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ABSTRACT

The extent of mixed regions around convective zones is one of the biggest uncertainties in stellar evolution. One-dimensional over-
shooting descriptions introduce a free parameter ( fov) that is, in general, not well constrained from observations. Especially in small
central convective regions, the value is highly uncertain due to its tight connection to the pressure scale height. Long-term multi-
dimensional hydrodynamic simulations can be used to study the size of the overshooting region as well as the involved mixing
processes. Here we show how one can calibrate an overshooting parameter by performing two-dimensional Maestro simulations of
zero-age-main-sequence stars ranging from 1.3 to 3.5 M�. The simulations cover the convective cores of the stars and a large fraction
of the surrounding radiative envelope. We follow the convective flow for at least 20 convective turnover times, while the longest
simulation covers 430 turnover time scales. This allows us to study how the mixing as well as the convective boundary itself evolve
with time, and how the resulting entrainment can be interpreted in terms of overshooting parameters. We find that increasing the
overshooting parameter fov beyond a certain value in the initial model of our simulations changes the mixing behaviour completely.
This result can be used to put limits on the overshooting parameter. We find 0.010 < fov < 0.017 to be in good agreement with
our simulations of a 3.5 M� mass star. We also identify a diffusive mixing component due to internal gravity waves that is active
throughout the convectively stable layer, but it is most likely overestimated in our simulations. Furthermore, applying our calibration
method to simulations of less massive stars suggests a need for a mass-dependent overshooting description where the mixing in terms
of the pressure scale height is reduced for small convective cores.
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1. Introduction

The treatment of turbulent convection is still the biggest uncer-
tainty in the calculation of stellar models. Modern stellar evo-
lution codes usually apply the classical mixing-length-theory
(MLT; Böhm-Vitense 1958) to allow for a treatment of this
intrinsically three-dimensional problem in one-dimensional stel-
lar evolutionary calculations. MLT provides an estimate for the
convective velocities inside convective zones. By construction,
this velocity drops instantly to zero at a convective boundary.
In other words, a mass element moving towards such a bound-
ary is assumed to stop instantly, although only the acceleration
vanishes physically. A more natural way would be to assume
that any mass element that crosses the boundary is slowed down,
eventually stopped, and finally returned to the convective zone
(CZ) by the buoyancy force. Consequently, matter beyond the
CZ boundary is mixed into the CZ. Simple energy estimates
indicate that, in the case of convective stellar cores, this is a
negligible, spatially unresolvable effect (Lattanzio et al. 2017).
Nevertheless there is evidence from eclipsing binaries (e.g.,
Ribas et al. 2000; Valle et al. 2016), globular clusters (e.g.,
Aparicio et al. 1990; Bertelli et al. 1992), and asteroseismology
(e.g., Deheuvels et al. 2016) to suggest that a region of signifi-
cant spatial extent is well mixed around convective cores.

Therefore one-dimensional stellar evolution codes consider
well mixed overshooting regions around CZ. The width of the

overshooting region is usually parametrized by a single param-
eter fov, defined as a fraction of the pressure scale height Hp.
Attempts to calibrate fov from observations often involve uncer-
tainties that are of the same order of magnitude as the parameter
itself. Moreover, stellar parameters of eclipsing binaries can usu-
ally be explained by stellar models without overshooting (e.g.,
Pols et al. 1997; Higl & Weiss 2017). A more accurate estimate
of fov is provided by space born observations of stellar pulsa-
tions, which allow one to probe the deep interior of stars by aster-
oseismology (Moravveji et al. 2016). Pedersen et al. (2018) have
shown that the imprints of different mixing descriptions at con-
vective cores have a potentially observable influence on astero-
seismic properties. However, only a small sample of stars with
sufficiently accurate observations exist so far.

Calibrating fov with observations is always model-
dependent, while multidimensional hydrodynamic simulations
can give first principle estimates of mixing processes near a con-
vective boundary and about the extent of the overshooting layer.
Simulations of convective envelopes by Freytag et al. (1996)
using the ’star in a box’ idea found that convective boundary
mixing in thin envelopes of A stars can be described by a diffu-
sive process, where the diffusion constant decays exponentially
with distance from the CZ. This form of overshooting is now
applied in most codes for all convective boundaries.

Envelope convection covers several pressure scale heights,
which makes pressure fluctuations an important driving
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mechanism for the transport of kinetic energy and enthalpy
(Viallet et al. 2013). Interior CZ, on the other hand, are
shallower. Hence, the contribution of pressure fluctuations is
reduced and buoyancy fluxes dominate the convective motions.
Whether the same overshooting description can be applied in
both cases is unclear, but least one would expect that shal-
low convection should be described using a different overshoot-
ing parameter. Furthermore, stellar interior convection zones are
dominated by low Mach number flows, which require a special
treatment in hydrodynamic simulations in order to resolve all rel-
evant timescales (Miczek et al. 2015). Some groups circumvent
this problem by increasing the energy input into their simula-
tions to increase the Mach number (e.g., Meakin & Arnett 2007;
Cristini et al. 2017; Horst et al. 2020), while others modify the
hydrodynamic equations such that sound waves are prohibited
(e.g., Rogers et al. 2013; Almgren et al. 2006a).

One goal of multi-D simulations is to provide a more
accurate description of convection that can be used in one-
dimensional codes. In the case of convective envelopes it was
recently shown (Jørgensen et al. 2018; Mosumgaard et al. 2020)
that combining the mean stratification of three-dimensional
models (Magic et al. 2013) with the interior structure of one-
dimensional models improves the agreement with asteroseismic
observations.

Terrestrial atmospheric sciences often describe the mixing at
convective boundaries by entrainment models, where the con-
vective region grows constantly with time (e.g., Mellado 2017;
Stevens 2002). Meakin & Arnett (2007) compared simulations
of interior convection zones during oxygen burning with such
entrainment models, and found that the mixing across the con-
vective boundary is also well described by entrainment in the
stellar context.

This was confirmed for carbon burning shells in Cristini
et al. (2017), and for core hydrogen burning in Gilet et al.
(2013). Staritsin (2013) tested the entrainment model in one-
dimensional stellar evolution models and found that it signifi-
cantly improves the consistency of one-dimensional models with
observations. However, they had to use entrainment rates that are
orders of magnitude smaller than what is found in hydrodynamic
simulations in order to prevent the whole star from becoming
convective.

In this work we use the low Mach number hydrodynamic
code Maestro (Almgren et al. 2006a,b, 2008; Nonaka et al. 2010)
to demonstrate that one can calibrate the overshooting parameter
of a one-dimensional mixing description on the main-sequence
with the help of long-term hydrodynamic simulations in com-
bination with consistent one-dimensional models. The paper is
organized as follows: in Sect. 2 we describe the properties of
Maestro and of our initial models, followed by an analysis of an
intermediate mass star in Sect. 3. This section also contains a
description of our calibration method. In Sect. 4 we extend the
analysis to stars of smaller masses, and give some conclusions
in Sect. 5.

2. Numerical setup

In order to make predictions about the mixing at convective
boundaries it is necessary to follow convective motions over sev-
eral convective turnover times in a quasi steady state. Getting to
such a steady state might take another few turnover timescales.
MLT predicts that on the main-sequence the sound crossing
timescale is roughly four orders of magnitude smaller than the
convective timescale, which is limiting the usage of explicit
hydrodynamic codes in this regime, since numerical stability

requires one to resolve the sound crossing time. Maestro over-
comes this problem by removing sound waves from the Euler
equations, thereby allowing for timestep sizes that resolve the
advection timescale. For the simulations discussed in this work
the resulting timesteps are two orders of magnitude larger than in
fully compressible explicit codes. With Maestro we could there-
fore cover several hundred convective turnovers in this low Mach
number regime with our two-dimensional simulations.

2.1. Maestro

Maestro was introduced in Almgren et al. (2006a,b, 2008) and
later extended by an adaptive mesh refinement in Nonaka et al.
(2010). It uses a generalized version of the pseudo incompress-
ible approximation (Durran 1989) to remove sound waves from
its simulations. This method has the advantage that it allows
one to follow the evolution of large scale density and temper-
ature perturbations, which is not the case when using the anelas-
tic approximation. Only pressure fluctuations are assumed to be
small, and the velocity field U has to fulfil the constraint

∇ · (β0U) = β0S , (1)

where β0 depends on the background density ρ0 and pressure P0,
and is given by

β0(r, t) = ρ0(0, t) exp
(∫ r

0

1
〈Γ1〉P0

∂P0

∂r′
dr′

)
. (2)

Here 〈Γ1〉 is the angularly averaged value of Γ1 =
d(log P)/d(log ρ) at constant entropy, where ρ and P are the den-
sity and pressure, respectively.

The quantity S in Eq. (1) represents the source terms of the
system. As we do not follow any compositional changes due to
nuclear reactions in our simulations, the source term reduces to

S = χHext, (3)

where Hext is the energy released by nuclear reactions, and
χ = pT /(ρcp pρ) with pT = ∂P/∂T |ρ, pρ = ∂P/∂ρ|T , and
the specific heat at constant pressure cp = ∂h/∂T |p. Here h is
the specific enthalpy.

Incorporating Eq. (1) into the Euler equations one can define
a set of equations for density ρ, velocity U and specific enthalpy
h (for details of this derivation see Almgren et al. 2006b)

∂ρ

∂t
+ ∇ρU = 0 (4)

ρ
∂(U)
∂t

+ ρU∇U =
β0

ρ
∇
π

β0
−

(ρ − ρ0)
ρ

ger (5)

ρ
Dh
Dt
−

DP
Dt

= ∇(κ∇T ) + ρHext (6)

∇β0U = β0S , (7)

where D/Dt = ∂t +U ·∇ is the Lagrangian derivative, π = P−P0
the deviation of the pressure P from the background pressure
P0, and g the gravitational acceleration acting in radial direction
defined by the unit vector er.

Different from the equation set derived in Almgren et al.
(2006b) we include an additional contribution to the enthalpy
equation (Eq. (6)) from radiative diffusion determined by the
conductivity κ and the gradient of temperature T . Moreover, as
Vasil et al. (2013) showed that the first term on the right hand
side of Eq. (5) as given in Almgren et al. (2006b) does not con-
serve the energy of the system, we use here the corrected term
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as proposed by Vasil et al. (2013) and included into Maestro by
Jacobs et al. (2016).

This set of equations does not allow for sound waves to prop-
agate. Hence, we choose a timestep size ∆t according to the
advection velocity u and the cell width ∆x

∆t <
∆x
u
. (8)

Maestro uses a fractional step method, where first density,
enthalpy, and velocity are advected, without taking the velocity
constraint into account. Then one enforces Eq. (1), which also
sets the updated pressure (see Bell et al. 2002). The advection
step is done using a two step predictor-corrector (PC) scheme.
Details of this scheme, including a flow chart, can be found in
Nonaka et al. (2010). For our simulations we found that this
scheme causes unrealistically large velocities in stably strati-
fied regions. These velocities are caused by an insufficient time
resolution of internal gravity waves (IGW), which evolve on a
timescale of the Brunt-Vaisala frequency N defined as

N2 = −
gξT

ξρHp

(
∇ad − ∇ −

ξµ

ξT
∇µ

)
, (9)

where ∇ad and ∇ are the adiabatic and actual temperature gradi-
ent, and where ∇µ = d ln µ/d ln P is the molecular weight gra-
dient. The quantities ξρ = ∂ ln P/∂ ln ρ|T,µ, ξµ = ∂ ln P/∂ ln µ|ρ,T ,
and ξT = ∂ ln P/∂ ln T |ρ,µ are obtained from the equation of state
(EOS).

The frequency of an IGW is given asω = N |k⊥| /
(∣∣∣k‖ + k⊥

∣∣∣)
(e.g., Sutherland 2010), where k⊥ and k‖ are the wave vectors
perpendicular and parallel to the direction of gravity, respec-
tively. The corresponding phase velocity of an IGW uph =

(ω/ |k|2) · k is larger than its group velocity ugr = ∇k ω, where
k = k‖ + k⊥ and ∇k is the gradient operator with respect to k.
Accordingly, we can use the maximum phase velocity vph,max =
λN/2π of an IGW of wavelength λ as an upper limit for its prop-
agation speed, and hence substitute the timestep criterion Eq. (8)
by

∆t <
∆x2π
λN

, (10)

to numerically resolve the time evolution of IGW.
Assuming that IGW have typical wavelengths of a pressure

scale height, one ends up with timesteps that are only a fac-
tor ∼5–10 larger than the usual CFL timestep which is required
to resolve sound waves. Fully resolving IGW in time therefore
requires one order of magnitude more computing time with Mae-
stro. This prevents us from performing simulations up to hun-
dreds of convective turnover timescales with our computational
resources. However, such simulations are needed to estimate the
extent of the mixed region.

The maximum frequency of IGW allowed by N is of the
order of several hundred µHz, while observations show us that
the dominant component of IGW is in the low frequency regime
(e.g., Bowman et al. 2019) up to several tens of µHz. Angu-
lar momentum transport by IGWs is also dominated by low
frequency waves (Aerts et al. 2019). Aerts et al. (2010) also
observed g-mode periods between 0.5–3 days, corresponding to
4−20 µHz. Theoretical wave spectra of IGWs (Lecoanet et al.
2014) also predict IGW frequencies predominantly below the
convective turnover frequency (which is well resolved in our
simulations). While the last statement is challenged by the sim-
ulations of Edelmann et al. (2019), who found a non-negligible

start of timestep

compute heating rate: 
dE/dt

get advection velocities: 

 do the advection: 

update velocities: 

update themodynamics: 

UMAC

dρ/dt, dX/dt, dh/dt

dU/dt

update runge kutta: 
ρ,X,h,U*,T

update Source: 

S

T,S

project velocities: 

compute new timestep:

U

dt

Fig. 1. Flow chart of the modified time advancement algorithm. The
computed or updated quantities of each sub step are given in blue.

contribution from frequencies above the turnover frequency, the
wave frequencies still remain far below the mHz limit. We there-
fore expect that high frequency IGW do not play a significant
role in the mixing and that the benefit of long simulations would
outweigh the downside of unresolved high frequency IGW.

We therefore decided to perform our simulations with
timesteps according to Eq. (8) and to mitigate the problem of
spurious velocities in the stable layer by a higher order, multi-
step scheme for the time integration. Bell et al. (2002) showed
that it is possible to exchange the time advancement before the
final projection by any other method. We replaced the PC method
with a 4-step Runge-Kutta (RK) integrator. A flow chart of this
new method is depicted in Fig. 1, where we give in blue the
updated quantity in each sub-step.

During the RK loop we need to introduce two additional
velocities in the scheme. U∗ is the updated velocity in each RK
step, computed using the reconstructed velocity at cell interfaces
UMAC, which is forced to fulfil the velocity constraint (Eq. (1)),
while U∗ does not do this in general.

In order to demonstrate the capability of the new time inte-
gration scheme, we set up a stable atmosphere with several g-
mode cavities. We use a constant gravity and a linearly declining
density, modulated by a sine function (avoiding density inver-
sions). After integrating the hydrostatic equilibrium (HSE), we
end up with a stratification that has several peaks in the Brunt-
Vaisala-Frequency (see black line in Fig. 2).
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Fig. 2. Horizontally averaged profiles of a constructed stable atmo-
sphere. The black solid line shows the initial N2 profile. Red lines give
the velocity magnitude profile after 3 105 s for the predictor-corrector
scheme (dashed) and the Runge-Kutta integrator (solid), respectively.

A stable atmosphere should not develop significant veloci-
ties, yet Fig. 2 shows that the predictor-corrector method pro-
duces large velocities. After 3 105 s the profile exhibits a peaked
velocity profile. The peaks coincide with the N2 cavities and they
increase in amplitude as N2 increases. The reason for the peaks
is the presence of numerical artefacts that act as high frequency
gravity waves. Such artefacts will be trapped in the g-mode cavi-
ties and pile up over time until the waves break. Breaking gravity
waves can develop a mean flow as has been shown in previous
studies (e.g., Couston et al. 2018). The drop in velocity magni-
tude after the last peak in N2 is due to a velocity damping that is
applied to reduce boundary effects.

In test simulations of convective boundary mixing, we found
that this numerical phenomenon can create mean flows of a
velocity magnitude similar to that of the convective motions. The
RK integrator, on the other hand, smoothes the numerical arte-
facts such that we do not see this phenomenon any longer. The
velocities get reduced by more than one order of magnitude (see
red line in Fig. 2), and are now significantly smaller than the
expected convective velocities.

Maestro is a purely Cartesian code with a one-dimensional
background state. In order to compute spherical stars it is there-
fore necessary to adjust the scheme, such that the background
state is evaluated consistently with the domain centred dataset.
Nonaka et al. (2010) proposed the necessary algorithm to guar-
antee this in three-dimensional simulations. We extended their
scheme to allow also for two-dimensional simulations of spher-
ical datasets. The resulting domain is a planar slice through the
star containing its centre.

2.2. Microphysics

In the Maestro simulations we use the Helmholtz equation of
state (Timmes & Swesty 2000). Therefore our equation of state
includes effects of radiation, ionization, degeneracy of electrons
and Coulomb corrections.

The nuclear heating term is based on hydrogen burning equi-
librium rates for the PP and the CNO cycle (Kippenhahn et al.
2012). We followed the evolution of three independent species
(H, He, CNO) during the simulation, CNO species representing
the total abundance of elements involved in the CNO cycle. Its
atomic weight and charge is calculated according to the ratio of
solar abundances of C, N, and O. The equilibrium rates repro-

duce the nuclear energy generation of the one-dimensional mod-
els within a factor of two.

In contrast to most other simulations of convective bound-
ary mixing (e.g., Meakin & Arnett 2007; Cristini et al. 2017) we
do not increase our energy production by an additional boost-
ing factor in any of our simulations. This is possible because the
timestep size of Maestro increases as the flow velocity decreases,
and hence the number of convective turnover times that one
can simulate does not depend on the absolute value of the flow
velocity.

We also include energy transport by radiative diffusion using
the analytic stellar opacities provided by Timmes (2000), which
combine analytic expressions for hydrogen-free and hydrogen-
containing compositions by Iben (1975) and Christy (1966),
respectively. The opacities also contain contributions from
Compton-scattering based on Weaver et al. (1978).

2.3. Initial models

We obtain our initial models with the one-dimensional stellar
evolution code Garstec (Weiss & Schlattl 2008), and evolve them
until the beginning of core hydrogen burning when less than 1%
of hydrogen has been consumed. This leads to a very shallow
jump in the hydrogen profile at the boundary of the convectively
mixed core. Therefore, changes in the hydrogen profile can be
seen quickly. Consequently, this quick reaction time of the con-
ditions at the boundary also allows us to study the time evolution
of the mixing.

For our calibration method (see Sect. 3.4) we need initial
one-dimensional models computed with and without convective
overshooting. Garstec implements overshooting as a diffusive
process according to Freytag et al. (1996), where a diffusion con-
stant D is computed based on the pressure scale height Hp and
the distance to the convective boundary cz as

D = D0 exp
(
−

2cz

fovHp

)
, (11)

with fov being the overshooting parameter and D0 the diffusion
constant at the convective boundary. In Garstec D0 is evaluated
inside the CZ at some distance to the boundary, since MLT pre-
dicts that the velocity as well as the diffusivity vanish right at the
convective boundary.

Our models that include overshooting start from the same
initial conditions as the non-overshooting ones and are self-
consistently evolved until they reach a similar central hydrogen
content as the models without overshooting. As a consequence
of our self-consistent approach and the fact that we assume a
radiative temperature stratification in the overshooting region,
we find that the size of the convective core according to the
Schwarzschild criterion in the one-dimensional models increases
slightly as we increase the overshooting parameter. The size of
the mixed core, on the other hand, increases at a much large rate.

Garstec provides us with thermally relaxed models on a
Lagrangian grid. In order to map these into Maestro, we need
to interpolate the model onto an Eulerian grid. The interpolation
introduces slight deviations from HSE in the mapped models.
Since Maestro expects its background state to be in perfect HSE,
it is necessary to reintegrate the equation of HSE:

∂P
∂r

= −gρ. (12)

During this reintegration, we also switch from the OPAL equa-
tion of state used in Garstec to the Helmholtz EOS in Maestro,
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which slightly modifies the thermal structure of the models, and
thus no longer guarantees thermal equilibrium. MLT predicts the
temperature gradient in the CZ of our models to correspond to
a small overadiabaticity of the order of 10−8. Because overadi-
abacity acts as an energy reservoir for the convective flow in
a hydrodynamic simulation, a small change in the temperature
stratification can increase the internally stored energy signifi-
cantly or remove the convective core entirely. To keep the sim-
ulations energetically as close as possible to the initial models,
we take the MLT temperature gradient ∇mlt into account while
recalculating HSE. For that purpose we substitute the tempera-
ture gradient ∇ by ∇mlt, so that

∇ − ∇ad → ∇mlt − ∇ad := ∇ex, (13)

where ∇ex is the superadiabaticity.
We achieve this requirement by simultaneously solving

Eqs. (12) and (13), which also ensures that the location of the
convective boundary does not change during the reintegration
as has been shown by Edelmann et al. (2017). In Fig. 3 we
demonstrate the effect of this integration method. Models that are
reintegrated while keeping the temperature constant (red dotted
line) lead to a temperature stratification that is stable in the very
centre of the convective core and largely superadiabatic towards
the convective boundary. Keeping the overadiabaticity constant
instead (red solid line), we achieve a much more consistent tem-
perature stratification. With this procedure we get a HSE with a
relative accuracy of 10−5 and a temperature gradient that is only
5 10−5 larger than the adiabatic temperature gradient in the CZ.
While this value is still three orders of magnitude larger than
that predicted by MLT (red dashed line), it is sufficiently small
for the purpose of our simulations. In Fig. 3 we also display the
density profile before (dashed black line) and after reintegration
(solid black line). The change in the density profile introduced
by the reintegration is within the thickness of the plotted line,
and hence can be neglected.

3. An intermediate mass star

An intermediate mass star on the main-sequence has a mass
between ≈1.2 M� and ≈8 M�, a convective core, and a radiative
envelope. Such stars are not massive enough to evolve all the
way to core collapse and will end their life as a carbon-oxygen
white dwarf. Here we discuss two-dimensional simulations of
the convective core in a 3.5 M� star with a solar like composi-
tion of X = 0.710, Y = 0.276, and CNO = 0.014. We chose
this mass, because it has a convective core large enough to avoid
problems with our overshooting description (see Sect. 2.3). Inter-
mediate mass stars are also preferred targets for observers to
study IGW. Using the observed frequencies of IGW, originating
at the boundary of the convective core, it is possible to estimate
the sizes of the mixed cores (Deheuvels et al. 2016; Moravveji
et al. 2016).

Our simulations cover the complete convective core on a
Cartesian grid as well as the star’s stable layer up to roughly 50%
of the stellar radius. This corresponds to a total of six pressure
scale heights and five density scale heights (see Fig. 3). Gilet
(2012) showed that mapping and averaging errors in the corners
of the Cartesian grid can lead to spurious velocities that quickly
grow in amplitude. To reduce this influence we apply a velocity
damping in the outer parts of the computational domain follow-
ing Almgren et al. (2008). The shaded region in Fig. 3 shows to
the damping region, whose inner boundary is located at a radius
of 4.8 1010 cm.
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Fig. 3. Initial density (black) and superadiabaticity (red) of the model
H3.5 (solid; see Table 1) and H3.5-T (dotted), respectively. Dashed lines
give the stratification as predicted by Garstec. The vertical dashed and
dotted lines indicate the boundary of the convective core and of the
computational domain, respectively. In the shaded region we damp the
velocities.

Robinson et al. (2003) found that velocities and temperatures
are strongly influenced by domain boundaries up to a distance
of at least two pressure scale heights. Hence, our velocity damp-
ing starts only ≈2.5 pressure scale heights beyond the convective
boundary, thereby reducing such boundary effects.

We performed ten simulations in total, exploring the effects
of overshooting, time integration, initial model preparation, and
resolution in time and space (see Table 1). Our longest running
simulation spans more than 6 years of physical time and covers
roughly 340 convective turnover timescales.

3.1. Onset of convection and steady state properties

We initialize all of our simulations by imposing a small veloc-
ity perturbation in the inner part of the CZ as in Zingale
et al. (2009). The perturbation quickly grows and causes a pro-
nounced peak in the density-averaged convective velocity ampli-
tude |U |CZ after ≈105 s (see Fig. 4). Similar transients have been
seen in other simulations (e.g., Meakin & Arnett 2007; Jones
et al. 2017; Gilet et al. 2013). The transient is connected to a
release of thermal energy in the CZ, which brings the slightly
overadiabatic temperature gradient closer to the adiabatic one.
Subsequently, the density-averaged convective velocities slowly
dissipate away over a few convective turnover times until they
reach a quasi steady state after around 107 s. Their values are
then quite similar in simulations of different resolution (Fig. 4),
indicating convergence. We also performed simulations with the
original predictor-corrector scheme (denoted with PC in Col. 7
of Table 1) of Maestro and found that we reach a similar quasi
steady state as with our 4th order Runge-Kutta time integrator
(denoted with RK in Col. 7 of Table 1).

The simulation H3.5-T uses an initial profile where the tem-
perature of the one-dimensional model was preserved during
reintegration of the HSE. This simulation produces during the
whole simulation ≈30% larger convective velocities than the
models initialized with a preserved ∇ex, which indicates that the
initial thermal energy reservoir acts as an additional non negligi-
ble heating source in H3.5-T.

The velocity field in the CZ is dominated by two counter-
rotating vortices (see left panels in Fig. 5), which is a well known
effect due to vorticity conservation in two-dimensional simu-
lations (e.g., Kercek et al. 1998; Meakin & Arnett 2007). As
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Table 1. Overview of our two-dimensional simulations of a 3.5 M� star.

Name Grid 1D Model fov MCZ,i Mmixed,i Int. dt Mixing rate Rib tmax tmax/τconv

H3.5 10242 ∇ex 0 0.69 0.69 RK U 4.0 · 10−6 627 2 · 108 340
M3.5 5122 ∇ex 0 0.69 0.69 RK U 6.5 · 10−6 592 1 · 108 200
E3.5 20482 ∇ex 0 0.69 0.69 RK U 1.0 · 10−5 3031 1 · 107 20
H3.5-pc 10242 ∇ex 0 0.69 0.69 PC U 6.0 · 10−6 2141 6 · 107 100
H3.5-igw 10242 ∇ex 0 0.69 0.69 PC IGW 1.3 · 10−5 766 1 · 107 20
H3.5-T 10242 T 0 0.69 0.69 PC U 4.2 · 10−6 1771 2 · 108 430
H3.5-ov1.0 10242 ∇ex 0.01 0.72 0.83 RK U 2.5 · 10−6 936 8 · 107 140
H3.5-ov1.7 10242 ∇ex 0.017 0.78 1.00 RK U 1.5 · 10−7 1193 3 · 107 50
H3.5-ov2.0 10242 ∇ex 0.02 0.78 1.02 RK U 6.4 · 10−8 1580 7 · 107 130
H3.5-ov3.0 10242 ∇ex 0.03 0.78 1.14 RK U 2.5 · 10−16 2236 4 · 107 70

Notes. The model name, which is given in the first column, indicates the grid size of the simulation (M: medium; H: high; E: extremely high), which
is listed in the second column. It also indicates the mass of the star in solar units (3.5). The model name of simulations which differ otherwise from
the reference model H3.5 includes further characters (see text). The third column gives the quantity that is kept identical in the two-dimensional
model to that in the one-dimensional one (see Sect. 2.3). The fourth column gives the overshooting parameter used in the one-dimensional stellar
evolution calculations. The mass (in solar units) of the initial CZ and that of the homogeneously mixed core can be found in columns five and six,
respectively. The seventh column shows the time integration method, the timestep being calculated according to the criterion given in column eight
(see text for details). The ninth and tenth column give the time-averaged mixing rates for t > 107 s in units of M� yr−1 and the bulk Richardson
number Rib of the convective boundary, respectively. The last two columns show the final physical time and the number of convective turnovers
covered by the simulation.
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Fig. 4. Evolution of the density-averaged convective velocity magnitude
|U |CZ in the CZ for different two-dimensional simulations of a 3.5 M�
star.

expected from the inverse energy cascade in two-dimensional
simulations (Kraichnan 1967; Batchelor 1969), the vortices fill
as much space as is available in the CZ.

Figure 6 shows velocity magnitude profiles 〈〈|U |〉〉t, which
are first angularly averaged (indicated by 〈.〉), and then aver-
aged in time (〈.〉t). Angularly averages are performed using the
yt python package (Turk et al. 2011), which sorts the Cartesian
cells into radial bins based on the central point of each cell,
and then computes a mass weighted average for each bin. The
time average is performed over 50 output files between 5 106 s
and 107 s, which corresponds to roughly ten convective turnover
timescales. Overall, the shape of the velocity profile within the
CZ follows the predictions by MLT (black dashed line in Fig. 6)
in all simulations. However, the velocities are larger by more
than one order of magnitude. Similar discrepancies were also
found in other two-dimensional simulations (Meakin & Arnett
2007; Pratt et al. 2016). Meakin & Arnett (2007) and Pratt et al.
(2020) confirmed that the higher velocities are an artefact of the
reduced dimensionality of two-dimensional simulations.

Besides the shift in amplitude we also find that contrary to
MLT predictions the velocity peaks in our simulations in the cen-
tre of the star. This demonstrates a shortcoming of MLT, which
treats the centre of the star as a convective boundary and there-
fore predicts zero velocity at that point. Our simulations do not
suffer from this shortcoming due the usage of a Cartesian grid,
which allows flows across the centre of the star. MLT also pre-
dicts that the velocities should drop to zero at the boundary of the
CZ. Instead, we find a noticeable velocity magnitude through-
out the stable layer, which is approximately one order of mag-
nitude smaller than in the CZ. The latter behaviour does not
hold, however, for the medium resolution model M3.5, which
suffers from the problem of unresolved gravity waves as dis-
cussed in Sect. 2.1. Nevertheless, in the CZ the velocity profile of
model M3.5 agrees perfectly with that of model H3.5 indicating
that the time-averaged flow in the CZ is numerically converged.
The small discrepancies present between model H3.5 and the
extremely highly resolved model E3.5 can be explained by the
different transient behaviours of these simulations (see Fig. 4),
because model E3.5 reaches the quasi steady state at an earlier
time than model H3.5, which reduces the average velocities in
model E3.5.

In simulation H3.5-igw we used the timestep criterion
according to Eq. (10), which resolves the timescale of IGW up
to a wavelength of a pressure scale height. For efficiency rea-
sons we used the PC integrator in this case. According to linear
theory IGW are exponentially damped inside of a CZ, which
means that we do not expect any influence of unresolved IGW
on the convective flow itself. Figures 4 and 6 show that models
H3.5-igw and H3.5 indeed produce almost identical results in
the CZ.

Simulation H3.5-igw also confirms the need for a higher
order time integration. Figure 6 shows that model H3.5-
pc, which uses the original PC time integration, has con-
sistently smaller velocities than those found in model H3.5.
However, the results of simulation H3.5-igw, which were
obtained with the same timestep integrator but smaller timesteps
than model H3.5, agree perfectly with those of model
H3.5.
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Fig. 5. Velocity magnitude (left panels) and deviations of the hydrogen mass fraction from its angulary averaged value X′(x, y) = X(x, y) − 〈X〉(r)
(right panels) of simulation H3.5, H3.5-ov1.7, and H3.5-ov3.0 (from top to bottom) after 2 107 s. The magenta dashed circles mark the initial size
of the mixed core, while the black dashed circles show the size of the convective core according to the Schwarzschild criterion. The streamlines in
the left panels indicate the flow direction.

3.2. Convective boundary

Before we can discuss the mixing across convective boundaries
in more detail we first need to define the position of the con-
vective boundary. In a one-dimensional stellar evolution con-
text the most commonly used definition is the Schwarzschild
boundary, namely the point where the acceleration of mass
elements by buoyancy is no longer positive. A proxy for the

Schwarzschild criterion is a negative superadiabaticity ∇ex as
defined in Eq. (13). We denote the corresponding radial position
by Rstruc.

In hydrodynamic simulations, however, the position of a con-
vective boundary can also be determined by the velocity field.
Rogers (2015) and Brummell et al. (2002) account for this by
defining the position of the convective boundary as the point
where the kinetic energy Ekin drops to 1% or 5% of its peak
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(indicated by 〈.〉) and time (〈.〉t) averages of the angular velocity Uφ,
the kinetic energy Ekin, and the superadiabaticity ∇ex = ∇mlt − ∇ad,
respectively. The time averages are taken from 1.82 108 s to 2.06 108 s
using 100 output files from the H3.5 simulation. 〈σ(Ekin)〉t is the
time-averaged standard deviation of the kinetic energy (see Eq. (14)).
The angularly averaged hydrogen mass fraction profile 〈X〉 is taken
at 2.06 108 s. The curves of 〈〈Uφ〉〉t, 〈〈Ekin〉〉t, 〈〈∇ex〉〉t, and 〈σ(Ekin)〉t
are normalized to the values corresponding to their respective boundary
definitions (see text), which means that the black dotted line indicates
the boundary values of each line. The dashed vertical lines mark the
radial locations of our favoured boundaries.

value, respectively. We propose instead to use the standard devi-
ation of a dynamical quantity as an indicator for the boundary,
because time-averaged profiles smooth out all rare mixing events
that might happen during the averaging period. Pratt et al. (2017)
argue that such rare mixing events will set the final depth of the
mixed region around CZ. Using the standard deviation of the
velocity field (or kinetic energy field) does include a larger con-
tribution from those rare events into the time average.

To this end we define the time-averaged standard deviation
〈σ(Ekin)〉t by combining the standard deviations σi(Ekin) of N
output files as

〈σ(Ekin)〉t =


∑N

i=0 σi(Ekin)
[
〈Ekin,i〉 − 〈Ekin〉

]2

N


1/2

, (14)
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Fig. 8. Temporal evolution of the various convective boundary locations
(see text) in the H3.5 simulation.

where 〈Ekin〉 = 1
N

∑N
i=0〈Ekin,i〉 is the mean of 〈Ekin,i〉.

We define the boundary Rdyn (see Fig. 7) to be located at
5% of the maximum value of 〈σ(Ekin)〉t. In Fig. 7 we also show
for comparison the profiles of 〈〈Ekin〉〉t and 〈〈Uφ〉〉t. As expected
Rdyn is located at a larger radius than a boundary that is defined
at 5% of the maximum value of 〈〈Ekin〉〉t. Figure 7 shows that
our definition of Rdyn provides a radial position of the boundary
that is very close to the steepest gradient in the angular velocity
component Uφ, which was shown to be a good indicator for the
convective boundary by Jones et al. (2017).

Another way how to determine the CZ boundary was used by
Cristini et al. (2017) and Meakin & Arnett (2007), who followed
the evolution of the size of a CZ by looking at the time evolu-
tion of the chemical composition which, in general, has an initial
jump at the CZ boundary. The radial position where the compo-
sition corresponds to the mean between CZ and stable layer can
then be defined as the boundary Rchem.

Figure 7 shows the respective time-averaged profiles
obtained in our H3.5 simulation, and it also gives the cor-
responding locations of the various boundaries. We set the
Schwarzschild boundary at ∇ex < −2 10−4 due to the uncertainty
in this quantity in Maestro simulations (see Sect. 3.5). At the end
of the simulation we find Rstruc < Rdyn < Rchem.

In order to understand how mixing across the boundary pro-
gresses we can now look at the time evolution of the different
boundary definitions. Figure 8 shows that the boundaries Rdyn
and Rstruc are constant during the whole simulation, except for
the transient phase at the beginning. During the transient the
location of Rstruc is shifted inwards by about 7 108 cm, indicat-
ing a thermal restructuring due to the release of thermal energy
stored in the temperature gradient. The released thermal energy
is converted into kinetic energy, which shifts Rdyn outwards
beyond the initial location of Rstruc at 2.25 1010 cm. Once Rstruc
retracts and the system approaches a quasi steady state Rdyn
remains constant.

The spatial ordering of the boundaries is in agreement with
the simple picture of ballistic overshooting, which requires that
mass elements penetrate into the layer beyond the Schwarzschild
boundary. The additional motion is reflected by the fact that
Rdyn > Rstruc during most of the time. In fact, the short period
in the beginning of the simulation where the order is reversed is
due to chemical mixing, which adjusts the shape of the temper-
ature gradient to the more realistic Ledoux criterion. This effect
temporarily increases ∇ just outside of the initial Schwarzschild
boundary. As the chemical boundary moves further out the
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Fig. 9. Temperature fluctuations around the angularly average value in
the H3.5 simulation at 8 107 s.

change of∇ due to chemical gradients becomes negligible for the
determination of Rstruc, and the expected order is re-established.
We also see that the distance between Rdyn and Rstruc is only
6 108 cm, corresponding to 0.04 Hp.

Lattanzio et al. (2017) give a limit of mixing around CZ dur-
ing thermal pulses of asymptotic giant branch stars. They argue
that the maximum distance a plume can mix is set by its kinetic
energy and the counteracting buoyancy force. For a general den-
sity ρ(r) and gravity g(r) stratification one can then calculate the
penetration depth d = |r1 − r0| as

1
2

v2
0 =

∫ r1

r0

g(r)
(
ρ(r) − ρp

ρp

)
dr, (15)

where ρp is the density of the plume and v0 its typical veloc-
ity. Assuming that a plume reaches the boundary with a velocity
that corresponds to the maximum of the velocity profile in Fig. 6
(v0 = 1.4 105 cm s−1) and that its density corresponds to the
density at the boundary (ρp = ρ(r0)) the maximum penetration
length is d = 5 107 cm, which is considerably smaller than what
our simulations show. If we additionally account for the expan-
sion of the plume by requiring its density to be always a fraction
of 10−4 larger (which is a typical value we find in our simula-
tions) than the surrounding density such that ρp = ρ(r)(1+10−4),
we find d = 5 108 cm in very good agreement with our measured
distance between Rdyn and Rstruc.

However, we also see that the chemical boundary is evolving
further into the stable layer throughout the simulation, indicat-
ing that model H3.5 experiences a constant mixing of hydro-
gen across its core boundary. Furthermore, Rchem becomes much
larger than Rdyn, which shows that the ballistic overshooting can-
not be the main mixing process, as it does not reach that far into
the stable layer. In the following we therefore look at diffusive
mixing processes that can contribute to the effects we see.

3.3. Diffusive mixing

As was shown by Rogers & McElwaine (2017), IGW can mix
the stable layer of stars diffusively. Even though we do not fully
resolve the highest frequency IGW in our simulations they still
develop a rich IGW spectrum, best seen by looking at tempera-
ture fluctuations T ′(r, φ) = T (r, φ) − 〈T 〉(r) around the angularly
averaged temperature 〈T 〉(r), where T (r, φ) is our Cartesian tem-
perature field interpolated onto a polar grid.
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Fig. 10. Distribution of tracer particles for model H3.5 at several
epochs. We show only 4000 of the 40 000 tracer particles used in the
simulation, which are coloured according to their initial radial location
given in the upper left panel.

In Fig. 9, which shows temperature fluctuations in model
H3.5 at 8 107 s, one can recognize a clear distinction between
the CZ with an almost homogeneous temperature distribution
except for the centre of the vortices (bright spots) and the sta-
ble layer, which shows orders of magnitude larger temperature
fluctuations. The regular flat pattern in the stable region indi-
cates that the convective flow creating the IGW is dominated by
large vortices (Rogers et al. 2013). Since this is an effect of the
reduced dimensionality of our simulations, we do not expect this
wave pattern to be a good representation of nature and therefore
will not analyse it in detail.

Because the mixing caused by these waves plays a signifi-
cant role in our analysis, we estimated the amount of diffusive
mixing by IGW with tracer particles in a post processing step.
Following Rogers & McElwaine (2017) we used tracer particles
and tracked how the particles were advected by the flow. For that
purpose, the velocities of the tracer particles are estimated via
linear interpolation on the grid. The positions of the tracer par-
ticles are then evolved with a constant velocity up until the time
of the next simulation output. To increase the accuracy of the
analysis we increased the number of simulation outputs during
the analysed timespan by a factor of 1000, that is one simulation
output every 1000 seconds. We placed the tracer particles on reg-
ularly spaced spherical shells with radii between 2.0 1010 cm and
4.0 1010 cm to increase the resolution in the CZ boundary region
(see top left panel of Fig. 10). The radial diffusion coefficient D
at radius r is then the average of the squared radial displacement
of the tracer particles initially placed at r divided by the elapsed
time.

Figure 10 shows snapshot of the position of the tracer par-
ticles for model H3.5. Already early on the particles initially
located inside the CZ get transported all the way to the cen-
tre and eventually get almost homogeneously distributed inside
the CZ. This demonstrates the efficiency of convective mix-
ing, corresponding to a large radial diffusion coefficient of D ≥
1013 cm2 s−1 (see Fig. 11). This value is in perfect agreement
with the value of diffusion coefficients estimated from MLT
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Fig. 11. Radial diffusion coefficients estimated from the advection of
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indicates Rdyn of model H3.5.

velocities. Even though we can compute D inside the CZ we
want to note here that a diffusive treatment of convective mix-
ing is not correct, because the extracted value of D depends on
the chosen ∆t (see Rogers & McElwaine 2017). In particular,
one would expect that D ∝ 1/∆t once the tracer particles are
randomly distributed inside the CZ, since the mean radial dis-
placement cannot increase further at that point unless particles
are mixed from the CZ into the stable layer. We also want to
emphasize that the diffusion coefficients estimated here do not
apply to other stars with a different density or temperature strat-
ification.

Outside of the CZ the tracer particles move considerably less.
At later times there is some mixing between the particles, but
mainly in the lateral direction as can be seen from the colour
coding in Fig. 10. The mean of the squared radial displacement
of tracer particles at three initial radial positions in the stable
layer is given in Fig. 12. A diffusive process will on average
lead to a linear growth of the squared radial displacement. Our
measurements show that a clear linear trend is maintained until
1.5 106 s. After that point integration errors become noticeable
and the curve slightly deviates from its linear trend. In the fol-
lowing we therefore only consider the first 1.5 106 s of the tracer
particle movements to estimate diffusion coefficients. We per-
formed this analysis with 40 000, 160 000, and 106 tracer parti-
cles, where the latter corresponds to about four tracer particles
per grid cell in the analysed radial range. In Fig. 12 the different
symbols – corresponding to the number of tracer particles used
– show that the number of tracer particles has little influence on
the measured radial displacement, indicating convergence of the
analysis method. In the following we therefore use 40 000 tracer
particles.

Measuring D for all radial values, we find that D is orders of
magnitude smaller in the stable layer than in the CZ (see Fig. 11).
In the transition region between the CZ and the stable layer D
drops sharply at R≈ 2.25 1010 cm, corresponding to our dynam-
ical convective boundary Rdyn. Therefore, we interpret the drop
in D as a very rapid decline of dynamical convective mixing in
that region. Overall we find good agreement with the results of
Rogers & McElwaine (2017), who analysed a 3.0 M� star at the
zero-age-main-sequence (ZAMS). This setup is very similar to
the one in this work and therefore directly comparable. Rogers
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Fig. 12. Time evolution of the mean squared radial displacement of
tracer particles in model H3.5. The particles which where used for
the analysis were taken at r = 2.5 106 cm, 3.0 106 cm, and 4.0 106 cm.
Stars, diamonds, and crosses correspond to analysis runs with a total of
40 000, 160 000, and 106 tracer particles, respectively.

& McElwaine (2017) also find D ≈ 1013 cm2 s−1 in the CZ, and
then a sharp drop to D ≈ 108−109 cm2 s−1 in the stable layer,
which is approximately 1–2 orders of magnitude smaller than
what we find. Here it should be noted that D = 109 cm2 s−1 cor-
responds to an average diffusion distance of roughly one third of
a computational cell of model H3.5 during the analysed period of
1.5 106 s. Hence, we estimated the systematic error in the value
of D by repeating the analysis with our medium resolution model
M3.5 and the extremely high resolution model E3.5 (see Fig. 11).

We find that all three simulations give identical values of D in
the CZ, showing that the convective motions are converged. The
same is true for the location and steepness of the sharp drop of D
at the dynamical boundary (see Fig. 11). However, we find rather
large differences of up to four orders of magnitude in the stable
layer. As mentioned before, we attribute this to the limited spatial
resolution of our simulations. We would expect to find smaller
and smaller values of D if we increase the resolution further as
suggested by the small values of D found in model E3.5.

The hypothesis that our values of D are overestimated is
also supported by timescale arguments. Using the low val-
ues of D = 107 cm2 s−1 found in model E3.5, we find that
the mixed core will grow by ≈0.4 Hp during its local thermal
timescale of 160 kyr. Considering the main-sequence lifetime of
a 3.5 M� star of the order of 100 Myr one consequently finds
that the whole star will be fully mixed at the end of the main-
sequence. Moreover asteroseismic observations of KIC 7760680
by Moravveji et al. (2016) found that stellar models can only fit
the observed frequencies when an additional diffusive mixing is
added throughout the stable layer. They determined a value of
D ≈ 10 cm2 s−1. A simulation that could resolve such small dif-
fusion coefficients is computationally infeasible.

Overall we conclude that there is some diffusive mixing due
to IGW in our simulations, but it is very likely that the amount
we find is largely overestimating the mixing in actual stars. The
most likely reason for this is the limited resolution of our sim-
ulations, which does not allow us to properly handle signifi-
cantly smaller values of D. The increased convective velocities
in our two-dimensional simulations (see Sect. 3.1) probably also
caused values of D that are overestimated.
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Fig. 13. Change in the hydrogen mass for the initial convective core of
our 3.5 M� simulations. The top and bottom panels show the hydrogen
mass relative to its initial value and the corresponding rate of change,
respectively.

3.4. Overshooting calibration

The large difference between the short dynamical timescale of
convection and the long nuclear timescale of stellar evolution
prohibits the simulation of multi-D stellar evolution models with
current computers. Therefore, one-dimensional stellar evolution
models still rely on parametrized models of convection. A cru-
cial parameter in this approach is the overshooting parameter
which sets the size of the mixed region around a CZ. In this
section we show how one can use multi-D simulations to esti-
mate the one-dimensional overshooting parameter.

To this end we analysed the evolution of the hydrogen mass
fraction X in the CZ in our multi-D simulations. Initially hydro-
gen is distributed homogeneously in the CZ, and the adjacent
stable layer has a larger hydrogen mass fraction than the CZ.
One way to quantify the mixing efficiency across the convective
boundary is to examine the increase of the total hydogen mass
inside the CZ MX with time. For this purpose we set the location
of the convective boundary at the Schwarzschild boundary of the
initial model, which is not necessarily the same as Rstruc because
the temperature stratification changes slightly during the initial
transient. Furthermore, we denote MX at t = 0 by MX0 .

Figure 13 shows the mixing during the initial transient and
the beginning of the quasi steady state for the same models as in
Figs. 4 and 6. MX increases by (2.0 ± 0.5) 10−5 M� during the
first 107 s in all simulations, except for model H3.5-T for which
the amount of mixing is about twice as high as that of, for exam-
ple model H3.5. This enhanced mixing is due to the fact that the
velocity is on average larger in the steady state of model H3.5-T,
and that the model also experienced a more extended transient
phase (see Fig. 4) with even larger velocities. The duration of
the transient is also the reason for the small differences in mixing
between the medium and extremely high resolution models M3.5
and E3.5. However, once the simulations reach the quasi steady
state the mixing evolves at very similar mixing rates, which is
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Fig. 14. Same as Fig. 13, but for simulations performed with different
fov values. The vertical dashed line indicates t = 2 107 s.

confirmed by looking at the time derivative ṀX shown in the
bottom panel of Fig. 13.

It is also worth noting here that the mixing rates in mod-
els H3.5 and H3.5-igw agree almost perfectly. This confirms the
hypothesis we made in Sect. 2.1 that the unresolved high fre-
quency IGW in model H3.5 do not contribute to the mixing sig-
nificantly.

Figure 14 shows the long-term evolution of mixing in model
H3.5. Averaging the mixing rate for t > 107 s we find ṀX =
4.0 10−6 M� yr−1. Over its main-sequence lifetime this star’s
overshooting region would therefore consume the unrealistic
amount of >400 M�. However, as the bottom panel of Fig. 14
shows, ṀX is slightly declining with time, and the outward motion
of Rchem is also slowing down with time (see Fig. 8). Hence, over
the evolutionary timescale of stellar models we would expect
that this trend eventually leads to an end of mixing, at which
point the final location of Rchem would be reached. However,
as the thermal evolutionary timescale of a 3.5 M� star on the
ZAMS is of the order of 105 yr and as we are only able to
simulate ≈6 yr of steady convection, extrapolating our results
over five orders of magnitude is prone to large uncertainties.
Therefore, we propose a different method to estimate the max-
imum extent of the mixed region by comparing simulations
performed with initial models with the same mass and evolution-
ary state but computed with different values of the overshooting
parameter fov. Increasing fov will increase the mass of the ini-
tially homogeneously mixed region Mmixed,i, and due to our self-
consistent treatment of the evolution of the overshooting mod-
els (see Sect. 2.3) we also get slightly different masses MCZ,i for
the convective core as defined by the Schwarzschild criterion (see
Table 1).

In order to explain the idea behind this method, we first need
to look at the process of mixing in more detail. As we have
already discussed in Sect. 3.1, we find that the convective flow
is dominated by two large vortices. These vortices produce shear
mixing at the convective boundary, which can be best seen by
looking at the horizontal perturbation of the hydrogen mass frac-
tion X′(x, y) = X(x, y) − 〈X〉(r). We provide snapshots of this
quantity in the right panels of Fig. 5. The prominent large scale
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Fig. 15. Illustration of our overshooting calibration method (see text).

inflow of hydrogen from the left into the CZ visible in the top
right panel of Fig. 5 suggests that mixing is largely localized,
and that the rather constant mixing rate one sees in Fig. 14 is
in reality a combination of single localized mixing events. We
argue that each of these mixing events will affect a maximum
distance from the convective boundary from where it can collect
material with larger X. Pratt et al. (2017) make a similar argu-
ment based on plumes penetrating the boundary of a convective
envelope, and they show that the plumes with the largest mixing
depth will eventually set the maximum extent of the overshoot-
ing region.

Our calibration of fov works on the basis of this Extreme
Value approach, and is illustrated in Fig. 15. In a simulation
performed with an initial model without any overshooting Rchem
(vertical lines in Fig. 15) and Rstruc will initially overlap. In other
words, each single mixing event across the convective bound-
ary (represented by plumes in Fig. 15) will reach regions with
a larger X, and will transport some of the excess hydrogen into
the CZ. As Rchem moves further out into the stable layer due to
mixing, less and less mixing events will be able to reach hydro-
gen rich matter. This effect reduces the mixing as indicated by
the sequence of arrows at the top of Fig. 15.

By setting up simulations performed with initial models
computed with fov > 0 we try to find the numerical value fov,ideal
that results in a mixed core that exactly reproduces the extent of
the mixed region in a long-term simulation. For values slightly
smaller than fov,ideal we would then expect to see a very small
increase of MX over time, while we would see none for val-
ues larger than fov,ideal. The initial state of simulations performed
with fov > 0 might not fully reflect the smeared out composition
profile of a mixed model performed with fov = 0 for a long time.
However, we would expect that the composition profile of such a
long time mixed model steepens once the maximum extent of the
mixed region has been reached. We expect that the discrepancy
to a one-dimensional model with fov > 0 eventually decreases.

We compared the average mixing rate of three simulations
setting fov equal to 0.01, 0.02, and 0.03, respectively. The respec-
tive simulation names are appended by ‘-ov’ followed by the
value of fov times 100 (see Table 1). In addition, we performed
a fourth simulation with fov = 0.017 (model H3.5-ov1.7). This
value is based on a calibration of fov on observations of open
clusters performed by Magic et al. (2010) with the Garstec code.

After 2 107 s all simulations have reached a quasi steady state
and the velocity fields look qualitatively the same regardless
of fov (see left panels of Fig. 5). Comparing the right panels
of Fig. 5 from top to bottom, it is evident that increasing fov
decreases the perturbation amplitude of the hydrogen mass frac-
tion, which implies a less efficient mixing in models simulated
with a large overshooting parameter.

We find that model H3.5 mixes 10−5 M� of hydrogen into
the core during the whole simulation. Increasing fov to 0.01

decreases the mixing rate by a factor of ≈2, which would
still corresponds to a fully mixed star at the end of the main-
sequence. However, increasing fov further leads to a massive
drop in the mixing rate by more than one order of magnitude.
The Kelvin-Helmholtz timescale of a 3.5 M� star is ≈600 kyr,
which means that models H3.5-ov1.7 and H3.5-ov2.0 will mix
much less than 0.1 M� of hydrogen into the core over a thermal
timescale. This should allow the star to thermally adjust its struc-
ture to the new core size, especially when we consider that the
local thermal timescale of the core is only about 150 kyr. Model
H3.5-ov3.0 even does not mix any hydrogen at all during the
simulation time, showing that fov = 0.03 is clearly too large.

We also find that increasing fov changes the characteristic
of the time evolution of ṀX . While ṀX is more or less con-
stant in models H3.5 and H3.5-ov1.0, it is dominated in models
H3.5-ov1.7 and H3.5-ov2.0 by single peaks followed by a rather
quiescent phase (see bottom panel in Fig. 14). One could inter-
pret this behaviour as a mixing that is dominated by rare single
mixing events, which means that only the farthest reaching mix-
ing events contribute to the enrichment of hydrogen. However,
the situation is more complex than that. After a careful analy-
sis of the velocity field of model H3.5-ov2.0 between 4.9 and
5.7 107 s we could not find any mixing event that would bridge
the distance of 0.1 Hp between Rdyn and Rchem. We see at most
dynamic mixing to 0.05 Hp beyond Rdyn. The missing gap can
be bridged by a diffusive mixing process with D = 1011 cm2 s−1

which slowly restores the composition profile before the next
mixing event reaches the diffusion front. This value of D is larger
than our estimate derived from model H3.5-ov2.0 (see Fig. 16).
However, we also have to consider that such mixing events are
highly localized in angle, which means that only a small angular
section of the diffusion front is mixed into the core. Furthermore,
angular diffusion is much larger than the radial one. Hence, it can
easily smooth out the composition profile between mixing events
in angular direction. Therefore, we argue that the episodic mix-
ing behaviour seen in our simulations can be explained as an
interplay between diffusive mixing and rare convective mixing
events. Noh & Fernando (1993) performed a series of laboratory
experiments with turbulence created by an oscillating grid. They
found that the mixing across a convective boundary in water
shows a similar episodic mixing behaviour as described above
once the molecular diffusion in the experiments becomes domi-
nant, thereby supporting our interpretation.

We argued in Sect. 3.3 that diffusive mixing is most likely
overestimated by several orders of magnitude in our models.
Identifying the episodic mixing as a process dominated by diffu-
sion then allows us to argue that models H3.5-ov1.7 and H3.5-
ov2.0 would not show any mixing in a fully realistic setup.
For our overshooting calibration method this assumption corre-
sponds to 0.01 < fov,ideal < 0.017. We can compare this esti-
mate to the asteroseismic constraints by Moravveji et al. (2016),
who determined a value of fov = 0.024 for the 3.25 M� star KIC
7760680. This value of fov is larger than the one we predict, but
one should note that the absolute values of fov obtained with
different codes should not be compared directly (see the discus-
sion in Angelou et al. 2020). A more relevant evaluation of the
result is to compare the mass of the overshooting region Mov
in both cases. For model H3.5-ov1.7 we find Mov = 0.22 M�,
which is in perfect agreement with the Mov = 0.2239 M� found
by Moravveji et al. (2016) in their grid B. Their favoured stellar
model grid A, however, gives a larger value of Mov = 0.2642 M�.

We note here that while we calibrate fov according to Eq. (11)
it is not clear whether Eq. (11) is indeed the best representa-
tion of the mixing processes around a convective core. To clarify
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Fig. 16. Radial diffusion coefficients estimated from 40 000 tracer par-
ticles over 2.5 106 s for the models with different initial values of fov.
The lines have been shifted such that the radial position of the struc-
tural boundary matches for all the simulations. The dotted vertical lines
indicate the position of Rchem in each run. The red dashed line shows D
according to Eq. (11) with fov = 0.01

this concern we repeated the exercise of calculating the radial
diffusion coefficients for our calibration simulations by compar-
ing the mixing beyond Rstruc in different runs. In Fig. 16, which
shows the outcome of this exercise, we have radially shifted the
Schwarzschild boundaries of the models such that they agree
with each other. We find that all models give remarkably similar
values of D in the CZ and around the drop due to the dynami-
cal boundary Rdyn. In Sect. 3.3 we have also seen that the latter
part of the profile of D is independent of grid size. The over-
shooting model defined by Freytag et al. (1996) (see Eq. (11))
is supposed to represent the run of D. Indeed we can fit the
drop at Rdyn perfectly with this overshooting description and a
value of fov = 0.01 (see red dashed line in Fig. 16), which is
smaller than our estimated value. However, in contrast to this
work Freytag et al. (1996) estimated the overshooting in convec-
tive envelopes. In other words, the convective plumes in Frey-
tag et al. (1996) penetrate into regions with higher density. This
has a huge impact on the behaviour of IGW, which are damped
in Freytag et al. (1996) with increasing distance to the con-
vective boundary, and are amplified in this work. The driving
factor for the amplitude changes in both cases is that ampli-
tudes of IGW scale as ρ−1/2. We can therefore assume that diffu-
sive mixing by IGW is negligible in the simulations of Freytag
et al. (1996), and that their overshooting description mainly cap-
tures the mixing caused by turbulent motions at the convective
boundary.

Several groups have extended Eq. (11) to also account for
diffusive mixing in radiative layers by means of hydrodynami-
cal simulations and observations. Herwig et al. (2007) fitted the
mixing in simulations of helium shell flashes on the asymptotic
giant branch to two connected exponential functions with dif-
ferent slopes. From their simulations they determined fov to be
0.01 and 0.14 for the first and second exponential, respectively,
which means that the sharp drop of D right at the convective
boundary matches perfectly with our results. However, the sec-
ond exponential, which Battino et al. (2016) interpret as addi-
tional diffusive mixing by IGW, is not present in our models. Fit-
ting the asteroseismic observations of KIC 7760680 Moravveji
et al. (2016) required that in addition to Eq. (11) a small constant
diffusive mixing is present throughout the stable layer. Similarly
Rogers & McElwaine (2017) also predict a diffusive mixing that

is active in the whole radiative region, but their simulations indi-
cate that the diffusivity actually increases with increasing dis-
tance to the CZ due to the amplification of IGW.

Our results do seem to support that there is a constant diffu-
sion in the stable layer as proposed by Moravveji et al. (2016).
However, due to the damping of velocities in the outer regions
of our simulations we can only estimate D in a region rela-
tively close to the convective boundary. At the maximum radius
considered for the tracer particle analysis (=4 106 cm) the den-
sity has dropped by a factor of two in respect to the convective
boundary. Using the amplitude scaling of linear IGW, this cor-
responds to an increase of amplitude by ≈40%. A change that
is hardly noticeable in our analysis where measured values of D
regularly vary by two orders of magnitude and more in the stable
layer (see Fig. 16). A further increase of D at larger distances to
the convective boundary due to the amplification of IGW like in
Rogers & McElwaine (2017) can therefore not be excluded.

However, in our overshooting calibration method we com-
bine the effects of turbulent mixing and diffusive mixing by IGW
into a single effective fov. We argue that due to the long evolu-
tionary timescale on the main-sequence we do not expect that
the mass of the overshooting region does depend on whether we
use dedicated models for diffusive mixing and turbulent mix-
ing or a single step overshooting description with an effective
fov that covers both mixing regimes. Asteroseismic properties,
on the other hand, are more sensitive to such changes (Pedersen
et al. 2018; Michielsen et al. 2019).

3.5. Temperature gradients

Another uncertainty of one-dimensional stellar evolution is
the shape of the temperature stratification in the overshoot-
ing region. On the one hand, the classical step overshooting
method predicts a fully adiabatic stratification. The diffusive
overshooting according to Eq. (11), on the other hand, relies
on radiative energy transport. We have seen in Sect. 3.2 that
Rdyn > Rstruc which implies that there will be some con-
vective motion, and therefore also convective energy transport
beyond the Schwarzschild boundary. Zahn (1991) calls this layer
where convective energy transport is still relevant the penetra-
tion region. Such a penetration layer has been found in hydrody-
namic simulations of red giants (Viallet et al. 2013) and the solar
envelope (Korre et al. 2019) as well as in one-dimensional stel-
lar evolutionary calculations where convection was modelled by
one-dimensional averages of the hydrodynamic equations
instead of MLT (Li 2017).

In order to see whether we also see penetration in our core
convection simulation we first have to discuss one peculiarity of
Maestro simulations. Due to the fractional step approach in the
time evolution algorithm of Maestro, the EOS functions T (ρ, P)
involving the pressure and T (ρ, h) involving the enthalpy give
temperatures which differ relatively by about 10−4.

We used the enthalpy version both for the nuclear energy
production and the radiative energy transport. Given the T (ρ, h)
temperature stratification one has still some freedom in calculat-
ing the temperature gradient ∇ =

d log T
d log P . One can compute the

derivative either with respect to the total pressure Ptot = P0 + π
or with respect to the thermodynamically consistent pressure
PEOS = P(ρ,T (ρ, h)). Since the effects of pressure perturbations
π are only considered in the momentum equation (Eq. (5)) one
can also decide to compute ∇ based on P0. Figure 17 illustrates
the effect of these different choices for ∇ on the superadiabatic-
ity ∇ex = ∇ − ∇ad in the CZ, where ∇ad is the adiabatic gradient
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of a 3.5 M� star with different amounts of overshooting. Dashed and
solid lines show profiles according to the Schwarzschild criterion at t =
0 and after 4 107 s, respectively. The dotted lines give the initial profiles
according to the Ledoux criterion.

provided by the EOS. While ∇ex computed with PEOS shows a
mostly stably stratified CZ, using P0 or P0 + π increases ∇ex
by ≈10−4 in the outer region of the CZ, which then classifies
this region as unstable. On the one hand, the flow field of our
simulations clearly does not correspond to a stable stratification
throughout the CZ making the use of PEOS questionable. On the
other hand, PEOS is the thermodynamically consistent way of
computing ∇ex. We account for this dilemma by using a rather
loose criterion for stability in our analysis, where regions with
|∇ex| < 10−4 are considered marginally stable. In the stable layer,
where ∇ = ∇rad � ∇ad, this modified criterion has very little
influence. In the further analysis, we use ∇ex as computed with
P0 for simplicity, which has no effect on the results.

The presence of a penetration layer can be detected by
analysing the temporal evolution of the superadiabaticity ∇ex.
In Fig. 18 we compare ∇ex after 4 107 s with the initial temper-
ature stratification. In model H3.5 the Schwarzschild boundary
moves inwards during the evolution, but at the same time ∇ex
increases just outside of the initial CZ. This causes a bump in the
superadiabaticity outside of the CZ, and brings the value of ∇ex
very close to that of the adiabatic gradient, which interferes with
our loose stability criterion, and therefore with the determination

of Rstruc. When mixing progresses, the bump moves outwards
where ∇ex decreases due to the increasing influence of ∇rad. The
wave like feature exhibited by ∇ex (recognizable in Fig. 18) is
due to the simultaneous mixing of both composition and thermal
energy in simulation H3.5, which increases ∇ex due to the sta-
bilizing effect of the molecular gradient ∇µ =

d log µ
d log P . Therefore,

this feature resembles the curve derived from the Ledoux crite-
rion ∇∗ex = ∇ − ∇ad +

χµ
χt
∇µ, where χµ =

d log P
d log µ , and χt =

d log P
d log T .

The same phenomenon can also be seen in model H3.5-ov1.0
but less prominent due to the larger initial distance between
Rstruc and Rchem. At even larger distances between these radii,
the wave like feature disappears completely as seen in mod-
els H3.5-ov2.0 and H3.5-ov3.0 (Fig. 18). In these simulations
we instead see that the Schwarzschild boundary moves out-
wards at later times. Adjustments to the temperature stratifica-
tion on timescales orders of magnitude shorter than the thermal
timescale can be explained when we consider the effect of pene-
tration as a balance between the competing processes of convec-
tive and radiative energy transport (van Ballegooijen 1982). Con-
vection tries to establish an adiabatic temperature gradient, and
will do so on a convective timescale. The counteracting radia-
tive energy transport operates on much longer timescales so that
our simulations establish a temporary penetration layer. Since we
cannot simulate long enough to establish an equilibrium between
those two processes, it is not possible to give an estimate of the
actual size of the penetration layer. However, it is very likely
that the final temperature stratification does not correspond to
the one from the one-dimensional model, and instead will show
some effects of penetration in the overshooting region.

4. Mass dependence

There is currently an ongoing discussion whether the overshoot-
ing parameter is depending on stellar mass or not. The discus-
sion is mainly focusing on main-sequence stars, where core size
correlates with mass in the mass range ≈1.2 M� to ≈2.0 M�.
Claret & Torres (2016) proposed a linear growth of the over-
shooting parameter with mass after calibrating stellar models to
fit observations of eclipsing binaries. Similarly Pietrinferni et al.
(2004) used a linear and VandenBerg et al. (2006) a tanh-like
scaling of the overshooting parameters in their stellar evolution
databases, which improves the fit of isochrones to open clus-
ters with turn-off masses in the range of 1.25–1.8 M�. Other
groups challenge these results based on asteroseismic observa-
tions (Deheuvels et al. 2016) or due to the lack of statistical
significance (e.g., Constantino & Baraffe 2018; Stancliffe et al.
2015). With our calibration method we can contribute to this dis-
cussion with multi-D numerical simulations. Therefore, we com-
puted three more sets of simulations with stellar masses of 1.3,
1.5, and 2.0M� (see Table 2). As in the 3.5 M� case we used
ZAMS models with a solar metallicity.

4.1. 2.0 M�

In our three 2.0 M� models we used slightly smaller values of
fov than in the 3.5 M� model, because model H2.0-ov1.0 with
fov = 0.01 already showed the episodic mixing behaviour seen in
models H3.5-ov1.7 and H3.5-ov2.0 (see Fig. 19). Following the
same argumentation as before swe find that the diffusive mixing,
which is overestimated in our simulations, implies that fov <
0.01. In order to establish a lower bound to this estimate, we then
also computed model H2.0-ov0.5 with fov = 0.005 that showed
a similar continuous mixing as model H2.0 with fov = 0, but at a
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Table 2. Overview of our two-dimensional simulations of main-sequence stars of different masses.

Name fov tmax tmax/τconv MCZ,i Mmixed,i Mixing rate Rib

H2.0 0 6 · 107 90 0.27 0.27 2.0 · 10−5 662
H2.0-ov0.5 0.005 5 · 107 80 0.29 0.32 1.2 · 10−5 1970
H2.0-ov1.0 0.01 7 · 107 80 0.30 0.37 2.9 · 10−8 5936
H1.5 0 1.8 · 108 180 0.09 0.09 3.0 · 10−6 1325
H1.5-ov0.25 0.0025 1 · 108 130 0.10 0.12 1.9 · 10−6 7407
H1.5-ov0.5 0.005 1.4 · 108 130 0.12 0.14 3.0 · 10−7 6421
H1.5-ov1.0 0.01 1 · 108 110 0.14 0.19 1.4 · 10−8 38470
H1.5-ov2.0 0.02 1.8 · 108 143 0.16 0.27 1.7 · 10−8 55122
H1.3 0 1.3 · 108 30 0.02 0.02 3.8 · 10−7 1015
H1.3-ov0.25 0.0025 1.1 · 108 130 0.04 0.05 3.9 · 10−7 2141
H1.3-ov0.5 0.005 1.5 · 108 150 0.06 0.08 6.0 · 10−8 3775

Notes. The first column gives the name of the model and follows the naming scheme of Table 1, the number behind the ‘-ov’ name appendix
indicating the value of fov used in the one-dimensional model, which is given in the second column times 100. Columns 3 and 4 show the physical
time at the end of the simulation in seconds and the number of convective turnovers, respectively. Columns 5 and 6 give the initial mass of the CZ
and of the homogeneously mixed region in units of M�, respectively. The mixing rates averaged for t > 107 s in units of M� yr−1 are shown in the
second but last column, while the bulk Richardson number is given in the last column.
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Fig. 19. Same as Fig. 13, but for a 2.0 M� star.

slightly smaller mixing rate. Our estimate for this set of 2.0 M�
models is therefore 0.005 < fov < 0.01.

We can also compare this result with models of the eclips-
ing binary TZ For, where Higl et al. (2018) found that this rela-
tively close system could not have undergone a mass transfer in
its previous evolution, and that the mass of the helium core of
the 2.05 M� primary must have been at least 0.335 M� (see their
Table 2). This fits perfectly to our overshooting estimate where
models H2.0-ov0.5 and H2.0-ov1.0 predict He-core masses of
0.32 and 0.37M�, respectively, assuming that the fully mixed
core of the initial model corresponds to the He-core mass at the
end of the main-sequence.

4.2. 1.5 M�

The pressure scale height at the boundary of the convective core
of a 1.5 M� star is 60% larger than the radial extent of the CZ
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Fig. 20. Same as Fig. 13, but for a 1.5 M� star.

itself. Using Eq. (11) with a moderate value of fov = 0.02,
increases the mass of its mixed core by a factor of three com-
pared to that of a no overshooting case. Therefore, we considered
in our simulations smaller values of fov, which provide more rea-
sonable core masses for a 1.5 M� star.

Figure 20 shows that for this stellar mass the episodic mix-
ing appears first in model H1.5-ov1.0 with fov = 0.01, hence
providing the upper limit for our calibration. Model H1.5-0v0.5
with fov = 0.005 shows a continuous mixing behaviour resulting
in an estimate of 0.005 < fov < 0.01. While this is exactly the
same range of values as in the 2.0 M� star, we should note that
for the 1.5 M� star fov = 0.005 gives a mixing rate that is only
one order of magnitude larger than in the fov = 0.01 run, indicat-
ing that the ideal value of fov is much closer to 0.005 than to 0.01
considering that the same comparison in the 2.0 M� star results
in a difference of three orders of magnitude in ṀX . Asteroseis-
mic observations by Yang (2016), on the other hand, suggest that
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Fig. 21. Same as Fig. 13, but for a 1.3 M� star.

the core of the ≈1.4 M� Kepler star KIC 9812850 has a radius of
0.140 ± 0.028 R�, which is in good agreement with the initial
model of H1.5-ov1.0.

This 1.5 M� models also allowed us to estimate a diffusion
coefficient without the need of tracer particles. Models H1.5-
ov1.0 and H1.5-ov2.0 both show an episodic mixing behaviour,
but the onset in model H1.5-ov2.0 is delayed by ≈3 107 s. Con-
sidering that the distance between Rstruc and Rchem in model
H1.5-ov2.0 is 1.1 109 cm larger than in model H1.5-ov1.0 one
can estimate that D ≈ 4 1010 cm2 s−1, which is similar to the
value found for the 3.5 M� star even though the convective veloc-
ities in those models are twice as large as in the 1.5 M� mod-
els. This again is suggesting that diffusive mixing is numerically
overestimated in our simulations.

4.3. 1.3 M�

Since the pressure scale height diverges towards the centre of a
star, a 1.3 M� star has an even larger reaction to an unrestricted
overshooting according to Eq. (11) than the 1.5 M� models. In
a 1.3 M� star the mass of the mixed core increases by a factor
of three even for a tiny overshooting parameter of fov = 0.005.
Therefore, we did not compute any model with fov > 0.005 for
this stellar mass.

As expected model H1.3-ov0.5 does show an episodic mix-
ing behaviour (see Fig. 21). However, it also starts to develop a
more continuous mixing at later times. In fact, we see that all
models experience a sudden change in ṀX after ≈8 107 s, the
reason being unclear. However, by examining the time evolution
of the angularly averaged velocity of model H1.3 (Fig. 22) it
becomes clear that the effect must originate in the stable layer.
After 8 107 s the velocity pattern in the stable layer changes
quickly from a wave like pattern to a homogeneous flow. This
change starts deep in the stable layer and then propagates
inwards. Once it reaches the convective boundary (marked by the
white dashed line) the convective velocities become heavily sup-
pressed. We see the opposite effect in models H1.3-ov0.25 and
H1.3-ov0.5 where larger velocities lead to larger mixing rates,
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Fig. 22. Colour plot of the evolution of angularly averaged velocity
magnitude profiles in model H1.3 during a timespan of 1.3 108 s. The
radial position of the initial Schwarzschild boundary and the propaga-
tion direction of IGWs are marked by white and black dashed lines,
respectively.

and in the case of model H1.3-ov0.5 to a switch from episodic
mixing to continuous mixing.

It should be noted that the origin of the strange velocity pat-
tern is located at around the same radial position as the N2 cav-
ity of the stratification, suggesting that this effect is related to
the resolution of IGW. This would also explain why there is
an opposite effect in models H1.3-ov0.25 and H1.3-ov0.5 by a
reflection of IGW at the N2 bump due to the composition inter-
face. Furthermore, the wave pattern in model H1.3 also suggests
that IGW seem to propagate inwards in this model as indicated
by the black dashed line in Fig. 22.

It seems that simulations of a 1.3 M� star are beyond the
proper working limit of the RK time integrator, since numeri-
cally generated IGW dominate the evolution. It is, however, very
unlikely that the numerical effects lead to less mixing than in
a properly resolved simulation. Hence, we argue that an upper
limit fov < 0.005 still holds, but we are not comfortable to give
a lower limit on fov for this mass.

4.4. Overshooting parameter recommendation for
one-dimensional models

Comparing our estimates for fov we see a clear trend towards
smaller values for less massive stars. In order to ease compar-
ison with stellar evolution models as well as with observations
we provide also core masses in addition to the value of fov (see
Col. 6 in Tables 1 and 2). In Fig. 23 we compare our hydrody-
namic estimates with Garstec stellar evolution models computed
with and without overshooting. Unsurprisingly all our hydrody-
namic estimates predict core masses that are larger than those
of models without overshooting. In our most massive 3.5 M�
star we find good agreement between our estimate and the com-
monly used value fov = 0.02. We note here that the data points of
the one-dimensional models corresponding to fov = 0.02 were
computed using Eq. (11) without any modification. Hence, the
difference between our hydrodynamic values and those of the
one-dimensional models increases as the pressure scale height
at the convective core boundary increases due to the decreasing
core size of less massive stars.

In models with small CZ Garstec usually applies a geomet-
rical cutoff to prevent unrealistically large overshooting regions.
The cutoff was introduced in Magic et al. (2010) and is based
on a comparison of the pressure scale height at the convective
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Fig. 23. Convectively mixed core mass for models with (black dots)
and without overshooting (black stars) on the ZAMS. Blue and green
ellipses show the same quantity, but using a geometrical cutoff for the
overshooting and observational constraints by Mombarg et al. (2019),
respectively. The red triangles denote the derived upper limits from our
simulations. The black cross indicates the size of the mixed core of a
2.0 M� star close to the end of its main-sequence evolution when the
model is computed without overshooting.

boundary to the thickness of the CZ rcz itself. One introduces a
reduced pressure scale height according to

H̃p = Hpmax

1, ( rcz

2Hp

)2 , (16)

and applies the cutoff by replacing Hp in Eq. (11) with H̃p.
This approach was motivated in order to reproduce the morphol-
ogy of the open cluster colour-magnitude diagram around the
main-sequence turn-off of M67. The resulting core masses for
fov = 0.02 are given in Fig. 23 as blue ellipses. We find that
this cutoff is, in general, much more restrictive than our hydro-
dynamic estimates, which is also confirmed by Higl et al. (2018)
who found that it is too restrictive to model the eclipsing binary
TZ For.

We also compare our results with recent observations of
γDor stars by Mombarg et al. (2019). These stars have typical
masses of 1.5 M� and oscillate due to the flux blocking mecha-
nism, which excites gravity modes that allows one to probe the
core region. The extracted core masses of 37 stars are shown in
green in Fig. 23. We find a good agreement with our hydrody-
namic estimates for stars around 1.5 M�, and also confirm once
more that an overshooting cutoff according to Eq. (16) is too
restrictive. A few of the observational estimates, however, con-
tradict our results and show core masses that are even smaller
than those in models without overshooting. This is due to a corre-
lation between the central hydrogen content and the stellar mass
in the analysis of Mombarg et al. (2019, see their Fig. 7). Larger
stellar masses correspond to a smaller central hydrogen content,
which means that stars with 2 M� are already close to the end
of their main-sequence evolution, when they have significantly
smaller convective cores than on the ZAMS as indicated by the
black cross in Fig. 23, which shows the size of the convective
core at a central hydrogen content of 5%.

Overall we conclude that there is a general need for a mass-
dependent overshooting description. However, we neither have
enough datapoints to confirm the linear trend proposed by Claret
& Torres (2016) nor do we have any other functional form of
fov(M∗). We also stress that this result only holds for convective

core overshooting on the main-sequence and does not apply to
convective envelopes or any other convective layer, as for exam-
ple the intershell CZ in thermally pulsing AGB stars (Wagstaff
et al. 2020).

4.5. Entrainment

Entrainment predicts that mixing across convective boundaries
can be described as a constant growth, where the growth factor
E is defined as (Turner 1986)

E = ARi−n
b , (17)

where A and n are free parameters. The bulk Richardson number
Rib is a measure of the stiffness of the boundary of a CZ, whereby
convection is characterized by a typical lengthscale L and the
rms velocity Urms of the flow. Rib can then be written as

Rib =
∆bL
U2

rms
, (18)

where ∆b describes the buoyancy jump across a boundary of
width di

∆b =

∫ ri+di

ri−di

N2dr. (19)

Meakin & Arnett (2007) found that an entrainment law
according to Eq. (17) describes the mixing in an oxygen burn-
ing shell as well as that in a 25 M� main-sequence star when
A = 0.027 ± 0.38 and n = 1.05 ± 0.21. Cristini et al. (2017)
and Gilet et al. (2013) find similar results for a carbon burning
shell and a 15 M� main-sequence star. However, using these val-
ues inferred by hydrodynamic simulations in one-dimensional
stellar evolution on the main-sequence leads to an unrealistically
large growth rate of the core that allows it to engulf the complete
stable layer within a fraction of the main-sequence lifetime.

When we examine the time evolution of ṀX in Figs. 14, 19,
and 20 we notice that none of the simulations with fov > 0 sur-
passes the mixing rate of the model without overshooting signifi-
cantly. Especially in Fig. 20 it seems like model H1.5 is defining
an upper limit to the mixing rate, since the sudden increase of
ṀX in model H1.5-ov0.25 at 5 107 s stops at the same mixing
rate as in model H1.5. Subsequently, ṀX evolves in both mod-
els similarly. An upper limit of the mixing rate was proposed
by Linden (1975), who argued that entrainment of light material
across a buoyancy jump requires a specific amount of energy.
Hence, mixing will be limited by the available kinetic energy of
convection. He further argues that this implies n = 1 in Eq. (17).
Similarly, Jones et al. (2017) and Andrassy et al. (2020) showed
that the entrainment rate in a convective O-burning shell is pro-
portional to the luminosity of the system.

In order to obtain estimates of A and n in our simulation we
first need to compute Rib, which requires estimates of L and di.
We choose di as the distance between Rstruc and Rchem in the
model with the largest fov value for each mass. This provides
comparability between different runs of the same stellar mass,
and it ensures that the integration in Eq. (19) covers the com-
plete interface even when Rchem is propagating into the stable
layer, which is not the case for the largest fov values. Estimat-
ing L requires an analysis of the typical size of flow elements
around the convective boundary. For this purpose we use an auto-
correlation function Ac(r) of the angularly averaged radial veloc-
ity 〈Ur〉 (Mocák et al. 2009)

Ac(r) =
〈Ur(r)Ur(r + dr)〉

〈Ur(r)〉0.5〈Ur(r + dr)〉0.5
. (20)
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Fig. 24. Auto-correlation function (see Eq. (20)) of the radial velocities
at the location of the composition interfaces (dotted vertical lines) at
the end of the simulations for the 3.5 M� models. The black dashed line
shows the auto-correlation function at the Schwarzschild boundary of
model H3.5-ov2.0.
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Fig. 25. Time-averaged convective velocities as a function of stellar
luminosity. The predicted MLT scaling is shown by the black line.

Figure 24 shows Ac(r) for the 3.5 M� models evaluated at r =
Rchem. The peaks in each curve correspond to Rchem as indicated
by the dotted vertical lines. These narrow peaks suggest that the
size of connected flow elements around Rchem is small. In other
words, mainly small scale flows are responsible for the mixing
across the boundary. Hence, we use the width of these peaks
as our estimate for L. We also show Ac(Rstruc) for model H3.5-
ov2.0 (dashed line in Fig. 24), which exhibits a much broader
peak corresponding to the large scale flow inside the CZ.

At this point we can also check whether our rms velocities
fulfil the scaling relation 〈|U|CZ〉

3
t ∝ F predicted by MLT. We

find that our simulations in the analysed mass range agree fairly
well with this scaling relation (see Fig. 25). However, the spread
in 〈|U|CZ〉t for a given luminosity is much larger than expected.
Models with the same stellar mass have a similar luminosity,
but the mass of the convective core is quite different due to the
self-consistent evolution of the one-dimensional models includ-
ing overshooting (see Col. 5 in Tables 1 and 2). This suggests
that second order effects like the mass of a CZ, or respectively
its size, should also be considered in velocity estimates.

We find that the convective boundaries of our models have
bulk Richardson numbers in the range 600 < Rib < 55 000,
which is comparable to the unenhanced luminosity simulation
in Cristini et al. (2019). Combining these values with the mixing

103 104 105

Rib

10 8

10 7

10 6

10 5

10 4

M
X

t (
M

/y
r)

n = 1.32 ± 0.79

H3.5-ov3.0

3.5M
2.0M
1.5M
1.3M

Fig. 26. Time-averaged mass entrainment rate as a function of the bulk
Richardson number for all our models. Each symbol corresponds to a
different model. The black dashed line represents an entrainment law
according to Eq. (17) with n = 1.32.

rates in Tables 1 and 2 we are able to fit an entrainment law to
our simulations. This fit gives n = 1.32 ± 0.79 and A = 4 · 10−2.
Even though this is in agreement with the theoretical prediction
n = 1 by Linden (1975) we would argue that the large error in
the fit actually suggests that (1) our simulations should not be fit-
ted by a single universal entrainment law, and that (2) they indi-
cate that the entrainment law does not only depend on Rib. One
possible extension to the entrainment law would be to include
the Peclet number in the analysis as it was proposed by Noh &
Fernando (1993). Obviously, further research is required to anal-
yse the different influences on the entrainment process.

5. Conclusion

We presented a total of 21 two-dimensional simulations of con-
vective cores in ZAMS stars ranging from 1.3 to 3.5 M�. The
simulation domain covers the convective core and a large frac-
tion of the convectively stable layer on top of it. Due to the
pseudo incompressible approximation of Maestro, we were able
to follow the convective flow for many convective turnover times
at the nominal stellar luminosity, which allowed us to study the
time evolution of the very low Mach number flows and their mix-
ing across the convective core boundary in detail. By comparing
a simulation that resolves high frequency IGW in time with one
that only resolves the advection timescale we determined that
high frequency IGW do not play a significant role in the mix-
ing, and therefore decided to not fully resolve them in time. This
allowed us to increase the numerical timestep further, and hence
to simulate more than 100 convective turnover times in most of
our simulations. In order to guarantee the accuracy of simula-
tions using large timesteps, we replaced the advection scheme
in the time integrator of Maestro with a 4th order Runge-Kutta
scheme, which reduces the amplitude of numerical artefacts in
the convectively stable layer.

We used Garstec one-dimensional stellar evolution models
with a solar-like composition as input for our hydrodynamic sim-
ulations. During the mapping procedure from one-dimensional
to two-dimensional we preserved the thermal stratification of
the one-dimensional model following Edelmann et al. (2017),
which reduced the influence of the transient phase due to ther-
mal readjustments at the beginning of the simulations. We anal-
ysed the time evolution of the convective boundary in detail
and identified three fundamental types of boundary definitions.
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We showed that for main-sequence convection dynamic (defined
by the flow velocity) and structural (defined by the temperature
stratification) boundaries remain mostly constant for the simu-
lated timescales but at different radial locations. In contrast, the
chemical boundary (defined by the composition) evolves in time,
demonstrating the effects of mixing. While the time evolution of
the chemical boundary indicates that mixing is slowing down
with time, we were not able to simulate long enough to establish
an equilibrium state. In order to estimate the maximum extent
of the mixed region around a convective core we therefore used
a series of one-dimensional models computed with increasing
values of the overshooting parameter fov.

We found that increasing fov in the initial model reduces the
mixing rate of hydrogen into the convective core. Furthermore,
increasing fov beyond a certain limiting value leads to an abrupt
change in the mixing characteristics, namely from a continu-
ous entrainment process to an episodic mixing behaviour. We
attribute this change to an increasing influence of diffusive mix-
ing due to IGW and of numerics as the distance between the
composition interface and the Schwarzschild boundary of the
convective core increases.

We measured the diffusion coefficients of the flow with tracer
particles, and we found that the results within the CZ and in the
immediate surrounding of it are well converged in our simula-
tions. However, this is not the case further away from the con-
vective boundary, where the estimated diffusion coefficients are
orders of magnitude smaller than in the CZ. On the one hand, the
clear separation of these two regions hints that the overshooting
description itself has to be altered to account for different mixing
processes. On the other hand, comparing our results with aster-
oseismic constraints we argue that the contribution of diffusive
mixing is largely overestimated in our simulations, which means
that the simulations that are dominated by diffusion would show
even smaller mixing rates in a higher resolved simulation. This
allows us to constrain fov to values where no episodic mixing
can be seen in our simulations.

With this procedure we determined fov to be in the range
0.01 < fov < 0.017 in a 3.5 M� star, which is in rough agreement
with empirical estimates. Reducing the simulated stellar mass
and therefore the size of the convective core shows that the tight
connection between fov and the pressure scale height requires a
reduction of fov used on the main-sequence towards lower stellar
masses, for example we could limit fov in a 1.3 M� star with a
tiny convective core to fov < 0.005. This result confirms findings
when comparing isochrones with open cluster observations (e.g.,
Pietrinferni et al. 2004; Magic et al. 2010) and it agrees with
results using eclipsing binaries (Claret & Torres 2016). In partic-
ular, we find that our overshooting estimates are in good agree-
ment with asteroseismic observations of γDor stars by Mombarg
et al. (2019).

Practically limiting the overshooting can be achieved by
a mass dependent overshooting parameter or by geometrically
limiting the overshooting region based on the size of the con-
vective region itself, where the latter is the physically more rele-
vant property. However, the exact functional form remains to be
determined.

Moreover, we find that models with large values of fov
develop a thin penetration region where the temperature gradient
lies between the radiative and the adiabatic gradient as it was pre-
dicted by, for example van Ballegooijen (1982) and Zahn (1991).
In models with small fov values this effect is probably masked
by changes in the molecular gradient due to the strong chemical
mixing in these simulations. Nevertheless, it is not possible to
estimate the maximum extent of the penetration region in any of

our simulations, since we are not able to simulate the relevant
thermal timescales.

We also investigated the possibility to describe chemical
mixing in the form of an entrainment law as proposed by Meakin
& Arnett (2007). We were not able to find an acceptable univer-
sal fit that covers all stellar masses in this work, indicating that
entrainment laws need to include more parameters as they cur-
rently do.

Three-dimensional simulations are needed to confirm these
results. Initial tests in Higl (2019) point in this direction, but
computational limits regarding the numerical stability of the
convectively stable layer in these simulations currently prevent
us from making conclusive statements. Proposed well-balancing
methods (see e.g., Berberich et al. 2019) could potentially help
to provide these answers in the future.
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