both distributions is less than 1 in
100 000. This means that the tails of the resulting distribution would
be artificially steep. To overcome this, BASTA draws the samples
systematically over a large range of values for each given parameter.

For anumber N of samples in distance, BASTA draws half of them
linearly across arange of d € [10 %, 1044 pc, and the other half as
quantiles of the normal distribution around the mode of the distance
distribution derived from the observed parallax as described above.
Similarly, we produce K apparent magnitude samples distributing
half of them linearly across the limiting magnitudes published by
each relevant survey (or else assume m, € [—10, 25]), and the rest
from a normal distribution around the observed apparent magnitude.

For each of the N x K pairs of distance and apparent magnitude
we determine the reddening E(B — V) using the latest version of the
Bayestar dust map (currently Bayestarl9, see Green et al.
2019), and if the target falls outside of its coverage we apply
the simpler map of Schlegel, Finkbeiner & Davis (1998). Since
Bayestar provides multiple estimates of the colour excess at each
distance, we determine the individual reddening values using the

median and standard deviation of those samples. To transform the
reddening values into absorption A, estimates at a given filter ¢,
we use extinction coefficients from table 6 in Schlafly & Finkbeiner
(2011) assuming the Cardelli, Clayton & Mathis (1989) relation
A, = 3.1 x E(B — V). For filters not contained in that compilation,
we default to the temperature and metallicity dependent extinction
coefficients from Casagrande & Vandenberg (2014).

We compute the absolute magnitudes M, from our N x K groups
of distance, apparent magnitude, and absorption using the distance
modulus. This sample is converted into a probability distribution
function by weighting each obtained absolute magnitude by the
underlying observed distance and apparent magnitude probability
distributions. This distribution is then included in the computation of
the posterior (see equation 2). We note that in cases where the parallax
uncertainty is smaller than 5 per cent and the absolute magnitude
prior is symmetric (i.e. if the distance between the median and each
quantile is within a predefined threshold), we fit a Gaussian function
to the probability distribution of absolute magnitudes and use the
analytical expression in the computation of the likelihood.

Fig. 3 shows an example of the distance sampling procedure. The
fitting includes effective temperature, metallicity, and parallax using
the 2MASS filters. For the purpose of this example we have modified
the apparent J-magnitude to be in disagreement with the other two
magnitudes, as it can be seen in the Kiel diagram. The right-hand
panel of Fig. 3 shows the probability density function of log(g)
predicted by each of the filters. If BASTA did not sample the tails of
the magnitude distributions far from their median values and standard
deviations, the full likelihood as defined in equation (2) will be zero.
The designed sampling scheme avoids this singularity and provides
a robust statistical solution.

In addition to fitting parallax directly, distances can be determined
in BASTA independent of any parallax input as long as one photo-
metric apparent magnitude is provided to the code. In this case, we
solve for the distance and absorption iteratively using the magnitudes
and the dust map until convergence is reached (normally within three
iterations). If multiple apparent magnitudes are given as input we
derive a distance in each passband and determine a joint distance by
multiplying the individual probability distribution functions.

5 INTERPOLATION

If the resolution of the grid used with BASTA is lower than what
is desired, the grid can be interpolated to match a user-defined
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Figure 4. Example of how new tracks are assigned for interpolation across tracks for the case of a base consisting of Mip; and [Fe/H]ipi. The simplices show
the tessellation of the original grid, where each new track is interpolated to by using the tracks forming the simplex it is contained within. The left-hand panel
shows the assignment of tracks for a Cartesian input grid with a starting resolution of 0.05 dex in initial metallicity and 0.01 Mg in initial mass, and a desired
interpolated resolution of 0.01 dex and 0.005 Mg, respectively. The middle panel shows the assignment of tracks for a Sobol input grid with an increase in the
number of tracks by a factor of 2. The right-hand panel shows the assignment of tracks for a Cartesian input grid but with Sobol assignment of tracks with an

increase in resolution by a factor of 2. See the text for details.

resolution. BASTA includes this option and can interpolate along or
across stellar evolution tracks or isochrones (or both along and across,
which we refer to as the combined option), and every parameter of the
grid can be included in this interpolation. The individual procedures
for each type of interpolation are described in the following sections.

To minimize computation time, the interpolation of tracks or
isochrones can be limited to only a section of the original grid given
by limits in any of the grid parameters. When fitting multiple stars
simultaneously, these limits can be applied on a star-by-star basis
(and thus producing one interpolated subgrid per star), or as a single
set of limitations for the full collection of stars (producing only one
new subgrid of tracks or isochrones).

5.1 Interpolation along tracks or isochrones

For interpolation along the tracks or isochrones the user must define
two relevant quantities. The first is the desired resolution in a
stellar property between consecutive points in the track, normally an
observed quantity that will be fitted (e.g. large frequency separation,
or individual oscillation frequencies). The second relevant quantity
is a (smoothly varying) grid parameter to be used as the independent
variable in the interpolation. We refer to this parameter as the
‘base parameter’, where typical examples are age, central hydrogen
content, or central density for stellar evolution tracks, or the initial
mass for the case of isochrones. The user can choose which base
parameter will be used, or BASTA will consider age or initial mass
as default for stellar tracks or isochrones.

Once these two quantities are defined, the number of points along
each interpolated track or isochrone is estimated as the number of
points needed to satisfy the desired resolution assuming an equal
spacing in the base parameter. The interpolation is performed as
a l-dimensional function using either a linear or cubic method
viascipy.interpolate. interpld (from the scipy package;
Virtanen et al. 2020) on a track-by-track basis. The new base along
with the interpolated parameters are stored and replace the original
track. Therefore, one should consider these as completely new
evolutionary tracks, instead of simple refinements of the original.

5.2 Interpolation across tracks or isochrones

Interpolation across tracks or isochrones can be applied to grids of
identical microphysics. The base for this interpolation is formed by
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the parameters used to construct the original grid (see Section 3),
and their spacing gives the original grid resolution. For a Cartesian
interpolated grid a desired resolution can be set for each of these
parameters, and the code determines the minimal amount of tracks
needed to satisfy this resolution one parameter at the time. For a
Sobol-sampled interpolated grid the user defines a multiplicative
increase in the number of tracks of the selected section of the grid.
BASTA then automatically determines a homogeneous distribution
of new tracks in the base parameters that meets the required increase
in the number of tracks. To retain this homogeneity, the resulting
grid consists solely of interpolated tracks and the original ones
are excluded. An example of these tracks assignments can be seen
in Fig. 4. We note that a Sobol-sampled interpolated grid can be
constructed starting from a Cartesian grid, as shown in the right-
hand panel of the figure.

The enveloping tracks used to interpolate each new track are
determined from a tessellation of the base parameters using
scipy.spatial.Delaunay (based on the QHULL package; Bar-
ber, Dobkin & Huhdanpaa 1996). The number of tracks considered
to envelop a new track corresponds to the number of parameters in
the base plus one. In the example shown in Fig. 4 this requires three
enveloping tracks for each new track (there are two parameters in the
base, Mi,; and [Fe/H]iy;). The tessellation divides the original grid
into triangles, as it can be seen in the example.

In addition to the enveloping tracks, the user must define a single
additional smoothly varying quantity that runs along the evolution
of the track to perform the interpolation (e.g. age, central hydrogen
content, central density). We note that, when applying the combined
interpolation method, this quantity does not need to be the same
as the one selected for interpolation along the track. For example,
the user can choose central hydrogen content when interpolating
across tracks, and the subsequent interpolation along tracks can be
performed with age as the independent variable.

To avoid extrapolations, the range of the smoothly varying pa-
rameter in the new track is limited to an interval that is contained
by all enveloping tracks, and its spacing is determined as the
mean of the spacing in the enveloping tracks. Using this basis,
each parameter in the new track is interpolated separately using
scipy.interpolate.LinearNDInterpolater (thatrelies
on a new tessellation of the points along each enveloping track). Indi-
vidual oscillation frequencies are treated as independent parameters,
and are therefore interpolated individually.
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As a test of our interpolation procedure, Fig. 5 shows the results
of reconstructing an evolutionary track extracted from the Sobol grid
presented in the middle panel of Fig. 4. The top panel depicts the
evolution of the large frequency separation Av as a function of age
for the three enveloping tracks determined from the tessellation of the
base parameters, as well as the track reconstructed with our combined
interpolation approach. The bottom panel presents the outcome of the
combined interpolation procedure as the fractional difference in Av

between the interpolated track and the original track. Deviations are
at the 10~ level, an order of magnitude smaller than the uncertainty
in Av measured for the best Kepler targets (see fig. 6 in Yu et al.
2018).

The impact of our interpolation procedure can be seen in Fig. 6,
where we compare the obtained posterior PDFs for mass, radius,
age, and density when fitting data of the Kepler target 16 Cyg A.
For this example we considered as input parameter the effective
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temperature and metallicity from Ramirez, Meléndez & Asplund
(2009) and the large frequency separation and frequency of maximum
power derived by Lund et al. (2017). These data were then fitted
to a Sobol grid in its original resolution, and an interpolated grid
constructed with the combined method and an increase in resolution
by a factor of 5 in the number of tracks (across tracks) and spacing of
0.1uHz between the lowest observed ¢ = 0 frequency (along tracks).
The derived quantities are in very good agreement (and certainly
within their respective uncertainties), but the resulting distributions
are significantly smoother after the interpolation procedure.

Before closing this section we note that when the combined
method is chosen, the interpolation across tracks or isochrones is
performed before interpolation along the tracks or isochrones to
increase computation efficiency. We have tested the inverse case
(along before across), and confirmed the differences in the recovery
procedure presented in Fig. 5 are of the same magnitude regardless of
the order of the interpolation. This inverse case (along before across)
is still available for usage in BASTA at a much larger computational
cost.

6 VALIDATION WITH ARTIFICIAL DATA

We performed a thorough end-to-end validation of BASTA to quan-
tify the robustness of our pipeline in retrieving stellar properties. For
this purpose we produced artificial data from models extracted from a
grid and used the same grid to fit the observables, which is equivalent
to assuming that the underlying stellar models are true representa-
tions of the observations. By quantifying the deviations in our derived
parameters from the true values we can estimate the level of accuracy
of our pipeline, as these will depend exclusively in the reliability of
BASTA. In addition, our obtained uncertainties in stellar properties
provide an estimate of the typical statistical precision, which in turn
depends on the assumed observational errors and the combination
of input quantities fitted. We emphasize that this exercise allows us
to test the accuracy and statistical precision obtained for a given
set of observables and their measured uncertainty, but we cannot
account for deviations between the physical and observed properties
of a real star and those predicted by a grid of stellar models. This
additional systematic uncertainty undoubtedly exists and remains to
be quantified, but it depends on our many shortcomings in theory of
stellar evolution and goes well beyond the scope of this paper.

For this particular exercise we constructed a Sobol grid of stellar
models using GARSTEC comprising 3000 evolutionary tracks, a mass
range between 0.8 and 1.5 Mg, initial metallicity —0.5 <[Fe/H];, <
+0.5, the Asplund et al. (2009) solar mixture, and an enrichment
law AY/AZ = 1.4. The tracks were evolved from the pre-main
sequence to a value of the large frequency separation Av = 10 uHz,
roughly corresponding to the lower RGB. We determined individual
oscillation frequencies of angular degree ¢ = 0, 1, 2, 3 for stars down
to a value of Av =30 pHz, and only radial modes for more evolved
stars. The coverage of the grid was selected to ensure that we can
test our fitting procedures in various types of stars (main sequence,
subgiants, and red giants) which have different observed quantities
to be fitted (individual frequencies, mixed-modes, period spacing).

We assume the following observational uncertainties (taken from
Serenelli et al. 2017 and Lund et al. 2017 for main-sequence and
subgiant targets, and Yu et al. 2018 for red giant stars): 70 K in T,
0.1 dex in [Fe/H], 0.1 dex in log(g), 0.5 per cent of the observed
value in Av, and 2 per cent in v« These are typical uncertainties in
the global asteroseismic properties for Kepler stars observed for more
than 50 d (see Serenelli et al. 2017). The asymptotic period spacing
uncertainty is assumed to be 1.5 per cent, which corresponds to the
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average uncertainty measured by Vrard et al. (2016) for RGB stars in
the range 10 uHz <Av < 30 pHz. For the individual frequencies of
oscillation we adopt a two-step process where we first identify which
modes would be detected given an assumed observation length, and
then determine their uncertainties following a recipe derived from
Kepler targets.

For a given theoretical mode calculation we estimate which modes
would likely be measurable based on results from the main-sequence
stars included in the LEGACY study (Lund et al. 2017). From the
LEGACY data we first estimate the typical minimum and maximum
frequencies of measured ¢ = 0 modes in units of vy, and derive
simple linear relations of these frequencies as a function of v.
The typical frequency intervals of measurable ¢ = 0 modes are
found to range from £0.4 vk at Viax = 1000 tHz to approximately
+0.2 Vpax at Ve = 4000 nHz. We then estimate the expected
relative amplitude of £ = 0 modes at these frequency limits, using a
relation for the envelope width of the assumed Gaussian modulation
of mode amplitudes around vy,.x. This relation is determined from
fits to LEGACY data, and includes both a dependence on vy, and
Tetr (Lund et al., in preparation). By including mode visibilities from
Lund et al. (2017), we can then estimate the corresponding relative
amplitudes of non-radial modes and assess which of these exceeds
the limit for detectability set by the £ = 0 modes. Following Ball
et al. (2018), we include information on the mode inertia for non-
radial modes, where we divide amplitudes by the square-root of the
Q-factor (ratio of the mode inertia relative to the £ = 0 inertia at the
corresponding frequency, see also equation 10).

Concerning frequency uncertainties for the modes deemed mea-
surable from the above procedure we use a polynomial relation
between the frequency uncertainties in units of vy, of £ = 0 modes
from the LEGACY data and the corresponding relative frequency
away from Vy,x. At Vinax the typical minimal uncertainty is found to be
of the order ~7.6 x 107> vyax, Which for a vy, = 2000 Hz star cor-
responds to o, ~ 0.15 uHz. Away from v, the typical uncertainties
increase by factors of 5 (v ~ —0.4 vpax) to 10 (v ~ +0.4 vyax).

With the observational uncertainties in all relevant observational
quantities defined, the validation procedure was designed as follows.
We selected 443 models from the grid to be used as artificial targets
mimicking the observed distribution in large frequency separation
of the Kepler main-sequence and subgiant sample of Lund et al.
(2017; see Fig. 7). This sample reaches values of Av >~ 20uHz,
which we extended in same proportion as the last bin to Av =~
10Hz to encompass the base of the RGB. We considered various
sets of input quantities (see Table 2) and generated the synthetic data
by drawing a sample from a normal Gaussian distribution with the
model value of the relevant parameter as the mean and a standard
deviation given by the observational uncertainty described above. In
that manner, each quantity in the input set does not exactly correspond
to the model value but it has been perturbed by typical observational
uncertainties. This is the closest we can simulate observations of a
real star, under the assumption that the underlying grid of models is
a true representation of the physics at play in stellar evolution.

The distribution of the recovered fractional values in density,
radius, mass, and age for the main-sequence artificial targets are
shown in Fig. 8 (equivalent figures for the subgiant and RGB targets
are given in Appendix B). As we can see, the inferred properties
are generally in good agreement with the corresponding underlying
input parameters. The inclusion of asteroseismic data dramatically
improves the quality of the recovered properties compared to the
cases where only atmospheric parameters are used.

As is also visible in Fig. 8, the inferred properties do not match
exactly with the underlying model values. To ensure that this is a
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Table 2. Fractional uncertainties in stellar properties across evolutionary phases determined for different sets of input. The
values are calculated as the average of the 16th and 84th percentiles normalized by the derived median. See the text for

details.
Phase Input set Splp SR/R SMIM SAge/Age
MS Tetr, [Fe/H], log (g) 0.3223 0.1179 0.0558 0.2880
Av > 60 Tet, [Fe/H], Av, vmax 0.0101 0.0124 0.0364 0.1620
(185 stars) Tetr, [Fe/H], v; 0.0005 0.0010 0.0029 0.0177
SG Tetr, [Fe/H], log (g) 0.3290 0.1356 0.0947 0.3262
60 < Av < 30 Tefr, [Fe/H], Av, vmax 0.0098 0.0142 0.0393 0.1175
(178 stars) Tetr, [Fe/H], v; 0.0001 0.0002 0.0005 0.0009
RGB Tetr, [Fe/H], log (g) 0.3240 0.1283 0.1291 0.4635
Av <30 Tet, [Fe/H], Av, vimax 0.0101 0.0213 0.0592 0.2227
(80 stars) Tetr, [Fe/H], v; 0.0009 0.0075 0.0217 0.0937
Teti, [Fe/H], Av, APy 0.0097 0.0313 0.0915 0.3447
Full Sample Tetr, [Fe/H], log (g) 0.3253 0.1269 0.0847 0.3350
Tetr, [Fe/H], Av, vmax 0.0099 0.0147 0.0417 0.1551
Tefr, [Fe/H], v; 0.0004 0.0018 0.0053 0.0247

result of finite precision of the data, we reduced the assumed standard
uncertainties by a factor of 10~ and repeated the above validation.
BASTA recovered the original model in 440 out of 443 cases, and
in 3 cases we pick the model just before or after which is expected
due to the perturbation to the model parameters that defines the input
observables. These results confirm that the differences are due to
finite data precision and are not an artefact of combined effects of
priors and weights.

Since we have determined stellar properties assuming typical
observed uncertainties in various sets of input, we can use the
BASTA results to quantify the statistical uncertainty obtained across
evolutionary phases for various sets of input. Table 2 summarizes the
results, where we have listed for each stellar property the average
of the 16th and 84th percentiles normalized by the median derived
by BASTA. It is clear from the table how the accuracy increases
as asteroseismic quantities are included in comparison to just the
spectroscopic input, as well as the additional gain from including
individual frequencies. This exercise also shows that, if our stellar
models are a good representation of the observed stars, statistical
uncertainties below the 10 per cent level in age are within reach
thanks to the advent of asteroseismology.

Another interesting point arising from the validation is the ex-
tremely high precision in the recovered stellar properties for subgiant

stars when individual oscillation frequencies are fitted. As mixed-
modes evolve rapidly and are very sensitive to the conditions in the
stellar core, such a small statistical uncertainty is not surprising as
long as the code is capable of identifying the correct underlying
model. We remind the reader that in subgiant stars the number
of model non-radial oscillation frequencies between two radial
modes exceeds the number of observed frequencies as their visibility
depends in the inertia. The procedure we described in Section 4.1.5
can successfully identify which mixed-modes should be visible and
thus avoids an artificial increase in the statistical uncertainties due
to missidentified modes. We include a few representative Echelle
diagrams from the validation procedure in Appendix B, where the
accuracy of the algorithm is demonstrated.

7 NOTES ABOUT CODE DEVELOPMENT AND
CONTRIBUTING

The core developers of BASTA have customized the code following
the needs of our own research fields. As the code begins to be used by
scientists around the world, we expect that the inclusion of additional
features will become highly desirable. Naturally the amount of
proposed improvements to the code will increase proportionally to
the number of users, and it will go beyond the available time of the
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Figure 8. Distribution of normalized differences between derived stellar properties with BASTA and the underlying stellar model for the main-sequence targets.

Values are computed as (Solution-Model) or Model. See the text for details.

core developers to implement them and maintain a stable version of
BASTA.

For these reasons we rely on the git version-control system
and the GitHub repository® to encourage users to develop and
share their contributions with the rest of the users. New features,
additions, or extensions should be in separate branches or forks so
that they do not need the direct involvement of the core developing
team. Once the new additions are completed, the code developers
will be happy to handle the pull request and make it part of the
stable version of BASTA after proper testing has been completed.
A more detailed contribution guide can be found on the GitHub
repository along with the installation instructions and a tracker for
issues/bugs/suggestions. We encourage the users to follow the project
on GitHub (please ‘watch’ and select ‘custom or releases’ as a
minimum) to get notifications and updates on new developments.
We welcome any participation including pull requests.

8 CONCLUDING REMARKS

‘We have introduced the public version of the BASTA, an open-source
code that determines stellar properties using a set of observables

Shttps://github.com/BASTAcode/BASTA
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and a grid of stellar models or isochrones. It is flexible in its input
and can combine a large number of spectroscopic, photometric,
astrometric, and asteroseismic input to extract properties of stars
under a statistically robust Bayesian scheme. The large number of
functionalities included in BASTA, combined with the various sets
of publicly available or custom-computed grids of stellar models or
isochrones, make it the most versatile pipeline for stellar analysis
currently available.

We have thoroughly described the type of input that can be given to
retrieve stellar properties, and discussed the assumptions made when
predicting these quantities from the underlying grids of evolutionary
models. We have performed an extensive validation test that confirms
the reliability of BASTA in determining accurate stellar properties,
and use these results to quantify the typical statistical uncertainties
obtained for various combinations of fitting parameters. Our results
show that asteroseismic ages with statistical uncertainties below the
10 per cent level are achievable for data sets of the quality obtained
by the Kepler satellite, and the only limiting factor is the reliability
of our stellar evolution and pulsation models.

We hope to have provided the community with a useful analysis
tool for stellar properties, which is specifically designed to meet
the challenges of large inhomogeneous data sets available in the era
of large-scale stellar surveys. Its capability of combining a wide
range of input data makes it an invaluable tool to fully exploit
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the potential of current stellar catalogues (by simultaneously fitting
e.g. TESS, APOGEE, 2MASS, and Gaia eDR3 data), and its future
developments will make it ready for the challenge of the next data
deluge from surveys such as PLATO 2.0 (Rauer et al. 2014), WEAVE
(Dalton et al. 2014), 4AMOST (de Jong et al. 2019), and the Legacy
Survey of Space and Time at the Vera Rubin Observatory (LSST;
Ivezi¢ et al. 2019).
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APPENDIX A: PHOTOMETRIC SYSTEMS

Table Al gives a list of the currently available synthetic colours for
all tracks and isochrones used with BASTA. Additional sets are added
as new passbands become available.

2202 1890190 /Z uo Jasn yisAyd ayosiisaliaielixy pun yisAydonsy Jni imnsuj-youe|d-xeN Aq | 6E£88E9/PYEY/S/60G/2101e/seiuw/woo dno olwapese//:sdiy Woll papeojumo(]


http://dx.doi.org/10.1088/0004-637X/760/1/32
http://dx.doi.org/10.3847/1538-4357/aa75ca
http://dx.doi.org/10.3847/1538-3881/ab1488
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1086/177381
http://dx.doi.org/10.3847/1538-4357/ab042c
http://dx.doi.org/10.1093/mnras/sty2238
http://dx.doi.org/10.1051/0004-6361/201015441
http://dx.doi.org/10.1093/mnras/stz1980
http://dx.doi.org/10.1093/mnrasl/sly152
http://dx.doi.org/10.1086/174790
http://dx.doi.org/10.1051/0004-6361/201116789
http://dx.doi.org/10.1086/591667
http://dx.doi.org/10.1093/mnras/sty2760
https://books.google.dk/books?id=CP9BAAAAIAAJ
http://dx.doi.org/10.1046/j.1365-8711.2001.04022.x
http://dx.doi.org/10.1093/mnras/stw2160
http://dx.doi.org/10.3847/1538-4357/835/2/172
http://dx.doi.org/10.3847/1538-3881/ab5280
http://dx.doi.org/10.1038/ncomms11201
http://dx.doi.org/10.1086/499158
http://dx.doi.org/10.1051/0004-6361/201834051
http://dx.doi.org/10.1051/0004-6361:20011072
http://dx.doi.org/10.1051/0004-6361/201118495
http://dx.doi.org/10.1088/0004-637X/782/1/18
http://dx.doi.org/10.1051/0004-6361/201015442
http://dx.doi.org/10.1111/j.1365-2966.2011.19859.x
http://dx.doi.org/10.1086/190629
http://dx.doi.org/10.1051/0004-6361/201117352
http://dx.doi.org/10.1051/0004-6361/201118519
http://dx.doi.org/10.1051/0004-6361/201425039
http://dx.doi.org/10.1093/mnras/sty1442
http://dx.doi.org/10.1093/mnras/stz2979
http://dx.doi.org/10.1051/0004-6361/202038300
http://dx.doi.org/10.1111/j.1365-2966.2004.08487.x
http://dx.doi.org/10.1088/0067-0049/192/1/3
http://dx.doi.org/10.1088/0067-0049/208/1/4
http://dx.doi.org/10.1088/0067-0049/220/1/15
http://dx.doi.org/10.1051/0004-6361/201832867
http://dx.doi.org/10.3847/1538-4357/abd4d5
http://dx.doi.org/10.1093/mnras/sty330
http://dx.doi.org/10.1051/0004-6361/200913038
http://dx.doi.org/10.1007/s10686-014-9383-4
http://dx.doi.org/10.1051/0004-6361/201527987
http://dx.doi.org/10.1093/mnras/stz031
http://dx.doi.org/10.1093/mnras/stx120
http://arxiv.org/abs/1808.07556
http://dx.doi.org/10.1051/0004-6361:20031318
http://dx.doi.org/10.1051/0004-6361/201117863
http://dx.doi.org/10.1093/mnrasl/sly173
http://dx.doi.org/10.1093/mnras/sty319
http://dx.doi.org/10.1086/173105
http://dx.doi.org/10.1086/145971
http://dx.doi.org/10.1088/0004-637X/737/2/103
http://dx.doi.org/10.1086/305772
http://dx.doi.org/10.3847/1538-4365/aa97df
http://dx.doi.org/10.3847/0004-637X/822/1/15
http://dx.doi.org/10.1051/0004-6361/201015847
http://dx.doi.org/10.1088/0004-637X/757/1/99
http://dx.doi.org/10.1088/0004-637X/769/2/141
http://dx.doi.org/10.1093/mnras/stv1388
http://dx.doi.org/10.1093/mnras/sty150
http://dx.doi.org/10.1051/0004-6361/201935843
http://dx.doi.org/10.3847/2041-8213/ab6443
http://dx.doi.org/10.1016/0041-5553(67)90144-9
http://dx.doi.org/10.1051/0004-6361/201834188
http://dx.doi.org/10.1051/0004-6361/201937275
http://dx.doi.org/10.1088/2041-8205/765/2/L41
http://dx.doi.org/10.3847/0004-637X/832/2/133
http://dx.doi.org/10.1093/mnras/stz2222
http://dx.doi.org/10.1051/0004-6361/201731512
http://dx.doi.org/10.1086/190678
http://dx.doi.org/10.1086/173695
http://dx.doi.org/10.1051/0004-6361/201322210
http://dx.doi.org/10.1051/0004-6361/201424686
http://dx.doi.org/10.1088/0004-637X/808/2/126
http://dx.doi.org/10.1093/mnras/sty1390
http://dx.doi.org/10.1093/mnras/sty1783
http://dx.doi.org/10.1038/nature16168
http://dx.doi.org/10.1093/mnras/stz2272
http://dx.doi.org/10.1088/0004-637X/790/2/138
http://dx.doi.org/10.3847/1538-4357/aa5da7
http://dx.doi.org/10.1093/mnras/sty3374
http://dx.doi.org/10.1086/190731
http://dx.doi.org/10.3847/1538-4357/ab232e
http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.1051/0004-6361/201527259
http://dx.doi.org/ 10.1007/s10509-007-9606-5
http://dx.doi.org/10.1088/0004-637X/743/2/161
http://dx.doi.org/10.1088/2041-8205/751/2/L36
http://dx.doi.org/10.1093/mnras/stt802
http://dx.doi.org/10.1088/0004-6256/140/6/1868
http://dx.doi.org/10.3847/1538-4365/aaaf74

Table A1. Available photometric systems.
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Photometric system Calibration Passbands Zero-points
UBVRIJHKLM Vegamag Bessell & Brett (1988); Bessell (1990) Bessell, Castelli & Plez (1998)
HST-WFPC2 Vegamag SYNPHOT SYNPHOT
HST-WFC3 Vegamag SYNPHOT SYNPHOT
HST-ACS Vegamag SYNPHOT SYNPHOT

2MASS Vegamag Cohen, Wheaton & Megeath (2003) Cohen et al. (2003)
DECam ABmag DES collaboration 0

Gaia DRI Vegamag Jordi et al. (2010) Jordi et al. (2010)

Gaia DR2 Vegamag Maiz Apellaniz & Weiler (2018) Maiz Apellaniz & Weiler (2018)
Gaia eDR3 Vegamag Gaia Collaboration (2021) Gaia Collaboration (2021)
JWST-NIRCam Vegamag JWST User Documentation SYNPHOT

SAGE ABmag SAGE collaboration 0

Skymapper ABmag Bessell et al. (2011) 0

Sloan ABmag Doi et al. (2010) Dotter et al. (2008)
Stromgren Vegamag Maiz Apelldniz (2006) Maiz Apellaniz (2006)
VISTA Vegamag ESO Rubele et al. (2012)
Tycho+Hipparcos ABmag Bessell & Murphy (2012) Bessell & Murphy (2012)
Kepler ABmag Kepler collaboration 0

TESS ABmag TESS collaboration 0

WISE W1 & W2 Vegamag WISE Collaboration Wright et al. (2010)

APPENDIX B: VALIDATION FIGURES FOR
SUBGIANT AND RGB TARGETS

the validation procedure showing the performance of the frequency

matching algorithm described in Section 4.1.5 in the presence of

mixed-modes.

We include in this section the validation figures for the subgiant (Fig.
B1) and RGB targets (Fig. B2), equivalent to Fig. 8. We also show
a few representative Echelle diagrams in Figs B3-B6 obtained in
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Figure B1. Same as Fig. 8 for the targets in the subgiant phase.
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Figure B2. Same as Fig. 8 for the targets in the RGB phase.
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Figure B3. Echelle diagram of a subgiant validation star of Av ~ 60uHz. /
Figure BS. Echelle diagram of a subgiant validation star of Av >~ 40Hz.
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Figure B4. Echelle diagram of a subgiant validation star of Av >~ 50Hz.
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