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ABSTRACT

Hydrodynamic cosmological simulations at present usually employ either the La-
grangian smoothed particle hydrodynamics (SPH) technique, or Eulerian hydrody-
namics on a Cartesian mesh with (optional) adaptive mesh refinement (AMR). Both
of these methods have disadvantages that negatively impact their accuracy in certain
situations, for example the suppression of fluid instabilities in the case of SPH, and the
lack of Galilean-invariance and the presence of overmixing in the case of AMR. We here
propose a novel scheme which largely eliminates these weaknesses. It is based on a mov-
ing unstructured mesh defined by the Voronoi tessellation of a set of discrete points.
The mesh is used to solve the hyperbolic conservation laws of ideal hydrodynamics
with a finite volume approach, based on a second-order unsplit Godunov scheme with
an exact Riemann solver. The mesh-generating points can in principle be moved ar-
bitrarily. If they are chosen to be stationary, the scheme is equivalent to an ordinary
Eulerian method with second order accuracy. If they instead move with the velocity
of the local flow, one obtains a Lagrangian formulation of continuum hydrodynamics
that does not suffer from the mesh distortion limitations inherent in other mesh-based
Lagrangian schemes. In this mode, our new method is fully Galilean-invariant, unlike
ordinary Eulerian codes, a property that is of significant importance for cosmologi-
cal simulations where highly supersonic bulk flows are common. In addition, the new
scheme can adjust its spatial resolution automatically and continuously, and hence in-
herits the principal advantage of SPH for simulations of cosmological structure growth.
The high accuracy of Eulerian methods in the treatment of shocks is also retained,
while the treatment of contact discontinuities improves. We discuss how this approach
is implemented in our new code AREPO, both in 2D and 3D, and is parallelized for
distributed memory computers. We also discuss techniques for adaptive refinement
or derefinement of the unstructured mesh. We introduce an individual time-step ap-
proach for finite volume hydrodynamics, and present a high-accuracy treatment of
self-gravity for the gas that allows the new method to be seamlessly combined with
a high-resolution treatment of collisionless dark matter. We use a suite of test prob-
lems to examine the performance of the new code and argue that the hydrodynamic
moving-mesh scheme proposed here provides an attractive and competitive alternative
to current SPH and Eulerian techniques.
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1 INTRODUCTION

Numerical simulations have become an indispensable tool to
study astrophysical problems of structure formation. They
are the method of choice to predict the fully non-linear out-
come of the well-specified initial conditions of the standard
ΛCDM cosmology. In fact, they have played an instrumental
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role to establish the viability of the standard cosmogony, and
continue to be of crucial importance for theoretical research
on galaxy formation.

When only dark matter is considered, the current gen-
eration of cosmological codes have reached a high-degree
of accuracy, allowing an impressive dynamic range in high-
resolution studies of dark matter clustering. There is now
a consensus emerging in the field about important key re-
sults, such as the central dark matter density profile of col-
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lapsed halos (Navarro et al., 2008; Stadel et al., 2009). This
is important progress, which is in part due to the fact that
there is little doubt about what is required to achieve high
accuracy in collisionless simulations; this is simply an ac-
curate gravitational force calculation (which can be easily
and objectively tested), accurate time integration (also easy
to check) and use of a large number of particles (to make
the collisionless dynamics more faithful, and resolve smaller
scales).

However, the situation is different for hydrodynamic
cosmological simulations. Here a variety of fundamentally
quite different numerical methods are in use, the most
prominent ones are Lagrangian smoothed particle hydro-
dynamics (SPH; Lucy, 1977; Gingold & Monaghan, 1977;
Monaghan, 1992) and Eulerian mesh-based hydrodynam-
ics (e.g. Stone & Norman, 1992) with or without adaptive
mesh refinement (AMR; Berger & Colella, 1989), but also
more exotic schemes have been proposed, such as treating
hydrodynamics through an approximation of the collisional

Boltzmann equation (Xu, 1997; Slyz & Prendergast, 1999).
An issue of great concern is that these methods sometimes
yield conflicting results even for basic calculations that only
consider non-radiative hydrodynamics (e.g. Agertz et al.,
2007; Tasker et al., 2008; Mitchell et al., 2009). Perhaps the
most famous example is the Santa Barbara cluster compar-
ison project (Frenk et al., 1999), and the systematic offsets
in the core entropy that are apparently produced between
SPH and AMR codes. The right answer to this problem is
presently still unclear (but see Mitchell et al., 2009, for some
hints). This uncertainty compromises the trust one would
like to have in the predictive power of ab-initio hydrody-
namical cosmological simulation, especially when applied to
the full problem of galaxy formation, where additional pro-
cesses such as radiative cooling, star formation and feedback
must be included. The latter bring about significant addi-
tional complexity, and further extend the dynamic range
that needs to be addressed.

It has become clear over recent years that both SPH and
AMR suffer from fundamental problems that make them in-
accurate in certain regimes. SPH codes have comparatively
poor shock resolution, and offer only low-order accuracy for
the treatment of contact discontinuities. Worse, they ap-
pear to suppress fluid instabilities under certain conditions
(Agertz et al., 2007), as a result of a spurious surface ten-
sion and inaccurate gradient estimates across density jumps.
While it is possible to alleviate these effects by introduc-
ing artificial heat conduction or mixing terms (Price, 2008;
Wadsley et al., 2008), or a modified treatment of the artifi-
cial viscosity (Dolag et al., 2005), it is still unclear whether
any of these suggestions provides a universal solution that
generally improves the results without introducing signifi-
cant problems in other situations. In any case, the absence
of any entropy production through mixing in SPH, as partic-
ularly apparent in the entropy-formulation of SPH (Springel
& Hernquist, 2002), is an important conceptual difference to
Eulerian codes, where entropy is implicitly produced when
fluxes with different thermodynamic state are mixed to-
gether in a single cell.

Eulerian methods are the traditional method to solve
the system of hyperbolic partial differential equations that
constitute ideal hydrodynamics. There are decades of expe-
rience with these methods in computational fluid dynamics,

and accurate Godunov schemes exist which offer high-order
spatial accuracy, have negligible postshock oscillations, and
low numerical diffusivity. However, fundamental problems
remain with these methods as well. Perhaps the most seri-
ous one is their lack of Galilean-invariance, making the re-
sults sensitive to the presence of bulk velocities (e.g. Wadsley
et al., 2008; Tasker et al., 2008). This is a source of substan-
tial concern in simulations of galaxy formation, where galax-
ies move with large speeds relative to each other, speeds that
are often orders of magnitude larger than the sound speed of
the dense interstellar medium that one wants to follow hy-
drodynamically. Similarly, it is also challenging with AMR
to follow a highly refined region that moves with large veloc-
ity relative to the reference frame adopted for the calculation
as a whole, because refinement criteria that correctly ‘antic-
ipate’ the motion of a system across a grid are difficult to
construct.

Another concern lies in the mixing inherent in multi-
dimensional Eulerian hydrodynamics. This provides for an
implicit source of entropy, with sometimes unclear conse-
quences, a situation that prompted Wadsley et al. (2008) to
propose an explicit modeling of the mixing through addi-
tional terms in the fluid equations. Even though it is clear
that some mixing helps and provides a dissipation scale for
the finite resolution, there may well be overmixing if the res-
olution is limited or the bulk velocities are large. Also, it is
rather unclear whether the turbulent cascades that actually
happen in nature are correctly captured if the AMR hier-
archy is truncated at a certain maximum refinement level
(Iapichino et al., 2008; Iapichino & Niemeyer, 2008). It has
been suggested that this can lead to unphysical solutions
for fluid instabilities like the Rayleigh-Taylor instability, and
that recovery of the correct behaviour requires subresolution
models for turbulence (Scannapieco & Brüggen, 2008). In
any case, the different treatment of mixing is arguably the
most fundamental difference between SPH and AMR (see
also Trac et al., 2007; Mitchell et al., 2009).

It has also become clear that current cosmological
AMR codes presently in use have problems to accurately
treat structure formation driven by gravitational instability
(O’Shea et al., 2005; Heitmann et al., 2008). This happens
because it is quite difficult to refine ‘early enough’ on all the
many small density fluctuations that grow at high redshift,
and if a refinement is placed, the resolution increases discon-

tinuously by a factor of 2 per dimension. In typical calcula-
tions, this introduces a subtle suppression of the growth of
small halos, such that the halo mass functions show a deficit
of small halos at late times. The AMR approach is therefore
not ideal for a high accuracy treatment of the N-body prob-
lem posed by cosmic structure; only when very fine base
meshes and conservative refinement criteria are adopted, do
AMR results approximatively recover those obtained com-
paratively easily by SPH codes, which treat self-gravity in
a Lagrangian fashion, and do not have discontinuous jumps
in resolution.

As has long been recognized, Eulerian methods have
also problems to properly resolve flows where the kinetic
energy is much larger than the thermal energy, and both
the pre- and postshock gas move supersonically with respect
to the grid. This situation is ubiquitous in cosmological ap-
plications, and prompted the development of schemes that
try to circumvent the problem when necessary, such as the
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‘dual energy formalism’ (Bryan et al., 1995) or schemes that
evolve a conservation law for the entropy outside of shocks
(Ryu et al., 1993). Usage of such schemes usually means that
exact energy conservation is sacrificed in favour of a more
accurate treatment of the gas entropy. The need for such
fixes is in part a consequence of the choice of a fixed refer-
ence frame for describing the flow, and hence is related to
the Galilean non-invariance of the Eulerian treatment. In-
deed, there have been attempts to solve the bulk-flow prob-
lem by formulating the equations such that a more natural
reference frame can be adopted. In particular, Trac & Pen
(2004) developed a special method where a frame change is
introduced when the gas-dynamical equations are coupled
to self-gravity. The frame velocity is estimated based on a
smoothed large-scale velocity field. This relatively simple ap-
proach can reduce the artefacts stemming from large bulk
flows, but it does not really render the results invariant of
the original reference frame and therefore does not provide
a complete solution for the non-Galilean invariance of the
underlying Eulerian approach.

A more radical approach is to let the mesh itself move.
This is an obvious and old idea, but one fraught with
many practical difficulties that have so far prevented any
widespread use in astrophysics and cosmology. There have
been a number of attempts that seemed promising however.
In particular, Whitehurst (1995) presented his first order ac-
curate code FLAME for hydrodynamics based on Delaunay
and Voronoi tessellations and his ‘signal method’ which was
able to perform quite well on a number of test problems.
Unfortunately no practical applications followed.

Gnedin (1995) and Pen (1998) have presented moving
mesh hydrodynamic algorithms that have successfully been
applied to a range of cosmological problems. Their meth-
ods rely on the continuous deformation of a Cartesian grid.
However, the need to limit the maximum grid distortions
severely limits the flexibility of the codes for situations in
which the mesh becomes heavily distorted, and special mea-
sures were required to let the codes evolve cosmological den-
sity fields into a highly clustered state. For example, Gnedin
(1995) addressed this by letting an Eulerian solver take over
in regions where the Lagrangian approach fails due to severe
mesh distortions. In general, mesh tangling (manifested in
‘bow-tie’ cells and hourglass like mesh motions) is the tra-
ditional problem of multi-dimensional Lagrangian hydrody-
namics. In arbitrary Lagrange-Eulerian (ALE) approaches,
remapping techniques to more regular meshes are used to
counteract the deteriorating influence of mesh distortions,
allowing the calculation to continue past the point where it
would otherwise be stopped by mesh twisting. The remap-
ping is a diffusive operation, however, and the task to au-
tomatically construct ‘good’ new regularized meshes is very
challenging in general. This appears to have impaired wide-
spread adoption of ALE techniques in astronomy thus far,
apart from notable exceptions in stellar astrophysics (Mur-
phy & Burrows, 2008).

Another interesting study directly related to our ap-
proach was that of Xu (1997), who presented an N-body and
hydro-solver on an unstructured, fixed mesh. This work used
a Delaunay tessellation, and the hydrodynamic scheme was
formulated based on a gas-kinetic approach, with the goal to
apply it to cosmological simulations of structure formation.
However, the method appears to have not been investigated

much further afterwards (except for an unpublished master
thesis by M. Ruetalo, U. of Toronto, privately communicated
to us by J. R. Bond). We note that unstructured triangular
meshes are regularly used in engineering applications, how-
ever often in the context of stationary flows, for example
around airplane foils (see Mavriplis, 1997, for a review).

We here propose a new formulation of continuum hy-
drodynamics based on an unstructured mesh. The mesh is
defined as the Voronoi tessellation of a set of discrete mesh-
generating points, which are in principle allowed to move
freely. We show how a finite-volume hydrodynamic scheme
with the Voronoi cells as principle control volumes can be
consistently defined. Most importantly, due to the math-
ematical properties of the Voronoi tessellation, the mesh
continuously deforms and changes its topology as a result
of the point motion, without ever leading to the dreaded
mesh-tangling effects that are the curse of traditional ALE
methods. Our method therefore retains the principal advan-
tage of the mesh-free SPH approach: It offers free and un-
restricted, continuous adjustment of its resolution to local
clustering. In addition, we show that our new method is
Galilean invariant when the mesh is moved along with the
flow. There are no preferred directions in it, unlike in Carte-
sian grids. Thanks to its Lagrangian nature, mesh refinement
is normally not needed when one wants to maintain roughly
constant mass resolution, but if desired, the Voronoi mesh
may also be adaptively refined or derefined.

With these properties, the moving-mesh approach rep-
resents a compromise between SPH and AMR. It inherits
the automatic adaptivity, geometric flexibility and Galilean
invariance of SPH, while it shares the high-accuracy treat-
ment of shocks, shear waves, and fluid instabilities, as well
as the low noise and the absence of artificial viscosity, with
AMR. A further advantage of the method lies in its ability
to easily handle boundary conditions at curved surfaces that
can be stationary, move with the flow, or are governed by a
prescribed velocity field. We also show how the method can
be made adaptive in time by means of individual timesteps,
and how it can be coupled to a high-resolution gravitational
solver (a TreePM scheme) that gets around the problems
experienced by the current generation of AMR codes in cos-
mological structure formation calculations. We think this
makes the new code AREPO⋆ that we built with this ap-
proach a very interesting and competitive method for future
applications in cosmology, as well as in other fields.

We demonstrate the performance of AREPO in a num-
ber of test problems, which include purely hydrodynamical
tests in 1D, 2D, and 3D, as well as simulations where self-
gravity is included. We also present comparisons with the
state-of-the-art Eulerian code ATHENA (Stone et al., 2008),
both to validate our hydrodynamic algorithms, and to dis-
cuss issues of Galilean (non)invariance. Because our scheme
relies on Voronoi meshes, it is very important to develop
algorithms that are able to construct the mesh rapidly and
robustly on distributed memory platforms. We will therefore

⋆ Named after the enigmatic word AREPO
in the Latin palindromic sentence sator

arepo tenet opera rotas, the ‘Sator Square’.
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discuss in some detail the solutions we have developed for
this problem.

This paper is structured as follows. In Section 2, we dis-
cuss our mesh generation algorithms, both in 2D and 3D.
In Section 3, we then formulate continuum hydrodynamics
on the Voronoi mesh, based on a finite-volume ansatz and
a second-order accurate extension of Godunov’s method. In
Section 4, we discuss how the mesh motion can be steered
to maintain constant mass or volume per cell, or to improve
mesh regularity. Our treatment of self-gravity is described
in Section 5, and the refinement or de-refinement of the un-
structured mesh in Section 6. In Section 7, we outline our
methods for time-integration, in particular the use of in-
dividual timesteps, and we describe the basic architecture
of our new simulation code. We then turn to an extensive
discussion of test problems, including pure hydrodynamical
tests in Section 8, and tests that include the gravitational ef-
fects from the gas itself and from a collisionless dark matter
component in Section 9. Finally, we summarize and discuss
our findings in Section 10.

2 GENERATING DELAUNAY AND VORONOI

MESHES

For a given set of points, a Voronoi tessellation of space
consists of non-overlapping cells around each of the sites
such that each cell contains the region of space closer to it
than any of the other sites. This definition holds both in 2D
and 3D, and can be readily extended to higher dimensions
if desired. A direct consequence of this definition is that the
cells are polygons in 2D and polyhedra in 3D, with faces
that are equidistant to the mesh-generating points of each
pair of neighbouring cells.

Closely related to the Voronoi tessellation is the De-
launay tessellation, which is in fact the topological dual of
the Voronoi diagram. In 2D, the Delaunay tessellation for a
given set of points is a triangulation of the plane, where the
points serve as vertices of the triangles. The defining prop-
erty of the Delaunay triangulation is that each circumcircle
around one of the triangles of the tessellation is not allowed
to contain any of the other mesh-generating points in its
interior. This empty circumcircle property distinguishes the
Delaunay triangulation from the many other triangulations
of the plane that are possible for the point set. Further-
more, this condition uniquely determines the triangulation
for points in general position. Similarly, in three dimensions,
the Delaunay tessellation is formed by tetrahedra that are
not allowed to contain any of the points inside their circum-
spheres.

As an example, we show in Figure 1 the Delaunay and
Voronoi tessellations for a small set of points in 2D, en-
closed in a box with imposed periodic boundary conditions.
The midpoints of the circumcircles around each Delaunay
triangle form the vertices of the Voronoi cells, and for each
line in the Delaunay diagram, there is an orthogonal face in
the Voronoi tessellation. This topological duality also holds
in 3D, where each edge of a tetrahedron lies orthogonal to
a face of a Voronoi polyhedron.

Delaunay and Voronoi tessellations are basic construc-
tions in computational geometry, and numerous mathemat-
ical properties are known for them (Okabe et al., 2000). For

example, the Delaunay triangulation maximises the mini-
mum angle among all possible triangulations for a given
point set. For points in general location, the Delaunay and
Voronoi tessellations are unique. If there exist circles with
more than 3 points on them (or spheres with more than 4
points in 3D), the Delaunay triangulation contains degener-
ate cases where the triangulation may flip by an infinites-
imal motion of one of the points. Note however that the
Voronoi tessellation is still unique in this case. In fact, an
edge between two degenerate points of the Delaunay trian-
gulation has a dual Voronoi area of zero size. Nevertheless,
degeneracies can be a significant problem for the robustness
of mesh-construction algorithms, an issue we will discuss in
more detail later on.

There is a sizable body of literature in computational
geometry on algorithms for constructing the Delaunay and
Voronoi tessellations. It is in general much easier to con-
struct the Delaunay tessellation and obtain the Voronoi tes-
sellation from it, instead of trying to directly construct the
Voronoi tessellation. The Voronoi construction hence effec-
tively reduces to the problem of constructing the Delaunay
triangulation, an approach we will also follow here.

The different construction algorithms for the Delaunay
triangulation include:

(i) incremental insertion,
(ii) projection of the convex hull of a higher dimensional

embedding,
(iii) recursive subdivision (divide & conquer),
(iv) direct incremental construction,
(v) improving an arbitrary triangulation by flipping.

Incremental insertion due to Bowyer (1981) and Wat-
son (1981) is conceptionally the simplest approach. Here
one starts with a valid tessellation, inserts an additional
point, and then repairs the mesh locally by ‘flipping’ trian-
gles/tetrahedra to restore Delaunayhood (see below). It can
be shown that the worst case behaviour for this method (for
unfavourable input particle sets) scales as N2, but in prac-
tice, the observed scaling is much better. In fact, for point
sets in general location which are added to the tessellation
in random order, a scaling of N log N is reached.

Another interesting method is obtained by adding an
additional coordinate to the point set, r2 = x2 + y2 + z2,
which effectively produces a higher dimensional embed-
ding of the form of a paraboloid. The convex hull of this
lifted point set yields the Delaunay triangulation when pro-
jected down onto the original lower dimensional space. This
method hence reduces the Delaunay triangulation to the
problem of finding the convex hull in n-dimensional space,
for which the quickhull algorithm can be used.

In two dimensions, the fastest algorithm is based on
a divide and conquer strategy, as proposed by Guibas &
Stolfi (1985) and refined by Dwyer (1987). Here the point
set is recursively subdivided, until a single triangle can be
constructed. These sets are then merged along the divid-
ing lines. Unfortunately, this elegant approach is difficult
to implement in three dimensions, primarily because of the
difficulty of constructing a two-dimensional merging phase
along the dividing planes. Cignoni et al. (1998) overcame
this problem in the Dewall algorithm, essentially by revers-
ing the order of the split and merge steps. These authors
first construct a “wall” of Delaunay triangles directly, which
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Figure 1. Example of a Voronoi and Delaunay tessellation in 2D, with periodic boundary conditions. The panel on the left shows the
Voronoi tessellation for N = 64 points (shown as red circles), the panel in the middle gives the corresponding Delaunay tessellation,

while the panel on the right shows both simultaneously (solid lines show the Voronoi, dashed lines the Delaunay tessellation).

splits the tessellation into two halfs; those can then be pro-
cessed recursively in turn.

Direct incremental construction techniques start out
from one Delaunay edge, and then find the correct point
that completes it to form a Delaunay triangle. This has
been used by van de Weygaert (1994), for example, who ap-
plied Voronoi tessellations for a statistical analysis of cosmic
structures (a comprehensive dicussion and overview about
this topic is given by van de Weygaert & Schaap, 2009).

Finally, the flipping method starts from an arbitrary
triangulation, and then tries to give it the Delaunay prop-
erty by local changes in the triangulation (“flips”). In 2D, it
can be shown that this can always succeed through simple
flips of edges between two adjacent triangles. However, in
3D, one may get get stuck with tetrahedralizations that are
not flipable into the correct Delaunay triangulation. While
this may appear as a show stopper for incremental insertion
algorithms in 3D, Edelsbrunner & Shah (1996) have shown
that this is not the case. Provided one starts with a valid
Delaunay triangulation, local flips can always restore De-
launayhood after a further point has been inserted into the
mesh, so that the incremental insertion strategy is actually
a robust algorithm also for the three-dimensional case.

We use the incremental insertion strategy in our new
hydrodynamical code. It is among the fastest known algo-
rithms, and most importantly for us, it allows implementing
our particular parallelization strategy for distributed mem-
ory machines, which requires that additional points from
other processors can be easily added to an existing local
tessellation. This task can not be readily accomplished with
the other tessellation approaches, where normally the full
point set needs to be known already at the start of the tes-
sellation procedure.

We illustrate the sequential insertion algorithm in Fig-
ure 2. Starting from a valid Delaunay tessellation, the new
point first needs to be located in one of the triangles (or
tetrahedra in 3D), a problem we shall discuss further below.
After this first step, the identified triangle is then subdi-
vided into 3 triangles by inserting the point, yielding a new
triangulation. However, one or several of the new triangles
may now violate the empty circumcircle criterion. We note

that the latter can also be formulated for individual edges;
we say an edge is a Delaunay edge if there exists a circle
through both of its endpoints which does not contain any
other point in its interior. It can be shown that if an edge is
Delaunay, it is part of the correct Delaunay triangulation.
It is easy to show that the three edges around the newly
inserted point are Delaunay, but the opposite edges may
have lost this property as a result of the insertion (marked
in red in ‘Step 2’ of Fig. 2). These edges must be tested in
turn using the in-circle criterion. If a violating edge is found
(Step 4), it is flipped in the quadrilateral formed by the two
adjacent triangles. This produces two more edges that may
now have lost the Delaunay property, and which lie again
opposite of the inserted point. These edges are added to the
list of edges that need to be tested with the in-circle crite-
rion. The algorithm continues until this list is exhausted, at
which point the new site has been successfully inserted, and
a new valid Delaunay triangulation has been obtained.

To make sure that every point that needs to be inserted
always lies in a triangle to begin with, we start the tessel-
lation procedure with a fiducial large triangle enclosing the
whole system. Especially in 3D dimensions, this simplifies
the algorithms enormously, as the difficult case of an in-
sertion of a point outside of the convex hull of the current
tessellation does not have to be dealt with.

In practice, we will always use periodic or reflecting
boundaries that are realized with a layer of ghost cells (see
below). The enclosing triangle is chosen large enough that
both the primary simulation domain and the ghost region
are enclosed in its interior, such that the enclosing triangle’s
shape or orientation does not influence the used part of the
final tessellation in any way.

The geometric in-circle test can be formulated com-
pactly in terms of an evaluation of a determinant. For ex-
ample, in 2D, the in-circle test is given by

TInCircle(a, b, c, d) =

∣

∣

∣

∣

∣

∣

∣

1 ax ay a2
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x + d2

y

∣

∣

∣

∣

∣
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=
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6 V. Springel

Figure 2. The point insertion algorithm in 2D. We start with a valid Delaunay triangulation in which we want to insert an additional
point. We first locate the triangle containing the point (step 1), then split it into three triangles (step 2). The edges (drawn in red)
in the new triangles opposite of the inserted point may violate the in-circle criterion and need to be tested individually. If an edge is
Delaunay (step 3), it is part of the final tessellation, but if it violates the in-circle criterion (step 4), the edge needs to be flipped in the

quadrilateral formed by the adjacent triangles (step 5). The flip generates additional edges that need to be tested (steps 6 and 7). Any
violating edge found (e.g. step 9) needs to be corrected by flips. Once all remaining new edges are validated (steps 10 and 11), we arrive
again at a valid Delaunay tessellation (step 12).

∣

∣

∣

∣

∣

bx − ax by − ay (bx − ax)2 + (by − ay)2

cx − ax cy − ay (cx − ax)2 + (cy − ay)2

dx − ax dy − ay (dx − ax)2 + (dy − ay)2

∣

∣

∣

∣

∣

. (1)

Provided the triangle (a, b, c) is positively oriented, this
gives TInCircle(a, b, c, d) < 0 if the point d lies inside the
circumsphere of the triangle, and TInCircle(a, b, c, d) > 0 if
the point is outside. TInCircle(a, b, c, d) = 0 corresponds to
the interesting case that d lies exactly on the circumsphere
of the triangle. It turns out that correct detection of this
degenerate case is problematic in the light of finite floating
point precision on a computer, but crucial for the stability
of the mesh-generating algorithm, an issue which we shall
discuss further below.

The orientation of a triangle can also be established

with a determinant, through

TOrient2D(a, b, c) =

∣

∣

∣

∣

∣

1 ax ay

1 bx by

1 cx cy

∣
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∣

∣

∣

=

∣

∣

∣

∣

bx − ax by − ay

cx − ax cy − ay

∣

∣

∣

∣

. (2)

A positive value indicates positive orientation. Internally,
we always store the triangles/tetrahedra of our Delaunay
triangulation such that they are positively oriented, which
minimizes the required number of orientation tests.

In three dimensions, the incremental construction algo-
rithm works very similarly, apart from a few additional com-
plications. Briefly, when a point is inserted, we now need to
carry out a ‘1-to-4 flip’, i.e. we replace the insertion tetra-
hedron by four new tetrahedra, as illustrated in Figure 3.

Just as in 2D, this can render tetrahedra that share a
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Figure 3. A ‘1-to-4’ flip. A newly inserted point splits its inser-
tion tetrahedron into 4 daughter tetrahedra.

Figure 4. The standard replacement operation in 3D required for

restoring Delaunayhood. It consists of 2-to-3 (from left to right)
or 3-to-2 (from right to left) flips of tetrahedra. Note that the
2-to-3 flip is only possible if the line connecting the two points
opposite of the common face intersects the interior of this face.

Conversely, the 3-to-2 flip is only possible if an edge is shared by
exactly three tetrahedra.

face with the four new tetrahedra invalid. These tetrahedra
have to be subjected to the in-sphere test with the inserted
point. We store the faces that need to be tested on a stack,
where we specify the face that needs to be tested for De-
launayhood with a reference to a tetrahedron and the face’s
opposite point (which is always the inserted point). If a face
that is pulled from the stack fails the in-sphere test, we
need to check how we can replace the two adjacent tetrahe-
dra. Unlike in 2D, we cannot simply replace two tetrahedra
with two other tetrahedra. Instead, we may be able to re-
place the two tetrahedra with three tetrahedra, in a ‘2-to-3
flip’, provided the line connecting the two tips opposite of
the common triangle of the two tetrahedra intersects this
triangle in its interior. This is illustrated in Figure 4. If on
the other hand the intersection point lies outside one of the
edges of the common triangle, then there is a tetrahedron
formed by this edge and the two tips which needs to be in-
cluded in the replacement operation. We can then replace
these three tetrahedra with two, in a ‘3-to-2 flip’, which is
just the reverse of the ‘2-to-3 flip’ shown in Figure 4. We
note that the intersection point may also lie outside two of
the edges of the common triangle; in this case the violat-
ing face is not flipable and can be skipped. It can be shown
that the algorithm nevertheless finishes successfully thanks
to the flips that can be carried out for other violating faces.
Depending on the type of the flip that has been performed,
either two or three new faces need to be put onto the test
stack. The tests and flips are then continued until the stack
is empty, at which point the Delaunay tessellation is valid
again.

In three dimensions, the relevant determinant for the
in-sphere test is given by

TInSphere(a, b, c, d, e) =
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This is negative if the point e lies inside the circumsphere
around the positively oriented tetrahedron (a, b, c, d), it is
positive if the point lies outside, and zero if it is exactly on
the circumsphere. The orientation of a tetrahedron can be
established by testing the sign of

TOrient3D(a, b, c, d) =
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, (4)

which is positive for positive orientation.†

Once the Delaunay triangulation is generated, we cal-
culate the areas and centres of the Voronoi faces, and the
volumes of all Voronoi cells, as well as their centres-of-mass.
To this end, we first calculate the midpoints of the circum-
spheres around each tetrahedron; these points form the ver-
tices of the Voronoi cells. We then introduce a new data
structure for each Voronoi face, storing the face area and
references to the two adjacent cells, information that is later
needed to determine the hydrodynamic fluxes across the
face. To calculate the area of a Voronoi face, we circle in
clockwise fashion around all tetrahedra that share the same
Delaunay edge between the two mesh-generating points that
belong to the face. Note that the line connecting these two
points need not necessarily intersect the face. Once we have
determined the area of the face, we can also easily obtain
the volumes of the two equally-sized pyramids formed by
the face and its two associated mesh-generating points. The
volume of each Voronoi cell is then obtained as a sum over
the pyramid volumes of all the cell’s surface polyhedra.

2.1 Data structures for the tessellation

From the above it is clear that an important practical consid-
eration for working with an unstructured polyhedral mesh
is the use of efficient data structures to represent the tes-
sellation. Ideally, the data structure should allow rapid and
convenient access to the topological objects of the tessel-
lation, such as individual triangles, the surfaces of Voronoi
polyhedra, and neighbourhood relations, while at the same
time not requiring too much memory. In 2D, Guibas & Stolfi
(1985) introduced an elegant quad-edge data structure which
can encode both the Delaunay triangulation and its dual at
the same time. Besides storing references to the points of an
edge, this edge-based structure stores links to the first adja-
cent edges in a clockwise or anticlockwise direction around
the end points. While being very elegant, it is difficult to
extend this structure to three dimensions. The ‘face-edge’
structure of Dobkin & Laszlo (1989) is one such possibility,
but it produces substantial memory overhead. We therefore

† Note that the value of the determinant is equal to six times the

volume of the tetrahedron spanned by the four points.
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follow the approach taken in most codes for 3D Delaunay
triangulation and adopt full tetrahedra as basic data struc-
tures for describing the mesh. In 2D, we correspondingly use
full triangles.

For each tetrahedron, we store references to its four
points. These are oriented such that the fourth point lies
above the oriented triangle formed by the first three points.
We also store along with each point of a tetrahedron a ref-
erence to the adjacent tetrahedron that lies opposite of the
point and shares a face with the present tetrahedron. In
addition, we store the index location of the point in this ad-
jacent tetrahedron that lies opposite to the common face.
This simplifies various types of construction and navigation
tasks in the tessellation. Note that using this data structure
we can also easily specify individual faces of tetrahedra in
terms of a reference to the tetrahedron and to the point that
lies opposite to the face in question.

A disadvantage of our data structure is its compara-
tively large memory requirement. If pointers are used for
references to the 4 vertices and 4 adjacent tetrahedra of
each tetrahedron, 36 bytes are required on 32-bit architec-
tures per tetrahedron, or 68 bytes on 64-bit machines (using
integer indices instead of pointers can however easily reduce
this back to 36 bytes, which is completely sufficient if there
are less than ∼ 200 GB or so available per MPI task, which is
well above the parameters of current supercomputers). For
a random point set, there are on average ∼ 6.77 Delaunay
tetrahedra per point (van de Weygaert, 1994), giving ∼ 244
bytes (or ∼460 bytes if pointers on 64-bit architectures are
used) per point for storing the mesh. Additional storage is
required to hold a list of faces for the flux calculation. This
sums up to a relatively hefty cost in terms of memory, a
factor 3 to 4 or so larger than what is needed for the tree
construction in a Tree-SPH code like GADGET-2, but not
something that prohibitively restricts the sizes of possible
simulations. However, we note that by exploiting the adja-
cency relations to label nearby tetrahedra, the memory cost
could in principle be reduced to just about 7.5 bytes per
tetrahedron in 3D (Blandford et al., 2005). We leave such
memory optimizations for future work.

2.2 Point location

The point location in the above insertion algorithm can
be a limiting factor, as a simple search through all trian-
gles/tetrahedra would produce an N2-scaling of the algo-
rithm. But there are different possible approaches for speed-
ing up the point location. One idea is to store the past in-
sertion history of Delaunay triangles in a directed acyclic
graph (Edelsbrunner & Shah, 1996), such that the insertion
triangle can be localized through a tree-walk. However, the
manipulation of the history graph requires complex book-
keeping and large amounts of memory.

Another method is the ‘jump and walk’ procedure for
point location first proposed by Mücke et al. (1996). Here
one walks through the tessellation from a random triangle
in the direction of the point that is to be inserted. We will
adopt this strategy. However, instead of starting at a ran-
dom triangle or using a search grid for rapid location of an
initial triangle, we order the points that are to be inserted
along a space-filling Peano-Hilbert curve (Springel, 2005), a
trick that has also been employed by the tessellation code

Figure 5. Point insertion in 2D in the normal case (top, via a
1-to-3 flip) and the degenerate case (bottom), where the point lies
exactly on an edge of the current tessellation. In the latter case,

the two triangles need to be replaced with four triangles (a 2-to-4
flip).

tess3 (Liu & Snoeyink, 2005). This guarantees that the next
point that is inserted is always spatially close to the previous
one. If we hence remember a pointer to the last processed
triangle/tetrahedron, we can start the search in the imme-
diate neighbourhood of the insertion triangle, and only a
very small number of steps are required to arrive at the cor-
rect triangle. An additional advantage of this scheme lies in
cache utilization benefits; thanks to the spatial proximity of
subsequent insertion points, much of the required memory
has been accessed recently and may hence still be resident
in the processor’s cache, which increases performance.

To test whether a point lies inside a given tetrahedron,
we calculate whether it lies above all four of the planes de-
fined by its oriented triangles. If the point does not lie in
the current tetrahedron, we determine which of its faces is
intersected by a line from the centre of mass of the tetrahe-
dron to the insertion point, and then change to the adjacent
tetrahedron on the other side of the selected face.

The above requires an efficient way to test whether a
given point lies inside a tetrahedron (or triangle in 2D).
Since all our tetrahedra are positively oriented, one way to
do this is to use four orientation tests: if the point in ques-
tion lies above all four oriented triangles of the tetrahedron,
it must be inside. However, this is slow due to the required
evaluation of four determinants. A faster method is to ex-
pand the coordinates of the given point in terms of the three
linearly independent vectors spanned by the four points of
the tetrahedron. This involves a linear system of equations
which can be quickly solved with Gauss elimination. The
values of the expansion coefficients α, β and γ then directly
indicate whether the point lies inside the tetrahedron. This
is the case if we simultaneously have α > 0, β > 0, γ > 0 and
α+β + γ < 1. Only when there is a danger of obtaining the
incorrect result with this method due to numerical round-
off, we use instead an exact evaluation of the four orientation
tests, which we discuss in more detail below.

2.3 Treatment of degenerate cases

A problematic point about incremental insertion is that in
this method it can become hard to deal with degenerate
point sets. In particular, the algorithm described above for
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Figure 6. Degeneracy during point insertion in 3D. Here the

point that is to be inserted falls onto a face of the current tes-
sellation. The two tetrahedra involved need to be replaced by six
tetrahedra, constituting a 2-to-6 flip.

Figure 7. Degeneracy during point insertion in 3D. Here the
point that is to be inserted falls onto an edge of the current tes-
sellation. In this case, we need to make a n-to-2n flip, where n is

the number of tetrahedra that have the edge in common. In most
case this is either 3 (top left) or 4 (bottom left), like in the ex-
amples shown in this figure, but n can in principle also be larger.

constructing the Delaunay triangulation only works robustly
for points in general position, where in 2D never more than
three points lie on a circle, and never more than 2 points lie
on a line. If we start with a regular point distribution, for ex-
ample a Cartesian grid, this condition is evidently strongly
violated. But even for random point sets, it is possible that a
degenerate situation approximately occurs, and due to float-
ing point round-off, we may not be able to correctly decide
the outcome of one of the geometric tests, i.e. to evaluate the
correct sign of a nearly degenerate determinant (e.g. Clark-
son, 1992). However, failure to do so invariably leads to a
breakdown of the mesh construction. In addition, experience
shows that attempts to address this issue with crude patches,

Figure 8. Flipping degeneracy in 3D. If the line that connect
the two points opposite a common face of two tetrahedra inter-

sects this face on one of its edges (like in the sketch on top), the
standard 2-to-3 flip cannot be carried out. Instead, the two tetra-
hedra may be eligible for a 4-to-4 flip. This requires however that
the intersected edge is the common edge to exactly 4 tetrahedra.

In this case, four tetrahedra can be replaced by 4 tetrahedra, as
shown in the bottom of the sketch.

for example in the form of random point perturbations, pro-
vides only unreliable (and inelegant) work-arounds.

One possible approach for solving this issue lies in sys-
tematically applying symbolic perturbations to the particle
coordinates (Edelsbrunner & Mucke, 1990), which effectively
bring the particles into general position, such that the De-
launay triangulation becomes formally unique and the algo-
rithm for constructing the tessellation is guaranteed to suc-
ceed. There may then still be triangles/tetrahedra of zero
volume attached to the complex hull of the final tessella-
tion, but their removal represents no major problem. How-
ever, the symbolic perturbation approach still requires ro-
bust evaluations of the correct sign of determinants, which
Mücke (1998) proposes to obtain with long-integer arith-
metic.

Another possible method for constructing robust geo-
metric predicates is to employ exact floating point arith-
metic, implemented through suitable software packages.
This is however very much slower than standard double-
precision arithmetic. An attractive alternative is to use
adaptive precision arithmetic, as proposed and implemented
by Schewchuk (1997). Here the idea is to monitor the max-
imum round-off error that can occur in the evaluation of a
geometric test. If there is a risk that the correct result may
be missed with standard floating point arithmetic (which is
carried out in hardware by the CPU), progressively more ac-
curate approximations to exact floating point arithmetic are
employed, until the correctness of the calculated sign can be
guaranteed. Since the exact but slow floating point arith-
metic is only used when it is really needed, this adaptive
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precision approach is much faster than using exact floating
point arithmetic throughout.

We use a different method instead which does not need
perturbed point coordinates, but rather relies on modifica-
tions of the point insertion algorithm such that it can di-
rectly deal with degeneracies, and we combine this with a
scheme that always guarantees the correct evaluation of ge-
ometric predicates. Let us first discuss the latter. We here
follow the idea of Schewchuk (1997) and estimate the max-
imum round-off error in evaluations of in-circle and orien-
tation tests. When there is a risk of getting the wrong sign
with standard floating point arithmetic, we however evaluate
the determinant with exact long integer arithmetic, which
is both simple and robust. To this end we establish a one-
to-one mapping between the floating point numbers of our
point coordinates and the space of 53-bit integers. This is
accomplished by mapping our computational domain to the
floating point interval [1, 2[. All these numbers have the same
exponent in the standard Institute of Electrical and Elec-
tronics Engineers (IEEE) representation of double-precision
numbers, and the 53-bit mantissa effectively provides a lin-
ear and uniform grid of the possible floating point values in
this interval. We read out this mantissa and use it to evalu-
ate exact geometric predicates using long integer arithmetic
with the open-source GMP library, when needed.

Let us now discuss the modifications required in the
point insertion algorithm such that it can deal with degen-
erate input point sets if correctness of the geometric tests
can be guaranteed. In two dimensions, only one such mod-
ification is required. We need to detect the case that the
point that is to be inserted lies on an edge of the current
tessellation, as illustrated in Figure 5. In this case, we can
not replace one triangle with three new ones, but instead
need to split both of the triangles that share the edge into
two triangles.

In three dimensions, things are considerably more com-
plicated. Here the point that is to be inserted may lie on
a face of the current tessellation. In this case, we need to
replace the two adjacent tetrahedra with altogether 6 new
tetrahedra. This replacement represents a ‘2-to-6 flip’, as
shown in Figure 6. It may also happen that the point falls
onto an edge of the current tessellation. There may be 3, 4,
or more tetrahedra present that share this edge. All of them
have to be replaced by two tetrahedra each, such that we
effectively carry out an ‘n-to-2n flip’, as illustrated in Fig-
ure 7. Finally, when degeneracies are present, a further case
needs to be considered in the flipping operations that heal
the mesh after a point has been inserted. Recall that the
decision whether a 2-to-3 or 3-to-2 flip is carried out when
an invalid Delaunay face has been found depends on the lo-
cation of the intersection between this triangular face and
the line that connects the tips of the adjacent tetrahedra.
Previously, we discussed the cases where the intersection lies
inside the triangle, or outside. For degenerate cases, it may
lie exactly on one of the edges, a case that requires special
treatment. Here a ‘4-to-4’ flip is possible and needs to be
carried out when needed, as illustrated in Figure 8.

We note that the topology of the resulting Delaunay
tessellation is not unique if degeneracies are present, and
the exact outcome (i.e. which of the different Delaunay tes-
sellations that are possible is realized) depends on the order
in which the points are inserted. However, the corresponding

Voronoi tessellation is still unique, and hence the outcome of
our hydrodynamical calculations is unaffected by the Delau-
nay non-uniqueness in the presence of degeneracies, and also
does not depend on the order in which the mesh-generating
points are inserted.

A related point concerns the change of the topology of
the mesh when the points are moved. While the Delaunay
triangulation changes discontinuously whenever a point is
moved into or out of the circumsphere of another triangle,
the corresponding Voronoi tessellation changes continuously.
In fact, whenever the Delaunay neighbourhood relations be-
tween two points change, the corresponding Voronoi face
shrinks to a vanishing area. As we will see later on, it is
this property that allows the mesh to deform without run-
ning into the mesh-tangling problems that plague other ap-
proaches for moving meshes. Also, note that we can calculate
the full motion of all Voronoi faces based just on the velocity
vectors of the mesh generating points. We will make use of
this property in our hydrodynamical schemes, as discussed
in Section 3.

2.4 Parallelization of the tessellation code

Modern supercomputer platforms feature hundreds to thou-
sands of compute cores, with a continuing trend to ever
larger numbers of cores. Efficient use of this combined pro-
cessing power for simulations of dynamically tightly coupled
systems can be quite challenging, especially on distributed
memory computers, which offer the largest and most cost ef-
fective performance. Parallelization of simulation codes for
such architectures requires decomposition of a problem into
individual parts, provided we want to avoid complete data
duplication, which is prohibitive if good scalability is de-
sired.

A number of parallel construction algorithms for the
Delaunay triangulation have been proposed, some of them
for distributed memory environments (e.g. Cignoni et al.,
1998; Lee et al., 2001), others for shared memory machines
(Blandford et al., 2006). However, the approach of Cignoni
et al. (1998) replicates the entire point set on each indepen-
dent processor, an approach we can not afford to follow in
the interest of scalability.

Rather, we decompose the point set into disjoint spa-
tial domains, each mapped to a different compute core with
its own physical memory. The idea here is that most of the
Voronoi cells of a domain will lie in its interior and hence
only depend on the data local to the processor, while some
cells close to the surface may be affected by data on other
processors, which needs to be dealt with by data communi-
cation. Our strategy to deal with this issue is to construct a
locally complete tessellation by importing ghost points from
neighbouring processors such that all the Voronoi cells of the
points that are local to the domain are correctly formed.
This means that the joint set of all primary Voronoi cells
forms the complete tessellation, but there is no need to ac-
tually ever form it explicitly, i.e. we do not need to some-
how mesh the tessellations across two neighbouring domains
together, which would be cumbersome. Instead, the ghost
points provide the ‘glue’ that gives the proper connectivity
across domains. We will also use ghost points to implement
periodic or reflecting boundary conditions, which are sim-
ply realized through fiducial points that are imported from
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the ‘other side’ of the simulation box. In practice, the use
of ghost points increases the number of cells that need to
be considered by a given processeor typically by 3 − 10%,
depending on how many processors are used. Only if a large
number of processors is used for a small problem, this in-
duces significant overhead and a limit to scalability.

How can we find the ghost points that need to be im-
ported, and how can we be sure that our local point set
is sufficiently complete? We have implemented two differ-
ent algorithms for this task. In the simpler of the two, we
start by first constructing the tessellation for all local points
ri within a domain. With each of the points we associate a
search radius hi, inherited either from the previous timestep,
or initialized with a guess. We then search for all points on
other processors that lie within the spheres/circles of radius
hi around ri. The union of the ghost points found in this
way is then added to the local tessellation. For each local
point, we can then calculate a radius si equal to twice the
maximum radius of all the circumspheres of the Delaunay
tetrahedra that have the point ri as one vertex. The relevant
geometry is illustrated for two dimensions in the sketch of
Figure 9. Here the red circle has radius si around the tar-
get point i, which has an associated Voronoi cell shown in
light blue. This local Voronoi cell around point ri could only
change if there was a further point somewhere inside the red
circle that has not yet been added to the local tessellation.
If we have hi > si, then we know that such a point does not
exist, and we are guaranteed that the Voronoi cell around
point i is correct. Otherwise, we need to look whether fur-
ther points from other processors need to be added to the
local tessellation. In this case we increase the radius hi by
some factor and search again for additional points on other
processors that have not yet been inserted into the local
tessellation. These points are then added to the local tessel-
lation, and the si are redetermined. The process is repeated
until the condition hi > si holds for all points local to the
processor, at which point the local tessellation is complete,
i.e. all Voronoi cells of local points are guaranteed to be
unaffected by the presence of the domain boundary.

Note that the ‘thickness’ of the layer of ghost points
imported on each domain is not fixed in this scheme, rather
it adjusts to variations of density along the domain bound-
aries, as well as to the geometry of the domains themselves.
Once the tessellation is complete, we set hi to si for use
in the next mesh construction; this usually ensures close to
optimum efficiency in finding the minimum required set of
ghost particles.

However, sometimes the above approach may create a
ghost layer that is thicker than really required in situations
where the mesh resolution shows a strong spatial gradient,
and a domain boundary lies orthogonal to this gradient.
Since the search region for ghosts is taken to be spherical,
this may lead to the import of a comparatively large num-
ber of ghost points from the side where the mesh resolution
becomes finer. If the mesh resolution changes sufficiently
rapidly in space, this can then incur a substantial overhead
that exceeds the usual 3 − 10% mentioned above. We have
therefore also implemented an alternative algorithm to de-
termine the ghost region, which is more efficient in this situ-
ation. In this approach we directly search for possible ghosts
in all circumcircles of those triangles in the local tessellation
that have at least one local particle as one of their vertices.

If a ghost point is found, all triangles modified in the point
insertion step of the ghost will be tested again until no fur-
ther ghosts are found. At the end, this method then guaran-
tees that all Delaunay triangles shared by a local particle are
part of the correct global mesh, and hence the Voronoi cell of
this particle is complete. To prevent that initially very many
ghost points are found in the large triangles present in the
first iteration at the surface of the local domain, we always
insert only the closest ghost particle found in a circumcircle
that has not yet been added to the local mesh. Especially
when individual timesteps are used and only parts of the
mesh are constructed for active particles (as discussed later
in the context of our individual time-stepping scheme), this
approach is usually more efficient, despite its larger number
of spatial point searches.

The above techniques relies on rapid algorithms to find
all particles within a given sphere of arbitrary radius. To
this end we employ a Barnes & Hut (1986) octtree and
use the neighbour search algorithms of the parallel SPH
code GADGET-2 (Springel, 2005). We also adopted the spe-
cific domain decomposition strategy from the GADGET-2

code, which is based on subdividing a space-filling Peano-
Hilbert curve, an approach that has recently become popular
also in other cosmological simulation codes (e.g. Shirokov &
Bertschinger, 2005). Similar to GADGET-2, we also use a
‘top-level tree’ that covers the full simulation volume. This
allows us to quickly decide whether or not a local search re-
gion is fully contained in the local domain, and if not, with
which other processors it overlaps. This is also useful for
devising an efficient communication strategy.

The complexity of the tessellation algorithms discussed
in this section might suggest that the resulting computations
are quite expensive and slow, but we want to remark that
this is not really the case. The geometric tests required to in-
sert a point involve primarily linear algebra operations that
are calculated very efficiently on modern processors (which
often offer combined multiply-add operations in a single cy-
cle), while the rearrangement of local triangles or tetrahedra
reduces to reorientations of pointers. As a result, even with-
out significant efforts for speed optimizations, we reach tes-
sellation speeds on the order of several tens of thousands of
tetrahedra per second. This is comparable to or only slightly
more than the work needed for SPH neighbour search. More
importantly, the computational cost continues to scale just
as N log N . There is hence in principle no obstacle to use
the tessellation techniques for large-scale applications, even
if the mesh is reconstructed each timestep, as in our current
approach.

2.5 Other applications of the tessellation code

While in the rest of this paper we will focus on applying
the Voronoi mesh to problems of continuum hydrodynamics,
we briefly want to mention that the tessellation methods
discussed here are also useful in other contexts.

In particular, Voronoi or Delaunay tessellations are use-
ful for general density reconstruction tasks. For example, van
de Weygaert (1994) used Voronoi tessellation to study cos-
mic large-scale structure and Bernardeau & van de Weygaert
(1996) employed them to analyze the statistics of velocity
fields. Schaap & van de Weygaert (2000) and Pelupessy et al.
(2003) proposed to use Delaunay tessellation as a general es-
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Figure 9. Geometry of the test for local completeness of a
Voronoi cell. Points on the left of the vertical grey line reside
on the local domain. The point i at the centre of the Voronoi cell

(shown in light blue) has a search radius hi equal to the dotted
circle; all points on other processors inside this circle have been
imported as ghost points (red dots) and were added to the local
tessellation. We now have to decide whether the resulting Voronoi

cell around point i could still be modified by points not yet added
to the local tessellation. To this end we consider the circumcircles
(shown in grey) of all Delaunay triangles that share the central

point. The smallest circle encompassing all these circumcircles
has a radius si equal to twice the maximum circumcircle radius,
and is shown in red. If the red circle lies inside the dotted cir-
cle, i.e. for si ≤ hi, all the Delaunay triangles around the target

point i are valid and are part of the fiducial global Delaunay tes-
sellation that contains all points. Consequently, in this case the
Voronoi cell around the target point i is complete and unaffected

by the presence of the nearby domain boundary. For si > hi, we
increase hi and add any additional point found in the enlarged
search region, until the condition si ≤ hi is fulfilled.

timation tool for linear reconstructions of the density field,
based on the contiguous Delaunay cell that is formed by all
Delaunay triangles around a given point.

We have applied Voronoi density estimates to calcu-
late the dark matter annihilation signal expected in high-
resolution dark matter simulations of the formation of a
Milky-Way like galactic halo (Springel et al., 2008). In com-
parison with SPH, this has the advantage to provide an un-
biased sum of the volumes assigned to each particle, and
to produce less damping of the smallest resolved structures
by smoothing. In our largest simulation, we constructed a
Voronoi mesh for nearly 5 billion particles, composed of
about 34 billion tetrahedra in the dual Delaunay tessella-
tion, and with a dynamic range in point density of more
than 107. This may well be one of the largest Voronoi meshes
ever constructed. The mesh construction took 516 seconds
on 1024 CPUs of an SGI Altix 4700 (the HLRB-II machine
at the Leibniz-Computing Centre in Garching, Germany).

Outside of astronomy, Voronoi tessellations are widely
applied for many different applications, including point pat-
tern analysis, modelling of spatial processes, location opti-
mization, and computer graphics, to name just a few. A com-
prehensive introduction to these applications can be found
in the monograph of Okabe et al. (2000).

3 FINITE VOLUME HYDRODYNAMICS ON A

MOVING VORONOI MESH

The Euler equations are conservation laws for mass, momen-
tum and energy that take the form of a system of hyperbolic
partial differential equation. They can be written in compact
form by introducing a state vector

U =

(

ρ
ρv

ρe

)

=

(

ρ
ρv

ρu + 1
2
ρv2

)

(5)

for the fluid, where ρ is the mass density, v is the veloc-
ity field, and e = u + v2/2 is the total energy per unit
mass. u gives the thermal energy per unit mass, which for
an ideal gas is fully determined by the temperature. These
fluid quantities are functions of the spatial coordinates x

and time t, i.e. U = U(x, t), but for simplicity we will of-
ten refrain from explicitly stating this dependence in our
notation. Based on U , we can define a flux function

F (U ) =

(

ρv

ρvvT + P
(ρe + P )v

)

, (6)

with an equation of state

P = (γ − 1)ρu (7)

that gives the pressure of the fluid. The Euler equations can
then be written in the compact form

∂U

∂t
+ ∇ · F = 0, (8)

which emphasizes their character as conservation laws for
mass, momentum and energy.

Over the past decades, a large variety of different nu-
merical approaches to solve this coupled set of partial differ-
ential equations have been developed (see Toro, 1997; LeV-
eque, 2002, for comprehensive expositions). Many modern
schemes are descendants of Godunov’s method, which rev-
olutionized the field. By solving an exact or approximate
Riemann problem at cell boundaries, Godunov’s method al-
lows the correct identification of the eigenstructure of the
local solution and of the upwind direction, which is crucial
for numerical stability. While Godunov’s original method
offers only first order accuracy and is relatively diffusive, it
can be extended to higher order accuracy relatively simply,
and in many different ways.

We will here employ a so-called finite-volume strategy,
in which the discretization is carried out in terms of a subdi-
vision of the system’s volume into a finite number of disjoint
cells. The fluid’s state is described by the cell-averages of the
conserved quantities for these cells. In particular, integrat-
ing the fluid over the volume Vi of cell i, we can define the
total mass mi, momentum pi and energy Ei contained in
the cell as follows,
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Qi =

(

mi

pi

Ei

)

=

∫

Vi

U dV. (9)

With the help of the Euler equations, we can calculate the
rate of change of Qi in time. Using Gauss’ theorem to con-
vert the volume integral over the flux divergence into a sur-
face integral over the cell results in

dQi

dt
= −

∫

∂Vi

[

F (U ) − Uw
T
]

dn. (10)

Here n is an outward normal vector of the cell surface, and
w is the velocity with which each point of the boundary of
the cell moves. In Eulerian codes, the mesh is taken to be
static, so that w = 0, while in a fully Lagrangian approach,
the surface would be allowed to move at every point with
the local flow velocity, i.e. w = v. In this case, the right
hand side of equation (10) formally simplifies, because then
the first component of Qi, the mass, stays fixed for each
cell. Unfortunately, it is normally not possible to follow the
distortions of the shapes of fluid volumes exactly in multi-
dimensional flows for a reasonably long time, or in other
words, one cannot guarantee the condition w = v over the
entire surface. In this case, one needs to use the general
formula of equation (10), as we will do in this work.

The cells of our finite volume discretization are poly-
hedra with flat polygonal faces (or lines in 2D). Let Aij

describe the oriented area of the face between cells i and j
(pointing from i to j). Then we can define the averaged flux
across the face i-j as

F ij =
1

Aij

∫

Aij

[

F (U ) − Uw
T
]

dAij , (11)

and the Euler equations in finite-volume form become

dQi

dt
= −

∑

j

AijF ij . (12)

We obtain a manifestly conservative time discretization of
this equation by writing it as

Q
(n+1)
i = Q

(n)
i − ∆t

∑

j

AijF̂
(n+1/2)

ij , (13)

where the F̂ ij are now an appropriately time-averaged ap-
proximation to the true flux F ij across the cell face. The

notation Q
(n)
i is meant to describe the state of the system

at step n. Note that F̂ ij = −F̂ ji, i.e. the discretization is
manifestly conservative.

Evidently, a crucial step lies in obtaining a numerical
estimate of the fluxes F̂ ij , and a good fraction of the litera-
ture on computational fluid dynamics is concerned with this
problem. This issue is particularly important since the most
straightforward (and perhaps naive) approach for estimating
the fluxes, namely simply approximating them as the aver-
age of the left and right cell-centred fluxes catastrophically
fails and invariably leads to severe numerical integration in-
stabilities that render such a scheme completely useless in
practice.

One effective cure for the stability problem lies in “up-
wind” schemes that do not weight the two sides equally, but
rather with a bias in the upwind direction of the flow. This
works especially well for simpler equations than the Euler

Figure 10. Geometry of the flux calculation. We use an unsplit
scheme where the flux across each face is estimated based on a
one-dimensional Riemann problem. To this end, the fluid state is
expressed in a frame which moves with the normal velocity w of
the face, and is aligned with it. Note that the motion of the face
is fully specified by the velocities of the mesh-generating points

of the cells left and right of the face.

system, for example the advection equation. Another, phys-
ically particularly meaningful approach is given by the fam-
ily of Godunov methods, which employ analytic solutions of
the Riemann problem occurring at each cell interface, either
obtained exactly or approximately.

We will employ Godunov’s method in the form of the
MUSCL-Hancock scheme (van Leer, 1984; Toro, 1997; van
Leer, 2006), which is a well-known and relatively simple
approach for obtaining second-order accuracy in space and
time. This scheme is also popular in astronomy and used in
several state-of-the art Eulerian codes (e.g. Fromang et al.,
2006; Mignone et al., 2007; Cunningham et al., 2009). In
its simplest form, the MUSCL-Hancock scheme involves a
slope-limited piece-wise linear reconstruction step within
each cell, a first order prediction step for the evolution over
half a timestep, and finally a Riemann solver to estimate the
time-averaged inter-cell fluxes for the timestep.

Figure 10 gives a sketch of the problem of estimating
the flux across the face between two Voronoi cells. Since
truly multidimensional Riemann solvers are not known, we
will calculate the flux for each face separately, treating it
as an effectively one-dimensional problem. Since we do not
work with Cartesian meshes, we cannot use operator split-
ting (Strang, 1968) to deal with the individual dimensions.
Rather we use an unsplit method where all the fluxes are
computed in one step, and are then collectively applied to
calculate the change of the conserved quantities in a cell.
For defining the Riemann problem normal to a cell face,
we rotate the fluid state into a suitable coordinate system
with the x′-axis normal to the cell face (see sketch). This
defines the left and right states across the face, which we
pass to an exact Riemann solver. The latter is implemented
following Toro (1997) with an extension to treat vacuum
states, but could easily be substituted with an approximate
Riemann solver for higher performance, if desired. We have
also written an exact Riemann solver for isothermal gas,
similar to the scheme of Balsara (1994). We note that in
multi-dimensions the transverse velocities are also required
in the Riemann problem in order to identify the correct up-
wind transverse velocity, which is important for an accurate
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treatment of shear. Once the flux has been calculated with
the Riemann solver, we transform it back to the lab frame.

A further important point concerns the treatment of
the allowed motion of cell surfaces in our scheme. In order
to obtain stable upwind behaviour, the Riemann problem
needs to be solved in the frame of the moving face. This is
important as the one-dimensional Godunov approach is not
Galilean-invariant in the following sense: Suppose left and
right state at an interface are described by (ρL, PL, vL) and
(ρR, PR, vR), for which the Riemann solver returns an inter-
face state (ρF, PF, vF) that is the basis for the flux estimate.
For example, the mass flux across the interface is then given
by ρFvF. Consider now a velocity boost v applied both to the
left and the right side. The new Riemann problem is given
by (ρL, PL, vL +v) and (ρR, PR, vR +v), and its solution will
be sampled at the fixed coordinate x = 0 in the new frame of
reference, returning a flux estimate ρ′

F v′
F . However, in gen-

eral this will yield ρ′
Fv′

F 6= ρF(vF +v), which means that the
calculated flux vectors are not Galilean invariant. This is not
necessarily a problem in practice, but as we will see, it can
drastically reduce the accuracy of Eulerian hydrodynamics
in the presence of large bulk velocities. For this reason, we
pay particularly attention to obtain a Galilean-invariant for-
mulation of our new scheme, which should be possible if the
mesh motion is tied to the fluid motion.

It is important to note that the Riemann problem itself
is an exact solution of the Euler equations, which is of course
Galilean-invariant. However, the flux vector read off from the
Riemann solution does not transform in a Galilean-invariant
way, simply because the location where the self-similar so-
lution is sampled depends on the frame of reference. A
timestep in our scheme may also be viewed as a sequence
of reconstruction, evolution, and averaging steps (REA ap-
proach). Both the spatial reconstruction (which is linear in
the primitive variables) as well as the evolution steps (by
means of the Riemann solver) are Galilean-invariant, but
the averaging is not; it depends on the frame of reference.
Note that the flux vectors simultaneously encode the evolu-
tion and the averaging, and their non-invariance ultimately
originates in the latter. An immediate and obvious corol-
lary is that the diffusion error resulting from the averaging
depends on the frame of reference. One may also say in a
more general sense that the truncation error of the Eulerian
approach is not Galilean-invariant. Finally, we would like to
stress that this feature of Galilean non-invariance does of
course not mean that the Eulerian approach necessarily cre-
ates incorrect results. It only means that the errors in the
solutions depend on the frame of reference, which is a highly
unwelcome feature. But as higher resolution always helps to
reduce the diffusion error, one should always be able to beat
down, at potentially considerable numerical cost, the addi-
tional diffusion error obtained from some bulk velocity to
the point where it lies below a prescribed tolerance. Nev-
ertheless, it is clearly desirable to have a numerical scheme
where the Galilean-invariance of the Euler equations is man-
ifestly retained in the discretized forms of the equations, a
goal that is achieved by the method proposed here.

In our new hydrodynamical scheme, each timestep in-
volves the following basic steps:

(i) Calculate a new Voronoi tessellation based on the cur-
rent coordinates ri of the mesh generating points. This also

gives the centres-of-mass si of each cell, their volumes Vi,
as well as the areas Aij and centres f ij of all faces between
cells.

(ii) Based on the vector of conserved fluid variables Qi

associated with each cell, calculate the ‘primitive’ fluid vari-
ables W i = (ρi, vi, Pi) for each cell.

(iii) Estimate the gradients of the density, of each of the
velocity components, and of the pressure in each cell, and
apply a slope-limiting procedure to avoid overshoots and the
introduction of new extrema.

(iv) Assign velocities wi to the mesh generating points.
(v) Evaluate the Courant criterion and determine a suit-

able timestep size ∆t.
(vi) For each Voronoi face, compute the flux F̂ ij across it

by first determining the left and right states at the midpoint
of the face by linear extrapolation from the cell midpoints,
and by predicting these states forward in time by half a
timestep. Solve the Riemann problem in a rotated frame
that is moving with the speed of the face, and transform the
result back into the lab-frame.

(vii) For each cell, update its conserved quantities with
the total flux over its surface multiplied by the timestep,
using equation (13). This yields the new state vectors Q

(n+1)
i

of the conserved variables at the end of the timestep.
(viii) Move the mesh-generating points with their as-

signed velocities for this timestep.

For the sake of definiteness, we will now more explicitly de-
scribe the most important details of these different steps.

3.1 Gradient estimation and linear reconstruction

According to the Green-Gauss theorem, the surface integral
of a scalar function over a closed volume is equal to its gra-
dient integrated over the same volume, i.e.
∫

∂V

φ dn =

∫

V

∇φ dV. (14)

This suggests one possible way to estimate the mean gradi-
ent in a Voronoi cell, in the form

〈∇φ〉i ≃ − 1

Vi

∑

j

φ(f ij) Aij , (15)

where φ(f ij) is the value of φ at the centroid f ij of the face
shared by cells i and j, and Aij is a vector normal to the
face (from j to i), with length equal to the face’s area. Based
on the further approximation

φ(f ij) ≃
1

2
(φi + φj), (16)

this provides an estimate for the local gradient. Note that
with the use of equation (16), the gradient of cell i only
depends on the values φj of neighbouring cells, but not on φi

itself. While the estimate (15) can be quite generally applied
to arbitrary tessellations, due to the use of only one Gauss
point per face it is also relatively inaccurate and is not exact
to linear order in general.

For the special case of Voronoi cells, it is however pos-
sible to obtain a considerably better gradient estimate with
little additional effort. The key is to carry out the surface
integral more accurately. Let us assume that in the vicinity
of a point i the scalar function φ(r) can be well approxi-
mated linearly as φ(r) = φi +b · (r−ri). The vector b is the
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local gradient that we seek to estimate. We can now write
the surface integral as

Vi 〈∇φ〉i =

∫

∂Vi

φ dn =
∑

j 6=i

∫

Aij

[φi+b·(r−ri)]
rj − ri

rij
dA(17)

where the sum extends over all faces of the Voronoi cell
of i, and the integrals extend over each of the faces. Note
that we here already made use of the fact that the surface
normal of each face is parallel to the separation vector of i
and j, a property that is in general only fulfilled for Voronoi
tessellations. Following the notation of Serrano & Español
(2001), we now define cij as the vector from the midpoint
between i and j to the centre-of-mass of the face between i
and j, i.e.

cij ≡ 1

Aij

∫

Aij

(

r − ri + rj

2

)

dA. (18)

Noting that φj = φi + b · (rj − ri), equation (17) can be
rewritten as

Vi 〈∇φ〉i = −
∑

j 6=i

[

φi + φj

2
+ b · cij

]

rij

rij
Aij . (19)

where rij = ri − rj is the vector of length rij = |rij | con-
necting the two neighbouring points, and Aij is the area of
the face.

Next, we can make the replacement (b · cij) rij = (b ·
rij) cij + b × (rij × cij), and set b · rij = φi − φj . Then,
the term involving the cross products can be rewritten by
reinserting the definition of cij :

b×
∑

j 6=i

rij × cij

rij
Aij = b×

∑

j 6=i

rij

rij
×

∫

(

r − ri + rj

2

)

dA(20)

The term involving r is really the surface integral
∫

∂V
r×dn,

which can be cast into a volume integral of the curl of r, but
∇ × r = 0 vanishes. Likewise, we have rij × (ri + rj)/2 =
rij × ri, so that the remaining term is proportional to the
surface integral

∫

∂V
ri × dn, which also vanishes since ri

is a constant vector. As a result, the double cross product
b×(rij×cij) gives a vanishing contribution to equation (19).

We are hence finally left with the following gradient
estimate:

〈∇φ〉i =
1

Vi

∑

j 6=i

Aij

(

[φj − φi]
cij

rij
− φi + φj

2

rij

rij

)

. (21)

Note that this result is exact to linear order, independent of
the locations of the mesh-generating points of the Voronoi
tessellation. Without the term involving cij this is the same
as the simpler Green-Gauss estimate. However, retaining
this extra term leads to significantly better accuracy, be-
cause the gradient estimate becomes exact to linear order
for arbitrary Voronoi meshes. In practice, we shall therefore
always use this gradient estimation in our MUSCL-Hancock
scheme for the Euler equations, where we calculate in this
way gradients for the 5 primitive variables (ρ, vx, vy, vz, P )
that characterize each cell.

The result (21) has also an interesting relation to the
formulae obtained by Serrano & Español (2001) for the par-
tial derivatives of the volume of a Voronoi cell with respect
to the location of one of the points. As Serrano & Español

(2001) have shown, the derivative of the volume of a Voronoi
cell due to the motion of a surrounding point is given by

∂Vi

∂rj
= −Aij

(

cij

rij
+

rij

2rij

)

for i 6= j. (22)

Furthermore, they show that

∂Vi

∂ri
= −

∑

j 6=i

∂Vj

∂ri
. (23)

Using these relations, and noting that according to the
Gauss theorem we have

φi

Vi

∑

j 6=i

Aij
rij

rij
= 0, (24)

because the summation is just the surface integral of a con-
stant function, we can also write the estimate for the gradi-
ent of φ at ri more compactly as

〈∇φ〉i = − 1

Vi

∑

j

∂Vj

∂ri
φj . (25)

An interesting corollary of the above is that provided φ(r)
varies only linearly, the sum

S =
∑

i

φ(ri)Vi (26)

approximates the integral
∫

φ(r) dV exactly, independent of
the positions of the points that generate the Voronoi tessel-
lation. This follows because we then have ∂S/∂ri = 0 for all
the points i.

In our approach, we use the gradients estimated with
equation (21) for a linear reconstruction in each cell around
the centre-of-mass. For example, the density at any point
r ∈ Vi of a cell is estimated as

ρ(r) = ρi + 〈∇ρ〉i · (r − si), (27)

where si is the centre of mass of the cell. Note that inde-
pendent of the magnitude of the gradient and the geometry
of the Voronoi cell, this linear reconstruction is conserva-
tive, i.e. the total mass in the cell mi is identical to the
volume integral over the reconstruction, mi =

∫

Vi
ρ(r)d3r.

An alternative choice for the reference point is to choose
the mesh-generating point ri instead of si. This is the more
natural choice if the cell values are known to sample the
values of the underlying field at the location of the mesh-
generating points, then the reconstruction is exact to lin-
ear order. However, our input quantities are cell-averages,
which correspond to linear order to the values of the under-
lying field sampled at the centre-of-masses of the cells. For
this reason we prefer the centre-of-mass of a cell as reference
point for the reconstruction.

Nevertheless, this highlights that large spatial offsets
between the centre-of-mass of a cell and its mesh-generating
point are a source of errors in the linear reconstruction. It
is therefore desirably to use “regular” meshes if possible,
where the mesh-generating points lie close to the centre-of-
mass; such meshes minimize the errors in the gradient esti-
mation and the linear reconstruction. Or in other words,
we would like our Voronoi meshes to be relatively close
to so-called centroidal Voronoi meshes, where the mesh-
generating points lie exactly in the centre of mass of each
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cell. As we will discuss in more detail later, we have devel-
oped an efficient method for steering the mesh motion such
that this regularity condition can be approximately main-
tained at all times (if desired).

In smooth parts of the flow, the above reconstruction
is second-order accurate, with a stencil that consists of the
local cell plus all adjacent cells. However, in order to avoid
numerical instabilities the order of the reconstruction must
be reduced near fluid discontinuities, such that the introduc-
tion of new extrema by over- or undershoots in the extrap-
olation is avoided. This is generally achieved by applying
slope limiters that reduce the size of the gradients near lo-
cal extrema, or by flux limiters that replace the high-order
flux with a lower order version if there are steep gradients in
the upstream region of the flow. These techniques allow the
construction of total variation diminishing (TVD) schemes,
in which spurious oscillations in solutions can be completely
suppressed.

We here generalize the original MUSCL approach to an
unstructured grid by enforcing monotonicity with a slope
limiting of the gradients. To this end we require that the
linearly reconstructed quantities on face centroids do not
exceed the maxima or minima among all neighbouring cells
(Barth & Jesperson, 1989). Mathematically, we replace the
gradient with a slope-limited gradient

〈∇φ〉
′

i = αi 〈∇φ〉i , (28)

where the slope limiter 0 ≤ αi ≤ 1 for each cell is computed
as

αi = min(1, ψij). (29)

Here the minimum is taken with respect to all cells j that
are neighbours of cell i, and the quantity ψij is defined as

ψij =

{

(φmax
i − φi)/∆φij for ∆φij > 0

(φmin
i − φi)/∆φij for ∆φij < 0

1 for ∆φij = 0
(30)

where ∆φij = 〈∇φ〉i · (f ij − si) is the estimated change
between the centroid f ij of the face and the centre of cell i,

and φmax
i = max(φj) and φmin

i = max(φj) are the maximum
and minimum values occurring for φ among all neighbouring
cells of cell i, including i itself.

We note that this slope limiting scheme does not
strictly enforce the total variation diminishing property,
which means that (usually reasonably small) post-shock os-
cillations are still possible. However, by choosing a slightly
more conservative slope-limiter it is possible to obtain TVD
behaviour, at the price of a more dissipative scheme (Barth
& Ohlberger, 2004). Finally, we note that future refine-
ments of the present method could also employ higher-order
polynomial reconstruction schemes, for example based on
a larger stencil and conservative least square reconstruction
(e.g. Ollivier-Gooch, 1997). This would be similar in spirit to
higher-order essentially non-oscillatory (ENO) or weighted
ENO (WENO) schemes.

3.2 Setting the velocities of the mesh generators

A particular strength of the scheme we propose here is that
it can be used both as an Eulerian code, and as a La-
grangian scheme. The difference lies only in the motion of

the mesh-generation points. If the mesh-generating points
are arranged on a Cartesian mesh and zero velocities are
adopted for them, our method is identical to a second-order
accurate Eulerian code‡ on a structured grid. Of course, one
can equally well choose a different layout of the points, in
which case we effectively obtain an Eulerian code on an un-
structured mesh. The real advantage of the new code can be
realized when we allow the mesh to move, with a velocity
that is tied to the local fluid speed. In this case, we obtain
a Lagrangian hydrodynamics code, which has some unique
and important advantages relative to an Eulerian treatment.

In fact, our code belongs to the general class of so-
called Arbitrary Lagrangian-Eulerian (ALE) fluid dynam-
ical methods. Unlike other ALE schemes, the method pro-
posed here however does not rely on remapping techniques
to recover from distortions of the mesh once they become
severe, simply because the Voronoi tessellation produced by
the continuous motion of the mesh-generating points yields
a mesh geometry and topology that itself changes continu-
ously in time, without any mesh-tangling effects. The motion
of the mesh-generating points can be chosen nearly arbi-
trarily, including cases where it is prescribed by an external
flow field, for example to smoothly concentrate resolution to-
wards particular regions of a mesh. Also, as we shall discuss
below, we may modify the flow of mesh-generating points
such that certain desired properties of the fluid tessellation
are maintained or achieved, e.g. a constant mass per cell,
or that cell sizes are constrained to lie within prescribed
minimal or maximal bounds.

The most simple and basic approach for specifying the
motion of the mesh generators is to use

wi = vi, (31)

i.e. the points are moved with the fluid speed of their cell.
This ansatz is clearly appropriate for pure advection and
in smooth parts of the flow. Whereas it is not strictly La-
grangian because it does not guarantee that the faces of the
cells move with the local velocity and hence mass exchange
can still occur between the cells, it nevertheless approxi-
mates Lagrangian behaviour by minimized the mass flux
between cells. Also, it can be expected that this ansatz will
roughly keep the mass per cell fixed, leading to an adap-
tive spatial resolution in situations with strong clustering of
matter.

However, in this scheme there is no mechanism built
in that tries to improve the regularity of the Voronoi mesh
in case the mean mass per cell should develop substantial
scatter around a desired mean value, or if a large number
of cells with high aspect ratios occur. If desired, such ten-
dencies of a growing mesh irregularity can be counteracted
by adding corrective velocity components to the mesh ve-
locities wi given by equation (31). There are many different
possibilities for how exactly to do this, and we consider this
freedom a strength of the formalism. In Section 4, we will
discuss a few simple regularization terms that we have ex-
plored thus far, and which have proven to be very effective.

‡ There are of course many different variants of 2nd order Eu-
lerian schemes. Our method corresponds to the well known

MUSCL-Hancock approach.
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3.3 Flux computation

An important aspect of our approach is that the specified
motion of the mesh-generating points fully determines the
motion of the whole Voronoi mesh, including, in particular,
the velocities of the centroids of cell faces. This allows us to
calculate the Riemann problem in the rest-frame of each of
the faces.

Consider one of the faces in the tessellation and call the
fluid states in the two adjacent cells the ‘left’ and ‘right’
states. We first need to determine the velocity w of the
face based on the velocities wL and wR of the two mesh-
generating points associated with the face (they are con-
nected by a Delaunay edge). It is clear that w has a pri-
mary contribution from the mean velocity (wL + wR)/2
of the points, but there is also a secondary contribution
w′ from the residual motion of the two points relative
to their centre of mass. This residual motion is given by
w′

R = −w′
L = (wR − wL)/2, and we need to determine its

impact on the motion of the face centroid. Figure 11 sketches
the geometry of the situation. The components of w′

R and
w′

L parallel to the line connecting the centroid f of the face
with the midpoint m of the two mesh-generating points rL

and rR induce a rotation of the face around the point m.
We are only interested in the normal velocity component of
this motion at the centroid of the face. This can be easily
computed as

w
′ =

(wL − wR) · [f − (rR + rL)/2]

|rR − rL|
(rR − rL)

|rR − rL|
. (32)

The full velocity w of the face is then given by

w =
wR + wL

2
+ w

′. (33)

We note that this result can also be used to calculate the
rate of change of the volume of a cell i due to the motion of
its neighbouring points, viz.

dVi

dt
= −

∑

j 6=i

Aij

[

cij

rij
· (wj − wi) +

rij

2rij
· (wj + wi)

]

, (34)

where rij = ri − rj is the distance vector between the two
points i and j (with rij = |rij |), Aij is the area of the
common face, and cij = f ij−(ri+rj)/2 is a vector pointing
to the centre f ij of the face from the midpoint between i
and j. We note that the same result can also be obtained
with equations (22) and (23).

We now calculate the flux across the face using the
MUSCL-Hancock approach, with the important difference
that we shall carry out the calculation in the rest-frame of
the face. It is convenient to do this in the primitive variables
(ρ, v, P ), where we first transform the lab-frame velocities
of the two cells to the rest-frame by subtracting w,

W
′
L,R = W L,R −

(

0
w

0

)

. (35)

We then linearly predict the states on both side to the cen-
troid of the face, and also predict them forward in time by
half a timestep. This produces the states

W
′′
L,R = W

′
L,R +

∂W ′

∂r

∣

∣

∣

∣

L,R

(f − sL,R) +
∂W ′

∂t

∣

∣

∣

∣

L,R

∆t

2
.(36)

Figure 11. Sketch illustrating the calculation of the normal ve-
locity of a face based on the motion of its two associated mesh-
generating points.

The spatial derivatives ∂W ′/∂r are known, and given by the
(slope-limited) gradients of the primitive variables that are
estimated as described in Section 3.1. Note that the gradi-
ents are unaffected by the change of rest-frame described by
Eqn. (35). The partial time derivate ∂W /∂t can be replaced
by spatial derivatives as well, based on the Euler equations
in primitive variables, which are given by

∂W

∂t
+ A(W )

∂W

∂r
= 0, (37)

where A is the matrix

A(W ) =

(

v ρ 0
0 v 1/ρ
0 γP v

)

. (38)

Having finally obtained the states left and right of the inter-
face, we need to turn them into a coordinate system aligned
with the face, such that we can solve an effectively one-
dimensional Riemann problem. The required rotation ma-
trix Λ for the states only affects the velocity components,
viz.

W
′′′
L,R = ΛW

′′
L,R =

(

1 0 0
0 Λ3D 0
0 0 1

)

W
′′
L,R, (39)

where Λ3D is an ordinary rotation of the coordinate system,
such that the new x-axis is parallel to the normal vector of
the face, pointing from the left to the right state.

With these final states, we now solve the Riemann prob-
lem, and sample the self-similar solution along x/t = 0. This
can be written as

W F = Riemann(W ′′′
L , W ′′′

R ), (40)

where Riemann is a one-dimensional Riemann solver, which
returns a solution for the state of the fluid W F on the face
in primitive variables. We now transform this back to the
lab-frame, reversing the steps above,
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W lab =

(

ρ
vlab

P

)

= Λ−1
W F +

(

0
w

0

)

. (41)

Finally, we can use this state to calculate the fluxes in the
conserved variables across the face. Here we need to take into
account that the face is moving with velocity w, meaning
that the appropriate flux vector in the lab frame is given by

F̂ = F (U ) − Uw
T =

(

ρ(vlab − w)
ρvlab(vlab − w)T + P

ρelab(vlab − w) + Pvlab

)

, (42)

where U is the state W lab expressed in the conserved vari-
ables, and elab = v2

lab/2+Plab/[(γ−1)ρlab]. The scalar prod-
uct of this flux vector with the normal vector of the face gives
the net flux of mass, momentum, and energy that the two
adjacent, moving cells exchange. It is the flux of equation
(42) that can finally be used in the conservative updates of
each cell, as described by equation (13).

3.4 Galilean invariance

In the above scheme, it is clear that the state W F sampled
from the Riemann solver is invariant under Galilean trans-
formations, because a special invariant frame for evaluation
of the Riemann problem is adopted, that of the face moving
with the flow. As a result, the input left and right states are
invariant under a Galilean boost; any such boost is simply
absorbed into the motion of the face. This also means that
the velocity difference u ≡ (vlab − w) appearing in the flux
of equation (42) is invariant as well. It is thus clear that
the mass flux between cells is Galilean-invariant, but this
property is much less evident for the momentum and energy
fluxes, as they still have an additional dependence on the
velocity vlab in the lab-frame, as seen in Eqn. (42).

Recall that the desired invariance means that it should
not matter whether we evolve the state of a cell in the cur-
rent lab-frame, or in a reference frame that is boosted by a
constant velocity relative to it. In both cases, we should ob-
tain the same final state when compared again in the same
frame.

We can demonstrate this property for the above scheme
as follows. Let us assume for simplicity that there is only one
flux vector in or out of a cell. When calculated in the current
lab-frame, the new state after a timestep ∆t will then be

Q
new =

(

Q0

Q1

Q2

)

+

(

ρ u

ρ vlab uT + P
ρ elabu + P vlab

)

A∆t, (43)

where A is the normal vector of the face, and Q0, Q1, and Q2

are mass, momentum and energy of the cell at the beginning.
Let the function G(Q, v) return the state vector Q′

of conserved quantities of a cell in a frame that is moving
with a constant velocity relative to the current frame. For a
Galilean boost with velocity v0, the new state is given by

Q
′ = G(Q, v0) (44)

where

G(Q, v) =

(

Q0

Q1 + Q0v

Q2 + Q1 · v + 1
2
Q0v

2

)

(45)

defines the boost transformation. We can now evolve this
boosted state over one timestep, which yields

Q
′′ = Q

′ +

(

ρ u

ρ (vlab + v0) uT + P
ρ e′labu + P (vlab + v0)

)

A∆t, (46)

where e′lab = elab + vlabv0 + 1
2
v2

0. The flux is here different
because vlab transform to vlab + v0 in the boosted frame.
Finally, we can take the state Q′′ back to our original frame,
by calculating

Q̃
new

= G(Q′′,−v0). (47)

Our scheme is Galilean invariant if this state Q̃
new

agrees
with the state (43) obtained by evolving the cell in the origi-
nal system. Inserting equations (44), (45) and (46) into (47),
and after a bit of algebra, it is seen that this is indeed the
case. This is an extremely important property not shared by
ordinary Eulerian codes.

As a word of caution, we note that the finite numerical
round off errors always present in ordinary floating point
arithmetic will perturb the exact Galilean invariance of our
discretization scheme in practice. In particular, since the
conserved quantities are always stored in the lab-frame, the
effective number of significant bits left for the internal energy
will be reduced for very large bulk velocities, as it is then
defined as the difference of two large numbers. However,
with double precision arithmetic this may only become a
problem for really extremely large Mach numbers, and it
could always be solved by the use of extended floating point
precision if needed.

3.5 Poorly resolved cold flows

It is a well known problem in Eulerian finite volume meth-
ods that flows that are dominated by their kinetic energy
– or in other words are very cold and move supersonically
with respect to the calculational frame – often exhibit spu-
rious heating in adiabatic parts of the flow. This arises from
small amounts of dissipation occurring in the cold gas, in-
troduced by finite discretization errors. Better spatial res-
olution alleviates the problem, but if the gas is sufficiently
cold, even very small dissipative effects become readily vis-
ible in the evolution of the gas temperature. Whereas the
pressure forces remain typically negligible as a result of this
effect and hence do not change the gas motion itself, the
temperature evolution can be very seriously in error. Un-
fortunately, this problem is ubiquitous in cosmology, where
the early phases of structure formation always involve very
cold gas combined with relatively large velocities that are in-
duced by gravity, resulting in extremely high Mach numbers.
If the spurious dissipation is not prevented, the temperature
of the low-density intergalactic medium can not be trusted
and becomes unusable for quantitative analysis.

Different solutions have been developed in the litera-
ture to cope with this problem (which incidentally is absent
in the SPH formalism, see e.g. Springel & Hernquist, 2002).
Ryu et al. (1993) evolve the entropy of the gas as an addi-
tional conserved quantity and define a number of criteria for
deciding whether the energy or the entropy equation should
be used. Bryan et al. (1995) on the other hand propose a
‘dual energy formalism’, where the internal gas energy is
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evolved in addition to the total energy. When the gas mo-
tion is highly supersonic, the temperature and pressure of
the gas are set based on the result of the internal energy
equation, while otherwise the total energy is used.

The Galilean-invariance of the moving mesh code sug-
gests that it should in principle have fewer problems with
highly supersonic flow. However, if the velocity differences
from cell to cell are of the order of the local sound speed
or larger, we find that the moving mesh code can also give
rise to spurious dissipation in the cold gas and as a result
can produce an incorrect temperature evolution. The prob-
lem is that in adiabatically evolving gas, any small differ-
ence between the total energy and kinetic energy of a cell
automatically appears in the thermal energy. Even if the dis-
cretization errors from fluid advection are quite small, equal
to only a small fraction of the total energy of a cell, these
errors will give rise to spurious changes of the temperature
if the thermal energy is comparably small.

A related problem arises in simulations that are coupled
to a collisionless dark matter or stellar component. The col-
lisionless fluid often dominates the gravitational field, and
is usually treated with the gravitational N-body approach.
The problem is that the resulting gravitational force field is
relatively noisy, and imparts a stochastic driving onto the
gas as it flows through the bumpy potential provided by
the N-body system. We have found that the resulting small-
scale velocity fluctuations are readily dissipated away by the
mesh-based hydrodynamics, giving rise to a significant spu-
rious heating of the gas. Interestingly, SPH is much less sus-
ceptible to this effect, presumably because of its much poorer
ability to detect very weak shocks. Part of the heating ef-
fect can be readily understood by the analysis of Steinmetz
& White (1997), who showed that two-body encounters be-
tween collisionless particles and fluid elements induce sub-
stantial heating in the gas. In numerical experiments with
cold gaseous disks in isolated galaxies with live N-body dark
matter halos, we have found that the effect in the finite vol-
ume hydrodynamics is even stronger than expected based
on Steinmetz & White (1997), presumably because the gas
also reacts strongly to slower moving collisionless particles
that are not well treated by the impulse approximation. We
also found that the heating can only be efficiently suppressed
if either an extremely large number of N-body particles is
used, or a smooth analytic potential is employed. But such
large particle numbers are impractical in many applications,
and also not needed in the SPH approach. We therefore seek
a method that can suppress the spurious heating of the gas
through the N-body component, if needed.

To circumvent the problems described above, we adopt
a solution that is similar to that of Ryu et al. (1993), but
differs in a number of important aspects. We first define a
measure of the total entropy of a cell as

Si = MiAi = Mi
Pi

ργ
i

, (48)

where Ai ≡ Pi/ργ
i is an entropic function that effectively

labels the entropy per unit mass of the gas, and γ is the
adiabatic index. Note however that the quantity S is not the
thermodynamic entropy itself, but is related to it through a
simple monotonic relation. In fact, for a monoatomic ideal
gas the thermodynamic entropy Stherm per particle is given
by

Stherm

N
=

3

2
kB

[

ln
(

S

N

)

+ ln

(

2πm5/3

h2

)

+
5

3

]

, (49)

where N is the number of atoms, m their mass, and h is
Planck’s constant. For simplicity, we will call S the total
entropy, as it is simpler to work with than using the ther-
modynamic entropy directly.

The Euler equations show that outside of shocks, S is a
conserved quantity. We can hence add a further hyperbolic
conservation law of the form

∂

∂t
(ρA) + ∇ · (ρAv) = 0 (50)

to the set of equations we solve in our finite volume scheme,
and treat Si as a further component in the vector Qi of
conserved quantities for each cell. Furthermore, we may op-
tionally replace the primitive variable Pi with the entropic
function Ai = Si/Mi of a cell. For the vector of primitive
variables W = (ρ, v, A), the Euler equations can in this
case be written as

∂W

∂t
+ B(W )

∂W

∂r
= 0, (51)

where B is the matrix

B(W ) =

(

v ρ 0
γAργ−2 v ργ−1

0 0 v

)

. (52)

This again shows that A stays constant along the flow, mak-
ing this variable particularly convenient to characterize adi-
abatic motion.

We can now apply our usual gradient estimation, spa-
tial reconstruction and slope limiting procedures to the en-
tropic function Ai (in addition to, or instead of, the pres-
sure). When the pressure is needed, for example as input to
the Riemann problem, it is calculated as P = Aργ . Finally,
we compute additional flux components at each cell face,
namely the entropy fluxes corresponding to equation (50),
and use them to update the entropies Si of all cells, keeping
the sum of the total entropy constant. At each cell face, we
take the entropy flux to be ρF vF AU, where ρF and vF are
the density and normal velocity returned by the Riemann
solver, while AU is chosen equal to the entropic function of
the upwind side of the Riemann problem (i.e. AU is either
equal to AL or AR), which we select based on the sign of
vF. This hence advects the entropy assuming that the flow
is smooth.

However, normally the result of this entropy advection
is discarded at the end of each timestep. Instead, we reinitial-

ize the entropy Si of each cell based on the updated values
of total energy, total momentum and mass. This takes care
of the fact that in general the entropy will not be conserved
after all. It will tend to increase, either through dissipative
processes in shock fronts as captured by the analytic Rie-
mann solution, or as a result of the mixing entropy that is
generated when the Riemann solution is averaged over a cell
and mapped back to a piece-wise constant state. The entropy
conservation law (50) is therefore essentially redundant in
finite volume methods because the other conservation laws
already fully determine the final averaged state of the cell.
This is why in an ordinary Godunov scheme the entropy
is normally not considered explicitly, the scheme automati-
cally injects exactly the right amount of entropy to satisfy
the conservation laws of total energy, momentum and mass.
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Figure 12. Dissipative heating rate fdiss(M) in a shock as a
function of Mach number M (red solid line), for a γ = 5/3 gas.

The dashed blue line gives the adiabatic heating rate fadiab(M)
of the gas as it is compressed at the shock. Finally, the dotted
line gives the ratio of adiabatic and dissipative heating rates.

However, if the flow is poorly resolved and very cold, or
if it is governed by a noisy external gravitational field, we
may give precedence to the entropy conservation law over
that for the total energy, provided the flow is sufficiently
smooth. This can be simply accomplished by keeping the
updated entropy Si of a cell at the end of a timestep, thereby
suppressing local dissipation. Instead of reinitializing the en-
tropy with the help of the total energy equation, the entropy
is then used together with the new density to update the
thermal energy, and hence the pressure. In this case there is
no spurious heating of the gas in parts of the flow that are
dominated by their kinetic energy, or are cold and poorly re-
solved. Instead, the temperature will evolve adiabatically, as
expected for a smooth flow. The catch is that this procedure
temporarily gives up manifest conservation of total energy,
as the thermal energy is now not defined as a difference be-
tween total energy and kinetic energy, but rather based on
the value expected for isentropic evolution of the gas. The
resulting errors should normally be negligible however if the
entropy scheme is only applied when the thermal energy is
a negligible part of the total energy, and the pressure forces
are unimportant.

The above discussion makes it clear that an impor-
tant part of this method is the specific criterion used to
decide whether a sufficiently smooth, poorly resolved cold
flow is actually present, and hence a dissipative update of
the entropy via the total energy equation can be delayed. We
presently use the following simple criteria for this purpose.

Our primary criterion relies on directly detecting the
presence of shocks with the help of the Riemann problem
that we solve for each face. The Riemann problem yields
a contact wave that is sandwiched on both sides either by
a shock wave or a rarefaction fan. The Mach number(s) of
the shock(s) present in the Riemann problem can be easily

determined. We hence can find for each cell the maximum
Mach number that occurs in any of the Riemann problems
of its surrounding faces. The idea is to only use the entropy
equation whenever this maximum Mach number is smaller
than a prescribed threshold value.

To examine the consequences of such a scheme, we re-
call the irreversible thermal dissipation rate of shock as a
function of its Mach number. For a shock propagating with
Mach number M = v1/c1 into a medium of density ρ1,
soundspeed c1 and thermal energy per unit mass u1, the dis-
sipative increase in thermal energy per unit time and unit
shock surface area dF can be written as (see also Pfrommer
et al., 2006)

dEdiss

dt dF
= ρ1v1ρ

γ−1
2 (A2 − A1)/(γ − 1), (53)

where A1 and A2 are the pre- and postshock entropic func-
tions, and ρ2 is the postshock density. The adiabatic heating
rate just from the reversible compression of the gas is given
by

dEadiab

dt dF
= ρ1v1(ρ

γ−1
2 − ργ−1

1 )A1/(γ − 1). (54)

The jumps in density and entropy can be expressed in terms
of Mach number only:

fρ(M) ≡ ρ2

ρ1
=

(γ + 1)M2

(γ − 1)M2 + 2
, (55)

fA(M) ≡ A2

A1
=

2γM2 − (γ − 1)

γ + 1

[

(γ − 1)M2 + 2

(γ + 1)M2

]γ

. (56)

This allows us to express the dissipative heating rate as

dEdiss

dt dF
= ρ1u1c1 fdiss(M), (57)

with

fdiss(M) = M[fA(M) − 1]fγ−1
ρ (M). (58)

This shows the well-known result that the dissipation rate
in a shock depends very sensitively on Mach number,
fdiss(M) ∝ (M − 1)3. Similarly, we can write the heating
rate from the adiabatic shock compression as

dEadiab

dF dt
= ρ1u1c1 fadiab(M), (59)

with

fadiab(M) = M[fγ−1
ρ (M) − 1]. (60)

Note that the adiabatic heating rate increases more slowly
with Mach number than the dissipation, fadiab(M) ∝ (M−
1). For very low Mach numbers, the adiabatic heating
strongly dominates, and the dissipative heating becomes
comparatively unimportant. This is shown in Figure 12,
where we plot the factors fdiss(M) and fadiab(M) as a func-
tion of Mach number, as well as their ratio.

This suggests to use a threshold Mach number Mthresh

for deciding whether the entropy equation may be used to
update a cell instead of the total energy equation. If we pick
Mthresh ∼ 1.1 and use the entropy equation only if the max-
imum Mach number of all shocks in the Riemann problems
surrounding the cell lies below this number, then the en-
tropy production of very weak shocks that are associated
with spurious dissipation is suppressed. The flow is effec-
tively treated as being smooth and adiabatic. Note that if
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real weak shocks of this small strength are present, they still
nevertheless have the correct adiabatic heating rate, which
strongly dominates for these weak shocks (by a factor of
more than 100 for M < 1.1), suggesting that errors in the
dynamics should be very minor. Indeed, we have found that
this scheme works especially well for suppressing artificial
heating of the gas from the Poisson noise in the gravita-
tional field of a N-body system. In this case we have also
not been able to find any detrimental impact on the qual-
ity with which the total energy is conserved (on the contrary
actually), which we recall is not manifestly conserved in self-
gravitating systems.

As an alternative to the Mach number switch discussed
above, we have also implemented a scheme that compares
the thermal energy of a cell with a suitably defined kinetic
energy in order to determine whether a flow is cold. This is
more similar to the approach of Bryan et al. (1995) and Ryu
et al. (1993). In practice, we first determine the expected
new thermal energy Etherm = Etot − Mv2/2 at the end of
the timestep, based on the usual conservation laws. If this
energy is much smaller than the maximum kinetic energy
Emax

kin among the cell and all its neighbouring cells,

Etherm < αS Emax
kin , (61)

then the flow is is considered ‘cold’ and the entropy is kept
and not updated in this step. We typically use αS ∼ 0.01 for
the parameter αS , but the results are not sensitive to this
choice provided one ensures that one switches back to the
“normal” treatment of the hydrodynamics once a sufficiently
strong dissipative event occurs.

In the Lagrangian mode of the code, we define the ki-
netic energy Emax

kin of the neighbouring fluid cells relative to
the velocity wi of the current cell. In this way, the criterion
(61) becomes Galilean invariant and effectively compares the
local sound speed with the size of the velocity changes from
cell to cell. Sometimes this renders the criterion too restric-
tive, however, especially in simulations with self-gravity. We
then invoke a further condition,

Etherm < βS Mi gi Ri, (62)

which effectively compares the strength of pressure forces
to the gravitational acceleration. Here Ri is the ‘radius’ of
the cell (see below), and gi is the magnitude of the local
gravitational acceleration. If one of the conditions (61) or
(62) is fulfilled, the entropy is kept for the current step. This
is based on the idea that if the pressure forces are negligible
compared to the gravitational forces, we are dealing with an
effectively kinematically dominated flow, and it then makes
sense to keep the entropy as this provides for a more accurate
temperature evolution.

Note that the scheme described in this subsection is
an optional treatment in the AREPO code. Even if enabled,
there is no difference to the ordinary conservative hydrody-
namics for sufficiently small values of Mthresh, or αS and βS .
Also, if these parameters are set to unreasonably large values
and the entropy production is artificially suppressed, the dy-
namics is often still represented surprisingly accurately. This
is because weak shocks produce only little new entropy. Even
if this entropy production is ignored, the Riemann solver
still recovers the correct jumps in density and velocity and
rescues the dynamics.

3.6 Boundary conditions

We have implemented two simple boundary conditions thus
far, periodic boundaries and reflective boundaries. In both
cases, the computational domain is restricted to be a rect-
angular domain of arbitrary aspect ratio. The implementa-
tion of periodic boundaries is realized with the ghost cell
technique discussed earlier. Even if only a single processor
is used, particles close to the edge of the domain will find
periodic image particles ‘on the other side’ of the princi-
pal domain, and import those as ghost particles. While this
means that the cells that overlap with the box boundaries
will be duplicated in the mesh construction, the overhead
in mesh storage this induces is small. But the convenience
of this approach lies in the fact that it does not require
a modification of the actual mesh construction algorithms
to make them aware of the periodic boundaries. Also, this
simple technique is readily combined with the approach we
adopted to cope with distributed-memory parallelization.

Reflective boundaries can be realized similarly, except
that ghost particles are now not simply primary parti-
cles/cells that are translated by one box-length. Instead,
the spatial location of ghost particles correspond to mir-

rored copies of the primary mesh-generation points. When
added to the primary points, this means that the result-
ing Voronoi mesh for the principal domain will always have
faces aligned with the box boundaries. It is then possible
to impose different boundary conditions on these faces. For
reflective boundaries, we can simply copy the state of the
fluid from the mirrored point, but with the sign of the nor-
mal velocity component reversed. This will automatically
make the mass flux vanish on the surface of the boundary,
and leads to reflective boundary conditions. However, it is
also easily possible with this mirroring technique to realize
outflow or inflow boundary conditions. Finally, it is possible
to arrange for arbitrary curve-linear boundary conditions by
arranging two parallel strings of paired particles in a suitable
way. One of the particles of each pair would constitute a cell
inside the computational domain, the other would be a fidu-
cial cell outside, and the desired boundary condition can be
imprinted at the face they share. If desired, such a bound-
ary may also be moved in complex ways. We will discuss an
illustrative example of this technique in subsection 8.9.

4 MESH REGULARITY

As seen in Figure 1, Voronoi meshes may sometimes look
quite “irregular”, in the sense that there is a significant
spread in sizes and aspect ratios of the cells, especially for
sufficiently disordered point distributions. While this is not
a problem of principle for our approach, it is clear that the
computational efficiency will normally be optimized if re-
gions of similar gas properties are represented with cells of
comparable size. Having a mixture of cells of greatly dif-
ferent volumes to represent a gas of constant density will
restrict the size of the timestep unnecessarily (which is de-
termined by the smallest cells), without giving any giving
a benefit in spatial resolution (which will be limited by the
largest cells in the region).

As we have seen, it is also desirable to have cells where
the centre-of-mass lies close to the mesh-generating point,
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because this minimizes errors in the linear reconstruction
and limits the rate at which mesh faces turn their orientation
during mesh motion. Below, we will discuss our approaches
for steering the mesh motion during the dynamical evolution
such that, if desired, mesh regularity in the above sense can
be achieved and maintained.

4.1 Making cells ‘rounder’

In so-called centroidal Voronoi tessellations, the mesh-
generating points coincide with the centre-of-mass of all
cells. There is an amazingly simple algorithm known as
Lloyd’s method (Lloyd, 1982) to obtain a centroidal Voronoi
tessellation starting from an arbitrary tessellation. One sim-
ply moves the mesh-generating points of the current Voronoi
tessellation to the centre-of-masses of their cells, and then re-
constructs the Voronoi tessellation. The process is repeated
iteratively, and with each iteration, the mesh relaxes more
towards a honey-web like configuration in which the Voronoi
cells appear quite ‘round’ and have similar volume – a cen-
troidal Voronoi tessellation. This is illustrated in Figure 13,
which shows the Voronoi tessellation of a Poisson distribu-
tion of 625 points in 2D, and the result of 50 Lloyd iterations
applied to it.

Inspired by this algorithm, we (optionally) employ a
simple scheme to improve the local shape of the Voronoi
tessellation during the dynamical evolution. We simply aug-
ment equation (31) with an additional velocity component,
which is designed to move a given mesh-generating point to-
wards the centre-of-mass of its cell. There are different pos-
sibilities to parameterize such a corrective velocity. One ap-
proach that we found to work very well in practice is to add
a correction velocity whenever the mesh-generating point is
further away from the centre-of-mass of a cell than a given
threshold, irrespective of the actual velocity field of the gas.
To this end, we associate a radius Ri = (3Vi/4π)1/3 with a
cell based on its volume (or area in 2D). If the distance di

between the cell’s centre-of-mass si and its mesh-generating
point ri exceeds some fraction η of the cell radius Ri, we
add a corrective term proportional to the local sound speed
ci of the cell to the velocity of the mesh-generating point.
This effectively applies one Lloyd iteration (or a fraction of
it) to the cell by repositioning the mesh-generating point
onto the current centre-of-mass, ignoring other components
of the mesh motion. In order to soften the transition be-
tween no correction and the full correction, we parameterize
the velocity as

w
′
i = wi+χ







0 for di/(η Ri) < 0.9

ci
si−ri

di

di−0.9 ηRi

0.2 ηRi
for 0.9 ≤ di/(η Ri) < 1.1

ci
si−ri

di
for 1.1 ≤ di/(η Ri)

(63)

but the detailed width of this transition is unimportant. In
very cold flows the sound speed may be so low that the cor-
rection becomes ineffective. As an alternative, we therefore
also implemented an option in the code that allows a replace-
ment of cs(si − ri)/di in equation (63) with (si − ri)/∆t.
This more aggressive approach to ensure round cells gener-
ally works very well too, but has the disadvantage to depend
on the timestepping. Our typical choice for the threshold of
the correction is η = 0.25, and we usually set χ = 1.0, i.e. the
correction is, if present, applied in full over the course of one

timestep. Smaller values of η can be used to enforce round
cell shapes more aggressively, if desired. Smaller values of χ
can be used to apply the corrective velocity more gently in
time, but we have not noticed problems with the choice of
χ = 1.0 in the problems we examined thus far.

Because only relatively regular meshes have their cen-
tres of mass always close to their mesh-generating points,
the extra velocity component has the tendency to make the
local mesh more regular. Indeed, the above scheme is quite
effective in maintaining low aspect rations for the mesh cells
at all times during the evolution. We therefore found it to be
a good default choice for general simulations with the mov-
ing mesh approach. Note that for a reasonably ‘roundish’
mesh, the correction velocity vanishes and the mesh will be
strictly advected with the fluid in smooth parts of the flow.

4.2 Maintaining constant mass or volume for the

cells

In many applications in cosmology, it is desirable to have
constant mass resolution, and to increase/decrease the spa-
tial resolution automatically when matter clusters or ex-
pands. If the mesh-generating points are moved with the
local fluid velocity, the gas mass in the cells will stay very
nearly constant, thus approximately fulfilling this desired
Lagrangian adaptivity during the course of a simulation.
However, some scatter in the mass per cell will nevertheless
occur after a while, and in complicated flows with strong
compressions and shocks, these fluctuations may reach fac-
tors of several. This calls for a method that is automatically
able to restore and maintain a constant mass per cell.

Similarly, we would sometimes like to impose con-
straints on the volumes of cells as well, for example by re-
questing that they should not exceed a maximum size, or
not become smaller than a prescribed scale. A special case
of this are simulations where one would like to have roughly
constant volume per cell, even though large density con-
trasts develop and at the same time the mesh should still
move with the local flow velocity as far as possible.

In many practical applications, one may in fact request
that both the mass and the volume of cells respect certain
regularity conditions. For example, in situations where a self-
gravitating clump of gas (say a galaxy) is embedded in large
regions of essentially empty space, it would be best to have
cells of nearly equal volume in the region that are largely
(or completely) devoid of gas. (In fact, equal mass per cell
would be ill-defined in this case as it basically meant that
a single cell would have to represent all of this volume.) On
the other hand, in the regions where the density is large, it
would at the same time be desirable to have equal mass per
cell.

We have implemented a scheme to regulate the mesh
motion which effectively ensures that such prescribed con-
straints are respected by the moving mesh. Our method is
inspired by the Zeldovich approximation and requires the
solution of a Poisson-like equation. It is very powerful as it
can eliminate even large-scale deviations from the desired
distribution of cells in very few steps, as we discuss next.

Let n(x) describe the current number density distri-
bution of mesh-generating points. Let us suppose that this
distribution is not quite ideal yet for the given density field
of the gas, according to some suitable criterion, but that

c© 0000 RAS, MNRAS 000, 000–000



Galiliean-invariant cosmological hydrodynamical simulations on a moving mesh 23

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Figure 13. Example for a mesh regularization with Lloyd’s algorithm. The panel on the left shows the Voronoi mesh of a Poisson sample

of 625 points in the unit square, with periodic boundary conditions. The panel on the right hand side is the same mesh after being
evolved with 50 iterations of Lloyd’s algorithm, i.e. in each step the mesh-generating points are moved to the centre-of-mass of their cell.
The mesh slowly ‘crystallizes’ into a quite regular structure with mostly hexahedral cells that are of very similar volume.

it is not too far away from the ideal distribution n0(x). In
the following we will assume that linear order is sufficient to
describe the differences between the current and the ideal
distribution of the mesh-generating points. For each point,
let qi be its ideal coordinate, and xi its current coordinate.
They are related by

xi = qi + ǫ di, (64)

where di is the displacement of site i from its ideal coor-
dinate, and ǫ is a fiducial dimensionless time variable, with
ǫ = 1 corresponding to the current situation. Our goal is to
estimate di, such that by applying a coordinate shift −di

to all the points, we can move the mesh close to the ideal
configuration.

We shall now assume that the displacements can be
obtained as gradient of a scalar field Ψ,

d = −∇Ψ. (65)

Furthermore, since we only consider linear order, we can
write the evolution of the number density field nǫ(x) along
the particle trajectories as

nǫ(x + ǫd) = ǫ n(x + d) + (1 − ǫ) n0(x). (66)

The ‘velocities’ of each point in this transformation are given
by vi = dxi/dǫ = di. Invoking the Lagrangian continuity
equation for the motion of the points,

dn

dǫ
+ n∇ · v = 0, (67)

and evaluating it at ǫ = 0, we obtain the Poisson-like equa-
tion

∇2Ψ =
n(x + d)

n0(x)
− 1 ≃ n(x)

n0(x)
− 1, (68)

where in the last step we approximated to linear order

n(x + d) ≃ n(x). What remains to be done is to specify the
desired density of mesh-generating points n0 for the ideal
configuration of the Voronoi cells. Here we use the following
ansatz that can deal with quite general situations, including
cases where there is empty space. We would like that the
quantity

Ki ≡
mi

m̃
+

Vi

Ṽ
(69)

is equal to a constant value K̃ for all cells, i.e. Ki = K̃.
Here m̃ is a prescribed constant which effectively sets the
desired (maximum) mass per cell, and Ṽ is a chosen value
that determines the desired maximum volume per cell, while
mi and Vi are the actual mass and volume of the cell i. For
the ideal mesh, the mass and volume of a cell are given by
mi = ρ(qi)/n0(qi) and Vi = 1/n0(qi), respectively. We can
hence write

n0(x) =
1

K̃

(

ρ(x)

m̃
+

1

Ṽ

)

. (70)

Note that the density field itself is assumed to be stationary
here; only the sampling by the mesh points changes. This
leads finally to the following Poisson-equation to obtain the
mesh-displacement vectors

∇2Ψ =
K̃ n(x)

ρ(x)/m̃ + 1/Ṽ
− 1. (71)

This can be solved in the same way as we solve for the grav-
itational field, either with particle-mesh (PM) methods in
Fourier-space, or in real-space via a tree, or by a combina-
tion of the two (TreePM method). Finally, we estimate the
displacement of a point from its ideal position by evaluation
d = −∇Ψ at its current coordinate instead of the unknown
ideal coordinate, which is again accurate to leading linear
order.
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Figure 14. Mesh regularization of the initial conditions of an exponential disk. We here randomly distributed 750 particles with an
exponential surface profile of scalelength R0 = 1.0. To represent the ‘vacuum’ outside the disk, an additional Cartesian grid of 10 × 10
particles was placed into the simulation domain, which is a periodic box of 20 length units on a side. The resulting Voronoi mesh is
shown in the top panel. While it has the right density field, the mass per cell (and hence the cell volumes) shows substantial scatter, as

seen in the top right panel. However, after the mesh regularization has been applied, a much better mesh results, as seen in the bottom
panels. While the surface mass density profile has remained the same, there is now little local scatter in the mass and volume per cell.
Inside the disk, constant mass per cell is reached, while far outside, a constant volume per cell is obtained, with a smooth transition

between the two regimes.

We will typically assume periodic boundary conditions
for the mesh regularization. The value of K̃ should then
be set such that the source term on the right hand-side of
equation (71) integrates to zero for the current particle dis-
tribution; this is a prerequisite that the Poisson equation
actually has a well-defined solution for an infinite periodic
space. This means that we should set

K̃ =
Vtot

∑

i

(

ρi/m̃ + 1/Ṽ
)−1

, (72)

where Vtot is the total volume of the simulation domain. The
−1 on the right hand side of equation (71) then eliminates
the constant term in Fourier space. This is similar to the
treatment of self-gravity in periodic spaces, where the mean
density needs to be subtracted from the density field in order
to obtain a finite solution of the Poisson equation.

Solving for the displacement field is equivalent to cal-
culating the gravitational accelerations for a particle distri-
bution with ‘masses’ given by K̃/(ρi/m̃ + 1/Ṽ ). We use the
TreePM formalism for this, which has the advantage of be-
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ing free of any restrictions on dynamic range while at the
same time being quite fast. Once we have obtained the dis-
placement vectors di for all particles, we add a corrective
velocity to the mesh motion as follows:

w
′
i = wi − κ

di

∆t
. (73)

We usually set κ = 0.5, such that the estimated displace-
ment from the ideal position is cut in half in each timestep.
If needed, κ is reduced for the current step such that the
maximum displacement of a point does not exceed half its
cell size, which is needed for stability reasons. As this scheme
is quite effective in maintaining an ideal mesh at all times,
the size of the prefactor κ does not really matter much in
practice.

We note that the above approach essentially corre-
sponds to an ‘inverse Zeldovich approximation’, as it is used
for example by the GADGET-2 code (Springel, 2005) to pro-
duce a gravitational ‘glass’ (White, 1996) of constant den-
sity, except that we generalized the approach to allow con-
struction of generalized glasses for variable density fields
that are constrained by the freely adjustable constants m̃
and Ṽ . We note that this method may also be useful to con-
struct ‘quiet starts’ for SPH calculations that need to initial-
ize astrophysical objects with a prescribed density structure,
such as stars in simulations of stellar collisions. The methods
most commonly used for this purpose at the moment rely
on settling the particle distribution into equilibrium with
the help of artificial friction or pressure forces (e.g. Good-
man & Hernquist, 1991). We also remark that both schemes
for mesh-regularization discussed above obey the property
of Galilean-invariance of the moving-mesh code. This is be-
cause the primary mesh motion is still given by equation
(31); any Galilean boost would simply be absorbed into
it, while the mesh-correction velocities would remain un-
affected.

4.3 Constructing suitable initial conditions

The above discussion about mesh regularity also prompts
the question of how suitable initial conditions for a pre-
scribed initial density field can be constructed. For many
hydrodynamical test problems, constant density fields are
needed that can simply be realized with Cartesian grids.
This is also a possible choice for cosmological initial con-
ditions, where Cartesian grids may be used for the unper-
turbed initial conditions. However, sometimes one would like
to start a simulation with a non-trivial density distribution
for the gas, for example in the form of a gaseous disk with a
prescribed surface density profile, or in the form of a spheri-
cally symmetric gas cloud that approximates the gas distri-
bution in a cluster of galaxies.

One popular approach to realize such general density
distributions in SPH lies in randomly sampling the density
field, for example with the rejection method (Press et al.,
1992). This effectively produces a Poisson sampling of the
underlying density field. While such a particle distribution
can be used as initial conditions for the mesh-generation
points, the quite irregular mesh this corresponds to repre-
sents a significant disadvantage. For example, in the top left
panel of Fig. 14, we show the Voronoi mesh resulting from
a random realization of a gaseous disk with an exponential

gas surface density profile. In addition to 750 particles used
for the primary disk distribution, a coarse Cartesian grid
with 102 points has been used here to fill the volume with
cells that do not exceed a certain maximum volume. Due
to the random sampling, the resulting mesh is characterized
by cells with significant scatter in their volume at any given
radius, as seen in the top panels of Fig. 14, and since the
desired density profile has been prescribed, this is reflected
in an equally large scatter in the mass per cell.

It is of course nevertheless possible to start a simula-
tion with such a Poisson distribution and then to let the
simulation code improve the mesh with time. However, if a
more quiet start is desired, one can also first relax the initial
mesh with the methods described above, except that the gas
distribution is kept fixed in space by solving the advection
equation for the moving mesh, instead of the Euler equation.
For the advection equation, we use a simple second-order
accurate upwind scheme to determine the fluxes at all cell
faces.

An example for the result of such a relaxation is shown
in the two bottom panels of Fig. 14. The panel on the left
shows the Voronoi mesh, and the panel on the bottom right
the radial profiles of mass and volume of each cell, as well
as the surface density profile. Evidently, the relaxed mesh
is much more regular and features relatively ‘roundish’ cells
with low aspect ratios. Also, at any given radius, there is lit-
tle scatter in the mean mass and mean volume of the cells.
In fact, their radial variation follows the imposed constraint
of constant mi/m̃ + Vi/Ṽ very well. This produces a situa-
tion where in the inner parts of the disk the mass per cell
is constant, while in the low density outer regions, the vol-
ume of the cells is kept fixed, with a smooth transition in
between. This behaviour is particular useful for structures
embedded in nearly or completely empty space, for example
for simulations of isolated or colliding galaxies.

5 SELF-GRAVITY

Outside of astrophysics, self-gravity of gases plays hardly
any role in computational fluid dynamics. However, gravita-
tional forces are the primary driver of cosmological structure
formation. This fundamental importance of gravity adds a
significant complication to hydrodynamic codes. In fact, in
cosmology there is arguably little value in calculating the hy-
drodynamics highly accurately when gravity is not treated
with comparable accuracy.

There are some indications that the specific challenges
posed by an accurate treatment of self-gravity have been
underestimated when traditional Eulerian approaches have
been employed in cosmology. This is suggested by recent
comparisons of P3M/Tree/TreePM methods and adaptive
mesh refinement (AMR) codes where both are applied in
pure gravity mode to the clustering of collisionless dark mat-
ter. Both in O’Shea et al. (2005) and Heitmann et al. (2008)
it was found that state-of-the-art AMR codes like ENZO and
FLASH have significant problems in accurately recovering
the low-mass end of the mass function of dark matter halos.
They are only able to match the results of high-accuracy
N-body codes once much finer base meshes and stricter re-
finement criteria are used than are normally employed with
these codes. They are then no longer competitive with al-
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ternative approaches in cosmological structure formation in
terms of calculational efficiency and memory consumption
(O’Shea et al., 2005). While these results have been found
in comparison studies that only tested the AMR gravity
solver for a collisionless fluid, it is clearly worrying that sim-
ilarly poor behaviour is likely also to affect calculations of
self-gravity in hydrodynamical applications.

The problem seems to be that the adaptive refinement
strategy, as presently applied in the gravity solvers of some
of the cosmological AMR codes, does not work particularly
well for the gravitational instability of dark matter, where
structures may grow everywhere from very small seed per-
turbations. Since the placement or removal of refinements
corresponds to discrete and discontinuous changes in local
resolution, the growth of small perturbations can be delayed
if a refinement is placed ‘too late’ onto an emerging halo. The
effectively Lagrangian behaviour of tree codes fares better in
this respect. Here, the spatially homogeneous high force res-
olution allows tree codes to be formulated such that they ob-
serve the Hamiltonian structure of the collisionless dynamics
of dark matter. This structure is broken each time the AMR
mesh hierarchy is modified, because this changes the effec-
tive gravitational softening associated with the mesh, and
modifies the potential energy stored in the density field. As
we will see, in the moving mesh approach such discontin-
uous changes in the Hamiltonian structure of gravitational
dynamics can be avoided.

An attractive feature of our new Lagrangian hydrody-
namical scheme lies in the possibility of combining it eas-
ily with a particle-based approach to calculate the gravi-
tational field, in the form of the familiar high-accuracy N-
body solvers for collisionless dynamics, for example Tree or
TreePM schemes. The simplest approach for this is to treat
the mass of each cell as being concentrated in the centre of
the cell, and then to calculate the gravitational force on a
cell as the suitably gravitationally softened N-body force of
the resulting point set. The hierarchical multipole expansion
used in tree codes, carried out to monopole or quadrupole
order, provides an efficient way to compute these forces. And
thanks to the tree-based approach, the gravitational resolu-
tion then automatically and continuously adjusts in a col-
lapsing structure, and the spatial resolution of self-gravity
in the gas is always matched accurately to that of the hydro-
dynamics (see also Bate & Burkert, 1997). We shall employ
this approach in this work. The specific N-body algorithms
we adopt for calculating the gravitational forces are those of
an updated version of the code GADGET-2 (Springel, 2005).

5.1 The Euler equations with self-gravity

If a gravitational field is present, the Euler equations (8) are
modified by source terms for momentum and energy, which
take the form

∂U

∂t
+ ∇ · F =

(

0
−ρ ∇Φ
−ρv∇Φ

)

. (74)

The gravitational potential Φ may be externally specified,
or it describes the self-gravity of the gas as a solution of
Poisson’s equation,

∇
2Φ = 4πG ρ. (75)

In the former case, the total energy Etot =
∫

(ρe + ρφ)dV
stays constant if the potential is static. In the more relevant
case of self-gravity, the total energy of the system is given
by

Etot =

∫

(

ρe +
1

2
ρΦ

)

dV, (76)

and is conserved in the dynamics, i.e.

dEtot

dt
= 0. (77)

Without gravity, the finite volume formulation for hy-
drodynamics introduced earlier ensures conservation of the
sum of thermal and kinetic energy to machine precision.
Since the thermal energy in this approach is actually de-
fined as the difference between the total energy and kinetic
energy of a cell, it is in principle highly desirable to also
obtain a discretized formulation of the dynamics in the self-
gravitating case where the conservation of energy is mani-
fest. Furthermore, it would be convenient if the gravitational
source term could be incorporated into the time integration
such that there is no need to explicitly include gravity in the
Riemann solver (this can be done approximately, however,
see for example the PPM scheme of Colella & Woodward,
1984).

In the following, we first review a standard approach to
include self-gravity in finite volume codes, which however is
not explicitly energy-conserving. In fact, we will show that
the resulting errors can be quite substantial for certain types
of problems. We then briefly discuss an attempt to improve
on this by restoring manifest conservation of the total en-
ergy, based on including the gravitational self-energy in the
total energy variable that is evolved for each cell. Unfortu-
nately, it turns out that this approach is numerically prob-
lematic since it can lead to unphysical changes of the local
thermal energy. We therefore ultimately adopt a different
solution that corrects for the large errors that can appear in
the ‘standard’ approach. While not manifestly conservative,
we find that, in practice, the total energy is conserved quite
accurately in this approach. Since monitoring the accuracy
of total energy conservation can then also serve as a useful
check of the quality of the integration, we consider this as
a good compromise. Finally, we discuss our treatment of lo-
cally adaptive, time-dependent gravitational softening, and
how this is accounted for in the dynamics.

5.2 A standard approach to include self-gravity

Arguably the simplest method to include self-gravity lies
in an operator-splitting approach, where one alternatingly
evolves the system under the homogeneous Euler equations
and the gravitational source terms. However, such fractional
step methods are often inadequate for handling the gravi-
tational source terms, especially in situations with approx-
imate hydrostatic equilibrium (Müller & Steinmetz, 1995;
LeVeque, 1998; Zingale et al., 2002). We will therefore not
consider this method here.

Instead, we consider the method suggested by Müller
& Steinmetz (1995), which is employed in similar form in
many current finite volume cosmological codes (e.g. Truelove
et al., 1998). Since the gravitational energy is nonlocal, an
explicit conservation of total energy in the discretizations
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of equations (74) and (75) cannot easily be obtained with
an extension of the standard flux-based formalism of finite
volume methods. We may therefore give up the property of
manifest energy conservation and instead couple the grav-
itational field to the Euler equations in a way that resem-
bles the fractional-step approach, except that gravity is also
properly included in the half-step prediction of the hydro-
dynamical step.

We begin by noting that, when the Euler equations are
expressed in primitive variable formulation,

∂W

∂t
+

(

v ρ 0
0 v 1/ρ
0 γP v

)

∂W

∂r
=

(

0
−∇Φ

0

)

, (78)

where W = (ρ, v, P ), the gravitational source term couples
only to the momentum equation. Hence, to first order in
time, the gravitational field does not change the pressure or
density of a fluid, only the velocity is altered. We can there-
fore account for the gravitational field in the hydrodynamic
flux calculation if we augment the half-step prediction of the
velocities with the gravitational acceleration according to

ṽ
(n+1/2)
i = v

(n+1/2)
i − ∆t

2
∇iΦ

(n), (79)

where the potential Φ(n) is calculated at the beginning of
the step. Applying the ordinary reconstruction and Riemann
solver techniques discussed earlier, we can then obtain time-
centred flux estimates that solve the homogeneous part of
the Euler equations. To add the gravitational source term
into the final time-advance, we then proceed as follows. We
first use the estimated mass flux to update the mass con-
tained in each cell,

m
(n+1)
i = m

(n)
i − ∆t

∑

j

AijF
ij
m , (80)

which exploits the fact that the gravitational field does not
appear in the mass equation of the conservative form of the
Euler equations. With the new masses in hand, we can cal-
culate the gravitational forces at the end of the timestep,
∇iΦ

(n+1). This allows an update of the momentum of each
cell, according to

p
(n+1)
i = p

(n)
i − ∆t

∑

j

AijF
ij
p

−∆t

2

[

m
(n)
i ∇iΦ

(n) + m
(n+1)
i ∇iΦ

(n+1)
]

, (81)

where F p is the hydrodynamical momentum flux. Note that
this step also determines the new velocities at the end of
the step. We can use them to finally obtain a second-order
accurate update of the energies of each cell,

E
(n+1)
i = E

(n)
i − ∆t

∑

j

AijF
ij
E (82)

−∆t

2

[

m
(n)
i v

(n)
i ∇iΦ

(n) + m
(n+1)
i v

(n+1)
i ∇iΦ

(n+1)
]

.

Here, the term in square brackets is the gravitational work
term, while the flux term involving FE stems from the ho-
mogeneous part of the Euler equations.

The above scheme does not explicitly conserve total en-
ergy, but it still conserves total momentum and mass. Vio-
lations of energy conservation can arise because the gravita-
tional work term, which is estimated effectively with cell-

centred fluxes, may not precisely balance the actual en-
ergy extracted from the gravitational field, which is deter-
mined by the mass fluxes obtained with the Riemann solver
around a cell’s boundary. We have found that this subtle
difference can sometimes lead to substantial inaccuracies
in total energy conservation, especially in collapse prob-
lems that involve strong shocks and a conversion of large
amounts of gravitational energy into heat energy. For ex-
ample, “Evrard’s collapse problem”, to be discussed in Sec-
tion 9.1, shows large errors of this kind, especially when the
spatial resolution is relatively poor. Note that in this case
the violation of the total energy conservation is first order
in time, i.e. it does not go away with very fine time-stepping
and instead stays constant at a finite (large) size even in the
limit of highly accurate time integration. It is therefore de-
sirable to obtain a more accurate discretization of the energy
equation when a gravitational field is present.

5.3 An explicitly conservative formulation to

include self-gravity

One idea for a more accurate discretization of the conserva-
tive Euler equations in the presence of gravity is based on
rewriting the standard form of the energy equation,

∂

∂t
(ρe) + ∇ [(ρe + P ) v] = −ρv∇Φ, (83)

with the help of the continuity equation as

∂

∂t

(

ρe +
1

2
ρΦ

)

+ ∇

[(

ρe +
1

2
ρΦ + P

)

v

]

=

1

2
ρ
∂Φ

∂t
− 1

2
ρv∇Φ . (84)

This suggests redefining the total energy of an individual
cell as

Ei =

∫

Vi

(

ρe +
1

2
ρΦ

)

dV, (85)

such that the total energy of the system simply becomes the
sum of the Ei of all cells. If we suitably modify the energy
flux function in the hydrodynamical finite volume scheme,
the left hand side of equation (84), which has the form of
a conservation law, can be easily solved such that the total

energy stays constant. If we can also find an explicitly con-
servative discretization of the modified source term on the
right-hand side of equation (84), we would obtain a scheme
that manifestly conserves the total energy.

This can, in fact, be achieved. We can write the right-
hand side of equation (84) as

1

2
ρ
∂Φ

∂t
− 1

2
ρv∇Φ = (86)

G

∫

ρ(x)ρ(x′)
v(x) + v(x′)

2
∇x

1

|x − x′|d
3
x

′.

If we decompose the x′-integration into a sum over integrals
over all cells, and integrate the full energy equation over x

for a cell i, we obtain the discretized form

dEi

dt
+

∑

k

AikF
(E)
ik =

∑

j

vi + vj

2
f ij (87)

for the energy equation, where f ij is the gravitational force
between cells i and j. We see that the term on the right hand

c© 0000 RAS, MNRAS 000, 000–000



28 V. Springel

side effectively symmetrizes the gravitational work term the
two cells exert onto each other. The sum over j extends over
all cells, but both relevant terms, the total force

∑

j
f ij

and the total work term
∑

j
vjf ij can be accurately and

efficiently calculated with a tree algorithm. The sum over k
in equation (87) accumulates the energy fluxes

F
(E)
ik = ρik

(

eik +
Φik

2

)

(vik − wik) + Pikvik (88)

from the neighbouring cells of cell i, where the (ρik, eik,
vik − wik, Pik) are determined by the Riemann problem
between cells i and k, and the potential Φik on the face
between two cells can be defined as the arithmetic mean
Φik = (Φi + Φk)/2 of the potentials at the corresponding
mesh-generating points of the cells. It is not difficult to de-
fine a time integration scheme for equation (87) that pre-
serves its conservative character in the discretized form, such
that at least formally a finite volume scheme results that ac-
curately conserves up to machine precision the total energy,
momentum and mass in the presence of a gravitational field.

However, the above approach shows severe short-
comings in practice. In particular, the fact that the tem-
perature of the gas is effectively defined by subtracting the
kinetic energy and the potential energy from the total energy
associated with a fluid element causes trouble. This can give
rise to spurious local changes in the temperature of the gas
due to the presence of a gravitational field, even though the
Euler equations in primitive variable form show that there
should be no first order change in the temperature due to
a gravitational field. We have found that in some cases this
may even drive the temperature to unphysical negative val-
ues. Secondly, in this approach the temperature field couples
to discreteness noise present in the gravitational field, which
considerably reduces the accuracy of the hydrodynamical
calculations. In combination, these defects are severe enough
that the ‘total energy approach’ described in this subsection
appears not to be a viable practical solution for implement-
ing self-gravity in the moving-mesh approach. We therefore
refrain from using it in our practical applications.

One exception is the case where gravity is simply de-
scribed by an external static gravitational potential Φ. We
can then express the conservation of total energy as

∂

∂t
(ρe + ρΦ) + ∇ [(ρe + ρΦ + P ) v] = 0, (89)

which suggests that we include the gravitational energy in
the definition of the total energy of a cell. The thermal en-
ergy can then be defined by subtracting both the kinetic
energy and the potential energy from the total energy. We
also need to augment the energy flux term for a cell interface
with an additional gravitational energy flux, with the result
that the total energy is exactly conserved. The inclusion of
gravity into the dynamics then proceeds like in equations
(80), (81) and (82), except that in equation (82) the explicit
gravitational work term (in square brackets) is omitted as it
is already accounted for by the energy flux.

5.4 An improved coupling of self-gravity to the

Euler equations

In the following, we discuss a method that tries to improve
the discretization of the energy equation used in the ‘stan-

dard approach’ discussed above in Section 5.2. Recall that
the gravitational work exerted on a cell over a timestep ∆t
is given by

∆Egrav
i = −

∫

dt

∫

Vi

dV ρ v∇Φ, (90)

integrated over the moving volume of a cell. We may also
rewrite this integral as

∆Egrav
i = −

∫

dm

∫

ds∇Φ. (91)

where ds is the displacement of each individual mass ele-
ment. This highlights that the key to accurate energy con-
servation in case of self-gravity is to correctly account for the
actual mass motions that happen in the system. The prob-
lem with equation (82) is that this is not guaranteed explic-
itly since it estimates the mass motion with a cell-centred
flux, but the mass fluxes actually used are calculated at the
surfaces of the cells, and may sometimes be quite different.

We suggest another discretization of equation (90) that
improves on this. First, we introduce the velocity vector wi

of the cell’s motion, which splits the integral into two parts,
one describing the motion of the cell itself (with all of its
mass), and the other accounting for the motion of mass el-
ements that are actually exchanged between two adjacent
cells, viz.

∆Egrav
i = −∆t miwi∇Φi − ∆t

∫

ρi(v − wi)∇Φi dV. (92)

Instead of approximating the volume integral of the sec-
ond part with a cell-centred flux, we transform it into a
surface integral. Neglecting spatial variations in the den-
sity, velocity, and force fields for the moment, we can write
v − wi = ∇[(r − ri)(v − wi)] and apply the Green-Gauss
theorem. This yields

∆Egrav
i = −∆t miwi∇Φi (93)

−∆t

2

∑

j

ρij [(vij − wi)rij ][∇Φirij/rij ]Aij ,

where the sum is now over all faces of area Aij of a cell,
and, as usual, rij = ri − rj is the displacement vector be-
tween the neighbouring mesh-generating points. We have
also replaced the values of density and velocity on the sur-
face with those determined by the Riemann solver. In fact,
the term ∆tρij(vij −wi)rijAij/rij can be recognized as the
integrated mass flux ∆mij = ∆tAijF

ij
m exchanged between

two cells i and j, yielding

∆Egrav
i = −∆t miwi∇Φi −

1

2

∑

j

∆mijrij∇Φi. (94)

An even more instructive form of this equation is obtained
with the replacement

rij∇Φi ≃ Φi − Φj (95)

which gives

∆Egrav
i = −∆t miwi∇Φi −

1

2

∑

j

∆mij(Φi − Φj). (96)

If we define the total gravitational energy of the discretized
system as
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Epot =
1

2

∑

ij

G mi mj φ(rij) =
1

2

∑

i

miΦi (97)

and the potential as

Φi =
∑

j

G mj φ(rij), (98)

where φij describes the gravitational interaction kernel be-
tween two cells, then it is easy to see that equation (96)
describes the gravitational energy change exactly to linear
order in time. This is a significant improvement compared
with schemes based on cell-centred flux for the gravitational
work estimate. The above can hence replace the energy up-
date of equation (82) with a more accurate version that en-
sures conservation of the total energy in self-gravitating sys-
tems.

In practice, we typically use the version (94) based on
the gravitational forces, instead of equation (96) based on
the potential. In order to render the time integration of the
energy equation second-order accurate, we need to replace
the gravitational forces (or potentials) with averages be-
tween the beginning and end of the timesteps, which can be
done as in section 5.2. We note that this method is also ap-
plicable in ordinary Eulerian codes, where ∆wi = 0, not just
in the moving-mesh approach developed in this paper. How-
ever, the method may also cause drifts of the temperature
of the gas in certain situations, and is hence not completely
free of the problems that were mentioned earlier.

5.5 Gravitational softening

To calculate gravitational potentials and forces for our un-
structured hydrodynamical mesh, we represent each cell as
a mass point with an appropriate gravitational softening,
and employ techniques that are commonly used in N-body
algorithms. In principle, the gravitational field of a single
Voronoi cell could be adopted as the field of a polyhedron
of constant density, with the cell’s shape and its total mass.
However, this would make an exact calculation of the field
unwieldy and unnecessarily complicated. As we anyway run
out of gravitational resolution on the scale of the mesh cells,
the precise shape of a cell should be unimportant, provided
we can ensure that the generated field is sufficiently smooth
and free of anisotropies due to the mesh geometry. For sim-
plicity, we therefore represent the potential of each gaseous
cell as that of a top-hat sphere of constant density and ra-
dius h. In order to improve the smoothness of the potential
in light of the varying geometries of individual cells, we typ-
ically choose the volume of this top-hat sphere to be slightly
larger than the cell volume itself. In practice, we relate h to
the volume V of a cell as h = fh(3V/4π)1/3, where we choose
fh ∼ 1.0−1.5. We note that for well-behaved meshes a soft-
ening of the force-law is not strictly necessary because the
mesh-generating points are then always sufficiently distant
from each other. However, a gravitational softening is al-
ways required if a collisionless particle component is present
as well, and it allows a consistent definition of the gravita-
tional binding energy of the gas.

The gravitational potential kernel of a cell of volume V
is taken to be

φ(r, h) = −1

r

{

r
2h

[

3 −
(

r
h

)2
]

for r ≤ h,

1 for r > h,
(99)

as a function of distance r. We then define the total gravi-
tational self-energy of the system of Voronoi cells as

Epot =
1

2

∑

ij

G mi mj φ(rij , hj). (100)

Ignoring mass exchanges between cells for the moment, this
implies that the gravitational acceleration of a cell is given
by

mi a
grav
i = −∂Epot

∂ri

= −
∑

j

Gmimj
rij

rij

[φ′(rij , hi) + φ′(rij , hj)]

2

−1

2

∑

jk

Gmjmk
∂φ(rjk, hj)

∂h

∂hj

∂ri
, (101)

where φ′(r, h) = ∂φ/∂r and rij = ri − rj . The interaction
between cells of different softening lengths is hence sym-
metrized by averaging the forces, as opposed to, for example,
by averaging the softening lengths. This is analogues to the
formalism employed in Hernquist & Katz (1989). By defining
the potential energy of equation (100) slightly differently, in
terms of an interaction potential with a symmetrized soften-
ing length hij , one can however also arrive at a scheme where
the softening lengths are averaged, but then the correction
force derived below is less convenient to calculate.

The last term in equation (101) describes an additional
force component which stems from changes of the gravi-
tational softening lengths. It has to be included to make
the system properly conservative when spatially adaptive
gravitational softening lengths are used (Price & Monaghan,
2007) that are allowed to vary in time, which is our default
approach to treat self-gravity in the moving-mesh scheme.
Since we tie the gravitational softening length to the volume
of a Voronoi cell, we have

∂hj

∂ri
=

∂hj

∂Vj

∂Vj

∂ri
=

hj

3Vj

∂Vj

∂ri
. (102)

Defining the quantities

ηj ≡ 1

2

∑

k

Gmjmk
∂φ(rjk, hj)

∂h

hj

3Vj
, (103)

we can rewrite the last sum in equation (101) as

mi a
soft
i = −

∑

j

ηj
∂Vj

∂ri
. (104)

Using equations (22) and (23) for the partial derivative of
the Voronoi volume (see Serrano & Español, 2001), this can
be more explicitly expressed as

mi a
soft
i =

∑

j 6=i

(ηj − ηi) Aij

(

cij

rij
− rij

2rij

)

, (105)

where the sum extends over all the Voronoi neighbours of a
cell. Note that Aij , cij , and rij are invariant when i and j are
exchanged, while rij changes sign. The term involving cij

produces therefore an antisymmetric force between i and j,
but the same is not obvious for the force from the rij-term.
However, according to the Gauss theorem we have
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Figure 15. Softened gravitational potential for cells and parti-
cles. The solid line shows the spline-based softening we use for
collisionless particles, while the dot-dashed line is the top-hat

like softening of gaseous cells. Both potentials become equal to
the Newtonian potential for u ≥ 1.0. For comparison, we also
show the Plummer softening with a dotted line. The dashed line
is the Newtonian potential of a point mass.

ηi

∑

j 6=i

Aij
rij

rij
= 0, (106)

because the summation is just the surface integral of a con-
stant function. If we subtract equation (106) from equation
(105), we obtain

mi a
soft
i =

∑

j 6=i

Aij

[

(ηj − ηi)
cij

rij
− (ηj + ηi)

rij

2rij

]

, (107)

where now the antisymmetry of the correction force between
particles i and j is manifest.

To properly account for the changes in the gravitational
energy when the softening lengths are varied, we hence need
to calculate the quantities ηi given by Equation (103), which
can be conveniently done alongside the tree walk used for
the gravity calculation. With these values in hand, we can
then calculate the correction force as a surface integral over
the local Voronoi cell. Finally, the correction force is added
to the ordinary gravitational force, and the resulting total
force is used in equations (81) and (82), or alternatively in
equations (96), replacing −m∇Φ where appropriate.

For the dark matter particles, we employ a softening
kernel with a different shape, the same one as used in the
SPH-code GADGET, which corresponds to spreading the
mass of a particle with the more centrally concentrated SPH
kernel. This softening kernel is given by

φdm(r, h) = −G

r
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(108)

where u = r/h. Often, we will quote the gravitational soft-
ening length for collisionless dark matter particles in terms
of an ‘equivalent’ Plummer softening length ǫ, defined such
that the potential at zero lag is m φ(0) = −Gm/ǫ. This im-
plies h = 2.8ǫ. We keep the softening lengths for dark matter

particles fixed, which ensures that the collisionless dynam-
ics is conservative without the need for correction forces like
the ones derived for the gaseous cells. Figure 15 illustrates
the difference in shape between the ‘particle’ and the ‘cell’
kernels, for an equal choice of h. The gravitational softening
we have chosen for dark matter particles results in a slower
decline of the force within the softening length.

In our tree-based gravity calculation, we store for each
tree node the maximum softening length hnode of all parti-
cles it represents, and we always open a node if its distance
is smaller than max(hi, hnode), where hi is the softening of
the particle under consideration. As a result, softened inter-
actions only occur between particles, and not between nodes
and particles.

Finally, a brief comment about our treatment of the
gravitational self-energy of individual resolution elements. In
our tree-based calculation of the potential, we always sum
over all particles, hence the potential at the location of a
particle contains a contribution from the particle itself. In
the case of a dark matter particle of mass m and softening
length h = 2.8ǫ, this is −Gm/ǫ. Because the dark matter
particle masses are constant, there is then a finite gravi-
tational binding energy left even if all particles are spread
out to infinity. While unimportant for the dynamics itself,
we prefer to eliminate this contribution by subtracting the
self-potential −Gm/ǫ from the calculated potential of a col-
lisionless particle. For gas particles (which really represent
cells of a well-defined volume), the situation is different. As
their mass and volume can change, the self-energy contri-
bution of a gaseous cell is not constant and hence cannot
simply be subtracted. This is also not necessary in this case.
As the gas mass is spread out to infinity, its self-energy will
automatically tend to zero, because then the cell volumes
and smoothing radii tend to infinity as well.

6 REFINING OR DEREFINING CELLS

In ordinary Eulerian hydrodynamics, adaptive-mesh refine-
ment techniques are very useful methods for dynamically
concentrating the mesh resolution in regions where it is
needed most, while smooth regions or parts of the flow
that are not of interest can be derefined and modelled more
coarsely. For applications with a large dynamic range in den-
sity and length scales (which is typical in cosmology), adap-
tive mesh refinement is, in fact, often a prerequisite in Eu-
lerian methods in order to achieve the necessary resolution
in the regions that are of most interest.

The Lagrangian moving-mesh methodology introduced
in this paper, when combined with the techniques to steer
the mesh-motion, removes much of the need for adaptive
mesh refinement, especially in applications where quasi-
Lagrangian refinement criteria are used, as is typical in cos-
mological structure formation calculations with AMR. In
fact, we think that the Lagrangian moving-mesh approach
with its automatic adjustment of resolution to the local clus-
tering state is ideal for this type of application, and is ar-
guably more natural than AMR.

One of AMR’s particular strengths is however that the
refinement criteria can be nearly arbitrary. This allows res-
olution to be gained not only where most of the mass goes,
but where resolution is needed or desired most, according to
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Figure 16. Example for the mesh refinement and derefinement
operations. In the middle panel, a Voronoi cell is marked in grey.
In a refinement operation, the cell is split into two cells, as shown
in the top panel. If a coarsening of the mesh-resolution is de-

sired, the cell may be eliminated from the mesh in the derefining
operation shown in the bottom panel.

the problem at hand. For example, one might want to resolve
low-density regions or locate shock fronts particularly well.
Both can be achieved with AMR by an appropriate choice
of the refinement criteria. If the same flexibility is desired
for the unstructured Voronoi code discussed here, one needs
to find ways to refine or derefine the local mesh resolution
dynamically, a topic that we discuss briefly in this section.

In structured AMR, collections of cells can be hierar-
chically covered with patches of refined meshes. Since here
the geometry of the cells is simple, it is easy to arrange
the daughter meshes to exactly cover a certain set of cells
in the parent mesh. This makes the operations of interpola-
tion and prolongation straightforward. For our unstructured
mesh, the situation is more complicated. In particular, it is

not straightforward to cover a contiguous set of cells with
another set that is better resolved, simply because of the
fact that the cell boundaries are defined as the edges of a
Voronoi tessellation. Finding a new, larger set of points as a
replacement for the points contained in some evacuated re-
gion such that the outer convex hull of the Voronoi cells of
all original points remains unchanged is non-trivial in gen-
eral. There is one exception, however: If we want to refine
just a single cell, we can split a Voronoi cell into two halfs
if we insert a new mesh-generating point at almost exactly

the same location as the cell’s original point. This will leave
all surrounding Voronoi cells unchanged.

This forms the basic mechanism for mesh-refinement in
our code. According to a criterion of choice, any given cell
can be flagged for refinement. It is then split into two cells by
introducing a further mesh-generating point, as illustrated
in Figure 16. The conserved quantities of the original cell
(mass, energy, momentum) are distributed among the two
halfs in a conservative way, either simply by weighting with
the relative fractions of the volumes occupied by the two
new cells, or by using the estimated linear gradient for a
conservative reconstruction combined with a volume inte-
gration. After the new point has been inserted, the mesh-
regularization techniques then dynamically change the local
mesh such that the two nearby points created by the cell
split become well separated from each other over the course
of a few timesteps. By introducing the new point in the di-
rection of fluid gradients, one can furthermore optimize the
direction for which the spatial resolution is gained.

Note that a fundamental difference in this refinement
approach compared with the standard AMR method is that
there is no hierarchy of multiple meshes that cover the same
region of interest. Instead, there is always only a single mesh,
albeit with spatially varying resolution. Refinement in our
approach means the dynamic introduction of further cells to
locally increase the resolution.

As we stressed above, the Lagrangian nature of the
moving-mesh approach largely eliminates the need for ‘mesh
derefinements’ in many practical applications. This is be-
cause the mesh follows the flow, which often means that
the resolution automatically stays where it is needed, and
in particular, advection alone does not generate a need for
refinement or derefinement, in contrast to AMR codes. For
example, if a galaxy that is highly resolved in its centre
moves through space with large velocity, the moving mesh
approach automatically follows the centre well, without any
need to introduce mesh refinements. In Eulerian AMR on
the other hand, refinements would have to be constantly in-
troduced along the path of the galaxy’s centre, and then
removed again once it has passed by. Nevertheless, in cer-
tain applications, one may encounter situations also in the
moving-mesh approach where one would like to dynamically
reduce the spatial resolution in special regions of a mesh.
However, the geometry of the Voronoi mesh imposes signif-
icant restrictions on a suitable mesh coarsening operation.
One possibility is to basically try to reverse the refinement
operation discussed above. To this end one can move two
mesh-generating points close together over the course of a
couple of timesteps, until they have essentially identical po-
sition. Once this is achieved, the Voronoi cells corresponding
to the two points can simply be merged by replacing the two
points with a single mesh-generating point at the same lo-
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cation. The new cell then inherits the sum of the conserved
fluid variables of the two merged cells.

However, there are several technical difficulties in this
approach that make its application problematic in practice.
For example, the decision for derefinement is not made for a
single cell, but for two neighbouring cells simultaneously. In
addition, several timesteps are needed to bring two mesh-
generating points close together in a smooth fashion, ei-
ther during the actual time evolution (over which the condi-
tions for derefinement may well change) or during a pseudo-
evolution where the density field is kept static and only the
advection equation for the deforming mesh is solved.

Because of these difficulties, we have implemented an
alternative derefinement strategy where a cell is dissolved
instantly by simply removing its mesh-generating point from
the tessellation. This means that the volume of the removed
cell will be claimed by the surrounding Voronoi cells, as illus-
trated in Figure 16. It is then also natural to distribute the
conserved fluid quantities (mass, energy, momentum) of the
dissolved cell among these neighbours, in proportion to the
claimed volume fractions. Working out the corresponding
geometrical factors requires the construction of the Voronoi
diagram of the neighbouring cells with and without the point
that is removed.

A small complication in this approach is that the re-
moval of a cell changes the geometry of all the neighbour-
ing cells. This in turn may well change the outcome of the
derefinement criterion for these neighbouring cells. For ex-
ample, if all cells below a certain size are supposed to be
derefined and two neighbouring cells are candidates for the
derefinement, then the removal of one of them will make the
other larger, so that it may no longer fulfill the derefinement
criterion. To make the order of derefinement a well-defined
procedure, we construct the list of cells that are derefined
in a given timestep in the following way. First, we restrict
ourselves to derefinement criteria that allow a priority order-
ing of some kind, i.e. we need to be able to unambiguously
identify the cell that should ‘most urgently’ be derefined.
Starting with this cell, we then flag cells for derefinement
in the order of this urgency parameter. However, we skip all
cells that already have a neighbouring cell that is flagged for
derefinement in the same timestep. In this way we always
have a well-defined set of cells that can be derefined in a
given timestep, and only cells whose derefinement criteria
are independent from each other are derefined in the same
step. This also means that two neighbouring cells are never
derefined in the same timestep. In Section 8, we will discuss
a test problem (the Noh problem) where we apply both the
refinement and derefinement strategy described here.

7 TIME INTEGRATION

In this section, we discuss issues of time integration. In par-
ticular, we introduce an individual timestep scheme that can
be used for our finite volume discretization on an unstruc-
tured mesh. We will also address how we combine the hydro-
dynamics with the integration of a collisionless N-body sys-
tem that represents dark matter or stars in galaxies. Finally,
we detail how we implemented cosmological integrations in
an expanding universe, and we explain the general struc-

ture of our new simulation code AREPO that implements
the methods discussed in this paper.

7.1 Timestep criterion

For hydrodynamics with a global timestep, we employ a sim-
plified CFL timestep criterion in the form

∆ti = CCFL
Ri

ci + |v′
i|

(109)

to determine the maximum allowed timestep for a cell i.
Here Ri is the effective radius of the cell, calculated as Ri =
(3Vi/4π)1/3 from the volume of a cell (or as Ri = (Vi/π)1/2

from the area in 2D), under the simplifying assumption that
the cell is spherical. The latter is normally a good approx-
imation, because we steer the mesh motion such that the
cell-generating point lies close to the centre-of-mass of the
cell, which gives it a “roundish” polyhedral shape. CCFL < 1
is the Courant-Friedrichs-Levy coefficient (usually we choose

CCFL ≃ 0.4 − 0.8), ci =
√

γP/ρ is the sound speed in the
cell, and |v′

i| = |vi −wi| is the velocity of the gas relative to

the motion of the grid. In the Lagrangian mode of the code,
the velocity |v′

i| is close to zero and usually negligible against
the sound speed, which means that larger timesteps than in
an Eulerian treatment are possible, especially if there are
large bulk velocities in the system.

If the code is operated with a global timestep, we de-
termine the next system timestep as the minimum

∆t = min
i

∆ti (110)

of the timestep limits of all particles. In simulations with
gravity, we also impose a second kinematic timestep crite-
rion for each particle, as described in Springel (2005), and we
restrict the maximum allowed timestep to a suitable value.
However, we have also implemented an individual timestep
scheme, where the different timestep conditions of different
cells are treated in a more flexible and computationally effi-
cient fashion. This is discussed next.

7.2 Individual timesteps

In typical cosmological simulations, a large dynamic range in
densities quickly occurs as a result of gravitational cluster-
ing. Accordingly, local dynamical times can vary by orders of
magnitude. It has hence long been common practice to use
individual timesteps for the collisionless N-body problem,
a technique that has also been extended to hydrodynami-
cal SPH simulations (e.g. Katz et al., 1996; Springel et al.,
2001). However, the use of individual timesteps in mesh-
based finite volume codes is more problematic and appears
to be rarely used, except in the context of AMR simula-
tions. In the latter, individual refined grid patches are typ-
ically subcycled in time (frequently by a factor of 2 if the
refinement factor is 2) relative to their parent grid. Refluxing
techniques are then used to assure that a fully conservative
solution is obtained on the coarser parent grid as well. Note
that in this approach the same volume is effectively covered
multiple times.

We aim for another solution, because in the moving
mesh approach the cell size may vary greatly without an
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Figure 17. Sketch of the individual time integration scheme used in AREPO for the hydrodynamics. The mesh cells in this example
occupy three different timebins, and are coloured accordingly in the sketch. In each timestep, fluxes are calculated for all faces where at
least one of the cells is active on the current timestep. The cells then exchange conserved quantities on the smaller of the two timestep
sizes of the two neighbouring cells of each active face. A cell has the possibility to reduce its timesteps at the end of each step, but can

only move to a timestep twice larger every second step in order to maintain a nested synchronization of the timestep hierarchy.

associated nested grid structure. In order to save computa-
tional time in simulations with a large dynamic range, we
would like to be able to evolve only certain parts of the mesh
with a small timestep, and other parts with a larger step size.
At the same time we want to retain the conservative char-
acter and the stability of the finite-volume approach that is
obtained for a global timestep.

Our approach to address these requirements is based on
a discretization of the allowed timestep sizes into a power-of-
two hierarchy, similar to the approach frequently adopted in
cosmological SPH codes (e.g. Katz et al., 1996). This means
that the actual timestep ∆ti of a cell i is determined by tak-
ing the largest power of 2 subdivision that is smaller than the
timestep criterion of equation (109). This effectively puts the
cells into a set of timestep bins that form a nested hierarchy
of possible timesteps, providing for a partial synchronization
of the timesteps of different cells.

Our individual timestep integration of the unstructured
mesh is based on the principle that, if two adjacent cells have
different timesteps, their common face is evolved with the
smaller of the two steps. This leads to a time-integration

scheme that is graphically explained in the sketch of Fig-
ure 17. In this example, in ‘Step 0’, the current system time
is synchronized with the start of all three timestep sizes that
are present. As a result, the Voronoi mesh needs to be gen-
erated for all cells present in the system, and fluxes are esti-
mated for all of the faces. However, the flux estimate is done
for different timestep sizes, depending on the timesteps of
the involved cells, as indicated in the sketch. For each face,
always the smaller timestep of the two neighbouring cells
is used as actual timestep, and the time-integrated fluxes
estimated for the faces are used to update the conservative
quantities of the two adjacent cells.

Once the step is completed, the system time is ad-
vanced to the next beginning/end of occupied timestep bins,
and step 1 in Fig. 17 begins. For cells that have completed
their timestep (these are the ones marked with timestep size
‘1/2∆t’), new primitive fluid variables and gradients are esti-
mated, but the other cells continue to use their old primitive
variables and gradients for half-step predictions and flux es-
timates. Also, their mesh-generating points continue to move
with the velocities assigned in their last active step. In step
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Figure 18. Flow chart of the simulation code. After a number of initialization steps (marked by the dashed box on the left), the code
enters a main loop. In each iteration of the main loop, the system advances by a time interval ∆t that corresponds to the smallest

occupied timebin. Active cells or collisionless particles are always those with a timestep that is in sync with the current time of the
system. In the first phase, operations correspond to active particles beginning their timestep, in the second phase to those that end their
timestep.

1, only a much smaller set of the faces is active during the
step, and only those cells of the Voronoi mesh need to be
constructed that have at least one active face. We achieve
this by inserting only the mesh-generating points of such ac-
tive cells into the mesh, and by ensuring the completeness
of their Voronoi cells with the search radius technique dis-
cussed in subsection 2.4. Fluxes are estimated only for the
active faces, and used to update the conservative quantities
of the involved cells. This process repeats again in step 2
and step 3. Whenever a cell has completed its timestep, its
primitive variables are updated based on the accumulated
changes of its conserved quantities. Also, the cell may then
change its timestep size. The timestep can always become
smaller after a step has been completed, but it can only in-
crease if the higher timestep level is synchronized with the
current time, i.e. if the target timebin starts one of its steps
at the current time. This means that a cell may increase its
timestep only every second step. An example for timestep
changes is seen in step 4 of the sketch in Fig. 17: After hav-
ing completed step 3, a few cells reduce their timestep, and
others increase it. With this change, the system is then in-
tegrated forward in time through steps 4 and 5.

By construction, the above scheme is conservative as it
only involves pairwise exchanges of conserved fluid quanti-
ties. We have also found it to perform accurately in prac-
tice, in the sense that we obtained comparable accuracy in

simulations where a global timestep or the more efficient in-
dividual timestep scheme were used. A specific test of this
will be discussed in Section 8.

A crucial point lies in the determination of suitable in-
dividual timesteps; this obviously can have a large impact
on the accuracy of the individual timestep scheme, as well
as on the efficiency gain that can be realized with it. The
timestep criterion of equation (109) is purely local, and is
only appropriate for hydrodynamical waves that travel with
the local sound speed. If a supersonic shock wave is ap-
proaching, the local gas element would be ignorant of it until
the shock has arrived, and may therefore be put on an in-
adequately large timestep just before the shock strikes. We
hence need to determine adequate timesteps by somehow
taking information about distant regions into account. The
idea is that any given cell should estimate the earliest time
when it could become affected by the gas present in some
other cell, and this would then provide a suitable maximum
individual timestep. To make this concept more explicit, we
define a ‘signal speed’ (Whitehurst, 1995; Monaghan, 1997)
between two cells i and j,

vsig
ij = ci + cj − vij · rij/rij , (111)

where the velocity difference vij of the two cells is pro-
jected onto their separation vector. We then require that
the timestep of cell i should be smaller than the travel time
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of this signal over the distance rij of cells i and j. This means
we replace the timestep criterion of equation (109) with

∆ti = CCFL min

(

τi,
Ri

ci + |v′
i|

)

, (112)

where

τi = min
j 6=i

(

rij

ci + cj − vij · rij/rij

)

. (113)

The timestep of equation (112) is the maximum allowed
timestep for cell i, and can be used in our individual timestep
approach.

A brute-force calculation of this timestep criterion
would be a prohibitive N2 process. However, we can use a
hierarchical tree-based grouping of the particles for a much
more rapid evaluation of the timestep criterion, with a cost
of order O(log N) per particle. For this purpose we use the
same oct-tree that we anyway employ for neighbour search
(as needed in the parallelized mesh construction, see Fig. 9)
and the gravity calculation. For each tree node, we store
the maximum sound speed cmax, and the maximum velocity
magnitude vmax for all the cells with their mesh-generating
points contained in the node. The calculation of the maxi-
mum allowed timestep is then done with a special tree walk.
We start the walk with a first guess for the timestep, equal
to ∆tcurrent = Ri/(ci + |v′

i|). If a single particle j 6= i is
encountered, its value of rij/vsig

ij is computed and used to
update ∆tcurrent if it is smaller. If a tree node is encountered,
we calculate a special tree opening criterion, of the form

dmin < ∆tcurrent (ci + cmax + |vi| + vmax), (114)

where dmin is the smallest distance of the point ri to the
boundaries of the node under consideration. If this condition
is fulfilled, the tree node is opened and its daughter nodes
are considered in turn, otherwise the tree walk along this
branch of the tree can be discontinued because there cannot
be a particle inside the node that would require a smaller
timestep than the current one. When the tree walk finishes,
the timestep of cell i is finally given by ∆ti = CCFL∆tcurrent.

We note that this scheme is more general and flexible
than the suggestion by Saitoh & Makino (2009) to restrict
the timestep choices of a particle (cell) by the timesteps
of its immediate neighbours. Our approach can choose opti-
mum timesteps even under extreme conditions. For example,
one can imagine a high-speed collision of two self-gravitating
cold blobs of gas. While the blobs are still separate, our
scheme would assign large timesteps to them, allowing them
to efficiently propagate through space, but right before the
physical collision starts, the timesteps would be reduced ap-
propriately. We also note that the above scheme produces
Galilean-invariant timestep choices.

7.3 Cosmological integration

In an expanding Friedman-Lemaitre cosmology, the Euler
equations need to be modified by source terms that describe
the decay of velocities and energies due to the expansion
of space. It is convenient to describe the fluid positions in
terms of comoving coordinates x = ar, where a is the cos-
mological scale factor a = 1/(1 + z) and z is the redshift.
We also define a comoving density ρc ≡ a3ρ, and a ‘comov-
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Figure 19. L1 error norm for an acoustic wave in one dimension,

calculated with the moving-mesh code (red circles), or with a
fixed mesh (blue open circles). The two schemes produce nearly
identical errors (the moving mesh code lies only ∼ 1− 2% lower),
and the solution converges as L1 ∝ N−2, i.e. with second order

accuracy.
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Figure 20. L1 error norm for a contact discontinuity (a density

step from ρ = 1 to ρ = 2 that moves once through a box. The
blue circles show the error as a function of resolution when we use
our code with a Cartesian mesh with a fixed grid. In the presence
of the discontinuity and the need to advect it the global rate
of convergence is reduced to only about L1 ∝ N−3/4. However,
for the moving-mesh code, shown with red circles, the error is
consistent with zero within floating point rounding errors. For
comparison, we also show with diamonds the L1 error of the same

test carried out with ATHENA (using 2nd order reconstruction
and the Roe solver). The dotted line illustrates a second-order
scaling.

ing pressure’ Pc ≡ (γ − 1)ρcu. The Euler equations in an
expanding universe can then be written as

∂ρc

∂t
+

1

a
∇c(ρcv) = 0, (115)

∂(ρcv)

∂t
+

1

a
∇c[(ρcvv

T +Pc)v] = −H(a) ρcv−
ρc

a2
∇cΦc,(116)
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∂(ρce)

∂t
+

1

a
∇c[(ρce+Pc)v] = −2H(a) ρce−

ρcv

a2
∇cΦc.(117)

Here v = a ẋ is the peculiar velocity. The specific energy is
defined in terms of the peculiar velocity as e = u + v2/2.
The gradient operator ∇c acts on the comoving coordinates
x, and H(a) = ȧ/a is the Hubble expansion rate. Φc is
the comoving peculiar gravitational potential, which is the
solution of

∇2
c Φc = 4πG [ρc(x) − ρc], (118)

where ρc is the mean comoving density of the universe.
Integrating these equations over the comoving volume

of a Voronoi cell, it is easy to see that suitable ‘conservative’
variables are still given by mass, momentum and energy of
a cell, except that the total momentum and total energy of
the simulated system are not strictly conserved any more
due to the presence of the terms involving H(a). However,
surface integrals over cells simply yield the ordinary fluxes of
the Euler equations, evaluated with the physical fluid quan-
tities and the physical areas of the cell interfaces. Hence we
can continue to use the Godunov approach for determining
the fluxes, and they themselves are still fulfilling a detailed
balance between cells.

To incorporate the loss terms due to cosmological ex-
pansion, we proceed similarly as for the gravitational source
terms. To calculate time-centred fluxes, we incorporate the
decay terms in the half-step prediction of the primitive vari-
ables and then obtain a second-order accurate update for
the full step by evaluating the loss terms at the beginning
and end of the step. For example, for the energy contained
in a cell, this takes the form

En+1 = En + ∆Eflux − [H(an)En + H(an+1)En+1] ∆t,(119)

where En+1 is the energy at the end of the step, and ∆Eflux

denotes the accumulated energy flux into the cell across its
surface. Note that equation (119) can be easily solved for
the new energy En+1 at the end of the step.

7.4 Structure of the AREPO code

In Figure 18, we show a basic flow-chart of the new cosmo-
logical hydrodynamical code AREPO that implements the
methods described in this paper, and which was used to cal-
culate all the test problems discussed in the next sections.
This code is parallelized for distributed memory comput-
ers, and is written in ANSI-C. Its input and output files
largely match those of the TreePM/SPH code GADGET-2,
such that a comparison of moving-mesh calculations with
corresponding ones done with SPH is straightforward.

The AREPO code allows a variety of different types of
simulations, both in 2D and 3D. Self-gravity of the gas can
be included, and is either computed with a pure Tree or
a TreePM approach. A collisionless dark matter or stellar
fluid can be optionally included as well. Simulations both
in Newtonian space, or in an expanding universe are possi-
ble. Also, fully adaptive, individual timesteps are supported
both for the gas and the dark matter particles. The flow
chart of Figure 18 shows how the code arranges the differ-
ent calculational steps. We have also implement additional
physics modules into our new code, such as radiative cooling,
star formation, and energy feedback processes, following the

treatment in the most recent version of the GADGET code.
Details of these implementations will be described elsewhere.

8 HYDRODYNAMICAL TEST PROBLEMS

In this section, we consider a number of hydrodynamical test
problems in order to assess the accuracy and robustness of
our new moving-mesh code. We will frequently compare the
results with calculations that start from identical initial con-
ditions but do not allow for a motion of the mesh-generating
points. In this case, our code should behave equivalently to
a standard Eulerian scheme with second-order accuracy in
space and time. For a few of the test problems we investigate
this aspect explicitly by also comparing with the publicly
available, high-accuracy MHD code ATHENA (Stone et al.,
2008). A number of our test problems also allow comparisons
with results published in the literature for other codes. Note
that tests involving self-gravity are discussed separately in
Section 9.

8.1 One-dimensional waves

We begin with arguably one of the most elementary hydro-
dynamical test problems, the treatment of simple waves in
one dimension. This, in particular, can serve as a sensitive
test of the convergence rate of the code (see, e.g., the discus-
sion in Stone et al., 2008). We first consider simple acoustic
waves. Following Stone et al. (2008), we initialize a travel-
ing sound wave of very small amplitude ∆ρ/ρ = 10−6 (to
avoid any wave steepening) and with unit wavelength in a
periodic domain of unit length and unit density. We use a
one-dimensional version of the code in this test, where the
Voronoi faces can be easily constructed at the mid-points of
the mesh-generating points. However, we have checked that
the same results are also obtained with the two-dimensional
version of the code. The pressure is set to P = 3/5, such that
the adiabatic sound speed is cs = 1 for a gas with γ = 5/3.
The mesh-generating points are moved with the local veloc-
ity of each cell, without terms for mesh regularization.

We let the wave travel once through the box, and com-
pare the final result with the initial conditions in terms of
an L1 error norm. We define the latter as

L1 =
1

N

∑

i

|ρi − ρ(xi)|, (120)

where N is the number of cells, ρi the numerical solution
for cell i, and ρ(xi) is the expected analytic solution for the
problem (which is equal to the initial conditions in this first
test).

In Figure 19, we show results for the error norm for
the acoustic sound wave test as a function of the number of
cells, both for a fixed-mesh, and for the moving mesh. Re-
assuringly, the results demonstrate global second order con-
vergence of the code, as expected for a smooth problem like
this one. This is true both for the moving-mesh approach, as
well as when we keep the mesh fixed, with almost identical
errors. Furthermore, we note that the absolute size of the
errors are very similar to what Stone et al. (2008) achieved
with ATHENA.

Next, we consider a more demanding test, the advection
of a contact discontinuity once through the box. To this end,
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Figure 21. A shock tube test with initial conditions frequently used in previous code tests (Hernquist & Katz, 1989; Rasio & Shapiro,
1991; Wadsley et al., 2004; Springel, 2005). The panel on the left shows the result (symbols) of a 2D test with equal volume per cell and

a fixed mesh, the right when the mesh is allowed to move. The solid lines show the analytic solution, and the dotted lines in the top row
mark the initial conditions.

the left half x < 0.5 of the box is set to density ρ = 1, and
the right half to density ρ = 2, with pressure P = 3/5 ev-
erywhere. We now let this contact discontinuity move once
through the box with velocity vx = 1.0 everywhere. In Fig-
ure 20 we show the L1 error as a function of resolution if
a fixed mesh is used. Now the convergence is in fact only
L1 ∼ N−0.75. This is simply reflecting the numerical diffu-
sivity of the Eulerian approach for contact discontinuities.
We have checked that ATHENA also shows the same scaling
of the error if second-order reconstruction is used. On the
other hand, for our moving mesh code, the error is consis-

tent with zero to machine precision, L1 <∼ 10−17. This is of
course the expected result for a Galilean-invariant scheme,
as for vx = 0 the fixed mesh recovers the analytic result.
This illustrates in a first practical application the accuracy
gain offered by a moving-mesh: pure advection errors are
reduced or eliminated. On the other hand, the error for the

Eulerian result is primarily set by the distance over which
the discontinuity needs to be advected, largely independent
of the velocity of the flow. It is hence a strong function of
the reference frame picked for the calculation.

8.2 Shock-tube test

We continue our investigation of basic hydrodynamical test
problems with a one-dimensional Sod shock tube. For defi-
niteness, we pick a left state (x < 0) described by P1 = 1,
ρ1 = 1, and v1 = 0, and a right state (x ≥ 0) given by
P2 = 0.1795, ρ2 = 0.25, and v2 = 0, in a gas with adiabatic
index γ = 1.4. Of course, a large number of other simple Rie-
mann problems are equally well possible. We have adopted
these parameters because they were previously used in a
number of other code tests (Hernquist & Katz, 1989; Rasio
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Figure 22. Density profile at time t = 0.038 of the interacting double blast wave problem of Woodward & Colella (1984), for a resolution

of 400 cells in the domain [0, 1]. The panel on the left shows our result for the moving mesh-code, while the panel on the right is based
on the same initial conditions but using a fixed mesh. The red circles mark density values for individual cells of the 400-cell calculation,
while the solid line is a high-resolution calculation with 20000 cells and a fixed mesh, for comparison.

& Shapiro, 1991; Wadsley et al., 2004; Springel, 2005, among
others).

We sample the problem with points of spacing ∆x = 0.2
along the x-axis, and examine the solution at time t = 5.0.
Note that in our moving mesh-calculation this means that
the cells start out with unequal masses. We however refrain
here from trying to adjust the mesh motion such that the
masses per cell become equal. Rather, the mesh motion is
simply taken to be given by the local flow velocity in the
moving-mesh case. We have set-up this problem in a two-
dimensional domain to also test the 2D mesh generation,
even though this problem could of course be more efficiently
calculated with the 1D version of our code.

In Figure 21, we compare the shock-tube results, both
for our moving-mesh code and the fixed-mesh case, with the
analytic result expected for this Riemann problem. Both cal-
culations produce a sharply resolved shock (of Mach num-
ber M = 1.48), but there is a trace of small post-shock
oscillations in the Lagrangian calculation. Presumably, this
could be avoided with a more sophisticated wave-by-wave
flux limiting procedure that would give our scheme the total-
variation-diminishing (TVD) property, which it presently
does not have due to the simpler MUSCL-Hancock ap-
proach. Note that the contact discontinuity is smoothed out
quite noticeably in the Eulerian calculation, which also gives
rise to a corresponding error in the entropy profile across the
contact discontinuity. As we have also seen above, this is a
generic feature in Eulerian methods and results from ad-
vection errors in evolving the moving contact discontinuity.
In contrast, the contact discontinuity is very sharp in the
moving-mesh calculation, and it stays sharp as a function
of time. The conclusion that one may draw from this test
is hence that the moving-mesh approach can resolve shocks
just as well as an Eulerian method on a fixed mesh, but it

is able to produce more accurate results for contact discon-
tinuities.

8.3 Interacting blast waves

Another classic one-dimensional test problem is the interac-
tion of two strong blast waves, as introduced by Woodward
& Colella (1984). Here a gas of density ρ = 1 with adiabatic
index γ = 1.4 in the domain x ∈ [0, 1] is initially at rest.
The pressure is set to P = 1000 for x < 0.1, to P = 100 for
x > 0.9 and to P = 0.01 elsewhere. The boundary condi-
tions are reflective on both sides. The time evolution of this
problem features multiple interactions of strong shocks and
rarefactions, which provides for a sensitive test of a hydro-
dynamical code.

We follow Stone et al. (2008) and study a low reso-
lution calculation of the problem with 400 equally spaced
points in the domain of width L = 1. We consider both a
calculation with a fixed mesh, and one with a moving mesh;
in the latter case, the mesh-generating points are moved
with the local flow velocity, so that the calculation is ef-
fectively Lagrangian, and mesh-regularization is carried out
with η = 0.1 and χ = 1.0. We use the 1D version of the code.
For comparison purposes, we also compute a high-resolution
result with a fixed mesh of 20000 cells, which serves as a
proxy for a nearly exact solution.

In Figure 22, we show the density profile at time t =
0.038, at which point our results can also be compared with
those of Stone et al. (2008) and Woodward & Colella (1984).
Our ‘Eulerian’ fixed-mesh solution is similar in quality to
that obtained with ATHENA by Stone et al. (2008), except
that it shows slightly more diffusion in the contact discon-
tinuities. This presumably reflects the benefits of the third-
order reconstruction that Stone et al. (2008) had used for
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t =0.013 t =0.025 t =0.050

t =0.100 t =0.190 t =0.280

t =0.370 t =0.460 t =0.550

Figure 23. Time evolution of the density field in a 2D Taylor-Sedov blast wave calculation with the moving-mesh code. The time of

each snapshot is indicated in the panels. The evolving Voronoi mesh is overplotted, and has a resolution of 45 × 45 cells. Roughly at
time t = 0.19, the shock reaches the periodic boundaries of the domain of unit side length L = 1, and effectively collides with the blast
wave of the periodic grid of explosions described by this set-up. This compresses much of the matter into the corners of the domain, a
process that is well followed by the moving mesh.

this problem, while we have only employed our standard
second-order scheme. Nevertheless, both Eulerian results
show quite sizable smoothing of the contact discontinuities,
especially for the one at x ≃ 0.6. On the other hand, the
moving-mesh solution does much better in this respect. The
deviations to the high-resolution result are much smaller ev-
erywhere, and in particular, the density maximum at x ∼ 0.8
is recovered quite well and the discontinuities are resolved
sharply. For the same number of cells, the moving-mesh code
therefore clearly produces a more accurate solution. Similar

to the simple shock tube problem, we see that it is again the
contact discontinuities that are improved most.

8.4 Point explosion

In this test, we inject an energy E into a point-like region
in an initially homogeneous cold gas of density ρ. This re-
sults in a spherical Taylor-Sedov blast-wave, which has a
well-known analytic self-similarity solution (e.g. Landau &
Lifshitz, 1966). After a time t, the blast wave propagates
to a distance r(t) = β(Et2/ρ)1/5, where the constant β de-
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Figure 24. Effect of mesh regularization on the geometry of the Voronoi mesh. The panel on the left shows the Voronoi mesh obtained
at t = 0.55 for the Sedov-Taylor blast wave test of Figure 23 when the mesh-generating points are only moved with the local gas velocity.

While this produces a mesh well adjusted to the particular flow properties and symmetries of this problem, the high aspect ratio of
some cells may be unfavourable in more general flows. The panel on the right shows the Voronoi mesh if we apply our standard mesh
regularization procedure during the mesh motion. This tends to make the cells ’rounder’ and more isotropic. Note that the predicted

density distributions of both simulations are very similar.
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Figure 25. Density profile for a 3D Taylor-Sedov blast wave calculation at time t = 0.06. The initial resolution was 643 cells, with all

the explosion energy injected into a single cell. We compare results for our moving-mesh code (left panel) with the result obtained for
a fixed Cartesian mesh (right panel). The circles give the densities of individual cells, which have been randomly subsampled by about
1/200 to avoid too strong crowding.

pends on the adiabatic index γ (β ≃ 1.15 for γ = 5/3 in
3D), E is the explosion energy, and ρ describes the initial
density of the ambient gas. Directly at the spherical shock
front, the gas density jumps to a maximum compression of
ρ′/ρ = (γ + 1)/(γ − 1), with most of the mass inside the
sphere being swept up into a thin radial shell. Behind the
shock, the density rapidly declines and ultimately vanishes
towards the explosion centre.

We first consider the 2D case, which allows us to illus-
trate the mesh motion in an easy way. In Figure 23, we show
the time evolution of the density field with the mesh overlaid
for a low-resolution calculation of the blast wave problem.
Initially, the mesh-generating points for a gas of unit density
are arranged in a 45× 45 Cartesian mesh, and an energy of
E = 1 is injected into the central cell. The mesh is allowed
to move with the local flow velocity. We see that the prop-
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t = 0.013 t = 0.025 t = 0.050

    1∆t     2∆t     4∆t     8∆t    16∆t

Figure 26. Spatial distribution of the sizes of individual timesteps in an integration of the two-dimensional Taylor-Sedov blast problem.
The cells shaded in different colours are evolved with different timesteps in a power-of-two timestep hierarchy, as labeled. Fluxes between
cells are always calculated on the smallest timestep of the two adjacent cells. Our tree-based approach to calculate the first possible
arrival time of a signal from any other cell puts cells well ahead of the blast wave on sufficiently small timesteps.

agation of the blast wave is reflected in an evolving mesh
geometry, with the smallest cells occurring where the mass
piles up behind the shock. Periodic boundary conditions are
used in this problem, so that the shock eventually collides
with its mirror copies at the boundaries of the box. This
compresses most of the mass temporarily into the corners of
the box. However, the moving mesh algorithm can deal with
this gracefully and robustly.

Actually, for the simulation displayed in Figure 23, the
mesh was not moved just with the local flow velocity of each
cell, but in addition the correction scheme of equation (63)
was applied (using η = 0.3 and χ = 1.0), which tries to keep
mesh cells round. The effect of this can be seen in Figure 24,
where the mesh geometry at time t = 0.55 is compared with
(right) and without (left) any mesh regularization. Clearly,
when the cells are moved with the local flow velocity alone,
the mesh acquires some cells of quite high aspect ratio. Ac-
tually, the shape of the cells tends to adapt to the local flow
features, for example, the cells become elongated parallel
to the blast wave. This improves the spatial resolution in
the direction of propagation of the shock front, which can
be desirable in principle. In fact, this automatic resolution
adjustment mimics attempts to make SPH more adaptive
to local resolution requirements with the help of anisotropic
kernels (Owen et al., 1998). However, for general flow prob-
lems, we argue that it is safer and more robust to avoid
high aspect ratios, as one cannot rely on local symmetries
for long, and the next shock wave may strike from another
random direction. Also, as we discussed earlier, ‘roundish’
cells offer the best accuracy for spatial reconstruction and
the treatment of self-gravity.

We now consider the accuracy of the shock front by
comparing with the analytic solution. In Figure 25, we com-
pare the densities of individual cells as a function of radial
distance to the explosion centre, both for the moving-mesh
approach, and for the code run with a fixed Cartesian mesh.
The comparison is made at time t = 0.06, for an initial
grid of 643 cells, now in 3D. Clearly, the moving-mesh ap-
proach resolves the sharp density spike of the blast wave

better, due to its improved spatial resolution in regions of
high density. It also shows slightly weaker deviations from
spherical symmetry at r ∼ 0.25 compared with the Carte-
sian grid. There is a small phase error in the sense that the
numerical simulation appears slightly more evolved than the
analytical solution; the origin of this lies in the poorly re-
solved early phase of the point explosion. At later times,
or for better resolution (which is essentially the same for
this self-similar problem), this error becomes ever smaller.
We note that Feng et al. (2004) give 2563 results for their
WENO solver, which curiously look somewhat worse than
our results here despite their higher mesh resolution.

Finally, in Figure 26 we illustrate the behaviour of our
individual timestep integration scheme for the 2D Taylor-
Sedov blast wave problem. We show the mesh at three dif-
ferent times (corresponding to the first three panels shown
in Fig. 23), with each cell shaded according to its assigned
timestep. Far away from the explosion site, the allowed
timesteps are significantly larger than close to the shock
wave and in the heated central bubble. The timesteps are
restricted in a sequence of spherical shells even ahead of the
shock, such that the arriving shock wave is guaranteed to be
integrated accurately in time, even though the cold gas far
away can be integrated on timesteps that can in principle be
orders of magnitude larger. This choice of timesteps is made
possible by our tree-based scheme to estimate the earliest
possible arrival time for every cell of a signal from any other
cell.

We note that the results of the individual timestep
scheme are essentially indistinguishable from a fixed
timestep integration, but require significantly less compu-
tational effort. Compared to the equivalent calculation with
a global timestep (set equal to the minimum of the local
timestep constraint of all cells), 4.3 times fewer flux compu-
tations and Riemann problems have to be calculated over
the course of a calculation from t = 0 to t = 0.1. For higher
resolution or in 3D, the saving would be still larger. In fact,
many physical applications in cosmic structure formation
feature such a large dynamic range in timescales that indi-
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Figure 27. Mesh-motion in the ‘triangular’ vortex problem of Gresho, calculated with a 40× 40 grid of particles. One horizontal row of
particles in the initial distribution is marked with circles, and the same cells are labeled with circles in all subsequent frames.

vidual timesteps are mandatory to make large simulations
still tractable.

8.5 The Gresho vortex problem

An interesting test for the conservation of vorticity and an-
gular momentum is provided by the ‘triangle vortex’ prob-
lem of Gresho & Chan (1990), which we apply here to the
Euler equations in 2D, following Liska & Wendroff (2003).
The vortex is described by an azimuthal velocity profile

vφ(r) =

{

5r for 0 ≤ r < 0.2
2 − 5r for 0.2 ≤ r < 0.4
0 for r ≥ 0.4

(121)

in a gas of constant density equal to ρ = 1. Thanks to a
suitable pressure profile (Liska & Wendroff, 2003) of the
form

P (r) =











5 + 25/2r2 for 0 ≤ r < 0.2
9 + 25/2r2−

20r + 4 ln(r/0.2) for 0.2 ≤ r < 0.4
3 + 4 ln 2 for r ≥ 0.4

(122)

the centrifugal force is balanced by the pressure gradient
and the vortex becomes independent of time. Note that in
principle an arbitrary constant pressure could be added to
the pressure profile.

We shall consider three different variants of this test.
In the first, the vortex is at rest in the calculational frame,

which we describe by 40×40 cells in the unit domain at our
default resolution (arranged initially as a Cartesian mesh).
In the second and third variants, we follow Liska & Wen-
droff (2003) and let the vortex move with a constant ve-
locity vvortex along the positive x-direction, i.e. all the gas
gets an additional velocity component of ∆vx = vvortex. We
consider the choices vvortex = 1 and vvortex = 3, and use
periodic boundary conditions, such that the vortex moves 3
and 9 times, respectively, through the box over the simulated
time span of t = 3 time units. The additional gas motion in
the vvortex > 0 case makes the problem more difficult for
the Eulerian approach because it becomes more demanding
to advect the gas accurately over the grid. In all cases, we
run the problem for t = 3 time units, and then compare the
azimuthal velocity profiles of the final with the initial state.

Before we discuss these results, we first illustrate in Fig-
ure 27 the time evolution of the mesh geometry produced
by our moving-mesh code in the stationary vortex case. In
order to guide the eye and to show the motion of individual
mesh cells, a horizontal row of cells has been marked with
circles in the initial conditions, and the same cells are then
labeled again in all subsequent time frames. Also, for a ver-
tical strip of cells, velocity vectors are added in the plots
at each output time. It is nicely seen how the central re-
gion of the mesh accurately follows a solid body rotation in
the early evolution, and how it is surrounded by an outer
shell that exhibits strong shear. However, there is no patho-
logical mesh twisting or tangling due to this shear. Rather,
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Figure 28. Azimuthal velocity profiles at time t = 3.0 for Gresho’s ‘triangular’ vortex problem when calculated with different codes
and for different bulk velocities of the vortex. In the panels of the top row, the vortex is stationary, while in the middle row it moves

with a speed vx = 1.0, and in the bottom row with vx = 3.0, which is comparable to the speed-of-sound of the gas. We compare results
calculated with our AREPO code, both for a moving mesh and a fixed Cartesian mesh, with those obtained using the ATHENA code
(Stone et al., 2008). For vx = 0.0, all three methods produce results of comparable quality. However, if the vortex is non-stationary, the
Eulerian approaches develop significant asymmetries and show elevated diffusivity and angular momentum transport due to the increase

in advection errors. In contrast, the Lagrangian moving-mesh result is invariant when the vortex is set in motion.

the Voronoi mesh transforms its geometry continuously, and
changes the local neighbourhood relations between cells in
a smooth fashion. As time goes by, the initial symmetry in
the mesh geometry slightly deteriorates, but the mesh mo-
tion stays nicely regular.

In Figure 28, we compare the results for the azimuthal
velocity profiles at the final time of all of our runs. In the
top row of panels, we show calculations where the vortex
was stationary relative to the computational frame. We give

results obtained with our new code both with a fixed mesh
and with a moving mesh, based on identical initial condi-
tions. To compare our results with another high-accuracy
Eulerian code, we have also computed this problem with
the publicly available code ATHENA by Stone et al. (2008).
For the latter, we used second-order spatial reconstruction
and the Roe solver. After 3 time units, all three codes show
some significant smoothing of the initial velocity profile, but
they do not differ strongly in the quality of the results.
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Figure 29. L1 error norm of the azimuthal velocity profile of the
Greho vortex problem at time t = 3.0, as a function of initial

mesh resolution (N ×N). We show results for three different bulk
velocities of the vortex, v = 0, v = 1 and v = 3. The results
for our moving-mesh code are shown as red circles – they are
independent of the bulk velocity to machine precision. If we use

a fixed Cartesian mesh instead, we obtain the results shown by
the open blue circles. The three sets of results correspond to the
different bulk velocities. In contrast to the moving-mesh code, the

errors grow with increasing bulk velocity. Finally, for comparison
with an independent Eulerian hydrodynamics code, we show the
results obtained with ATHENA as triangles.

It is now interesting to consider the changes in these
results when the vortex is set in motion. We show the corre-
sponding results in the middle and bottom row of Figure 28,
for the cases vvortex = 1 and vvortex = 3. Of course, in princi-
ple nothing should change, as the physical problem only dif-
fers by a Galilean transformation from the original setup of
a stationary vortex. Indeed, our moving-mesh code produces
the same result as before, and proves completely insensitive
to this velocity boost, as expected for a Galilean-invariant
formulation. Quite in contrast, both our own code when used
with a fixed mesh as well as ATHENA show substantially de-
graded results in the moving vortex case. In particular, the
symmetry of the vortex motion is partially lost (consistently
with the results of Liska & Wendroff, 2003), and there is a
larger degree of smoothing of the azimuthal velocity profile.
Clearly, this is the result of additional numerical diffusivity
and advection errors that now occur in the Eulerian treat-
ment. A particularly troubling aspect of these errors is that
they are a strong function of the velocity with which the vor-
tex moves, as this determines the distance over which the
system has to be advected during the simulated timespan.
This becomes clear by comparing the results for different
vortex velocities; increasing vvortex and keeping the simu-
lated timespan fixed, the error in the Eulerian calculations
can be increased nearly arbitrarily. In contrast, the moving
mesh code retains its original solution independent of the
bulk motion of the vortex, which is physically a much more
meaningful behaviour.

We now examine more quantitatively the convergence
rate for this vortex problem. To this end we measure the
L1 error for the azimuthal velocity profile at time t = 3.0,
as a function of the mesh resolution. We compare the re-
sults obtained for the moving-mesh approach with those of
the fixed mesh, again for our three different bulk velocities,
vvortex = 0, vvortex = 1 and vvortex = 3. Our results are sum-
marized in Figure 29, where we also include results obtained
with ATHENA, for comparison. Clearly, for zero bulk veloc-
ity, the errors of our code AREPO are quite similar between
the moving-mesh and the fixed-mesh, and also very close to
the independent code ATHENA. Note that the results con-
verge only approximately as L1 ∝ N−1.4, as indicated by the
solid line in the plot. This is presumably a consequence of the
discontinuities in the vorticity profile present in this prob-
lem, at r = 0.2 and r = 0.4. If a non-vanishing bulk velocity
is included, we see significant accuracy differences between
the moving-mesh and the fixed mesh. Whereas the moving-
mesh results do not change at all, the error increases for the
Eulerian approach with growing bulk velocity. The magni-
tude of this deterioration is consistent between AREPO and
ATHENA. We argue that this highlights an important short-
coming of traditional Eulerian approaches.

In passing, we want to note that we also tried SPH
on this problem, with the implementation of SPH in the
GADGET3 code. It turns out that this is a hard problem
for SPH, and a direct comparison with the results presented
above shows SPH to be substantially less accurate when
the same number of particles is used. In fact, for the lower
resolutions, the vortex typically does not survive until t =
3.0; the angular momentum is transported to the boundaries
of the domain before this time, where it is then effectively
canceled by encounters with oppositely moving gas from the
adjacent periodic image domains. We defer a more detailed
comparison of SPH with the moving-mesh code to a future
study.

8.6 The Noh problem

We now consider the strong shock test proposed by Noh
(1987), which has an analytic solution. This is generally
considered a very difficult problem, and quite frequently,
numerical methods have problems running this test with-
out crashing. In fact, in the test suite of Liska & Wendroff
(2003), only four out of the studied eight schemes managed
to run this problem at all. The set-up consists of a γ = 5/3
gas that has initially uniform density equal to ρ0 = 1, vanish-
ingly small pressure, and everywhere a radial inflow velocity
towards the origin of v = −1. As a result of the inflow, a
strong spherical shock wave of formally infinite Mach num-
ber develops and travels outwards with a speed vs = 1/3.
Inside of the shock front, the density is constant; it has a
value of 4 in the 1D case, 16 in the 2D case, and 64 in the
3D case. Outside of the shock, the density profile is given by

ρ(r, t) = ρ0 (1 + t/r)n, (123)

with n = 2 in the 3D case, n = 1 for the 2D case, and n = 0
for the 1D case.

The problem has been considered in 1D, 2D, and in 3D
in the literature, but we restrict ourselves to two- and three-
dimensional tests. As in previous studies of this problem, we
calculate only one quadrant when a Cartesian mesh is used,
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Figure 30. The Noh-problem in 2D at low resolution, calculated with four different strategies for the treatment of the mesh. The top
four pairs of panels illustrate the result of the calculation at time t = 2.0 for each of these schemes. In each case, we show a projected

density field in one quadrant of the implosion, and we give the radial density profile where we compare the densities of all mesh cells
with the analytic solution. In the top left, the result for a stationary Cartesian mesh with 252 cells in the unit quadrant is shown.
For comparison, the top right gives the result for an unstructured stationary mesh with the same number of cells. The middle left

pair of panels shows the case of an unstructured moving mesh with constant mass resolution of mi ≃ 1/252. Finally, the fourth case
(middle right panels) is for a dynamically refined/derefined mesh, where cells are split if mi > 1.5/252 or eliminated if their volume falls
below Vi < 0.25/252. The bottom three panels show the mesh geometries at the final time of the three schemes where an unstructured
mesh is used. From left to right: the stationary unstructured case, the moving-mesh case with constant mass resolution, and finally the

dynamically refined/derefined mesh.

and apply reflective boundary conditions at the inner bound-
aries. However, when an unstructured mesh is used, we cal-
culate all four quadrants in order to avoid imposing mirror
symmetry along the coordinate axes. The outer boundaries
are modelled with a special inflow boundary that makes use
of the analytic solution known for the problem.

We begin by considering the 2D problem carried out
with different strategies for treating the mesh. The simplest
approach is a fixed Cartesian mesh of resolution 25×25 cells
in one quadrant. Our second calculation was done with an
unstructured mesh that has the same total number of cells

as in the Cartesian case, but is also kept stationary. Com-
parison of these two schemes allows an assessment of how
well the unstructured mesh performs relative to a Cartesian
mesh of equal spatial resolution. Our third calculation uses a
moving unstructured mesh where the mesh cells are moved
with the local velocity of the gas, such that the mass per
cell stays constant to good approximation. We here use an
initial mesh that has been extended to [−3, 3]× [−3, 3] in or-
der to provide enough mesh area for the implosion problem.
Finally, in our last variant of this problem we also use a mov-
ing mesh but exercise our schemes for dynamically refining
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and derefining the mesh, as described in Section 6. Specif-
ically, we split cells into two when their mass has gone up
above 1.5 times the initial average mass of a cell, m = 1/252.
This automatically generates new cells in the inflow region,
and maintains a constant mass resolution there. In this case
we do not have to extend the mesh beyond the [−1, 1]2 do-
main; rather, new mesh cells appear dynamically as needed.
In addition, we also derefine cells (i.e. delete them) if their
volume falls below 0.25 times the initial volume V = 1/252

of the cells. This prevents the spatial resolution in the high-
density region from getting better than a certain limit. In
fact, it limits the maximum effective resolution per dimen-
sion to Neff = 1/(0.25 × V )1/2 = 50.

In Figure 30, we compare the results of these four differ-
ent mesh strategies. In each case we show a projected density
field at time t = 2.0, and we compare the densities of indi-
vidual mesh cells with the expected analytic solution for the
radial density profile. In all four cases, the postshock flow
shows some substantial density scatter. This is presumably
a combination of weak post-shock oscillations present in our
scheme, and geometrically induced asphericities. The oscil-
latory behaviour is particularly noticeable and coherent in
the Cartesian case, where also the so-called ‘carbuncle’ phe-
nomenon is at work, which can produce artefacts for very
strong grid-aligned shocks. Stone et al. (2008) invoke a spe-
cial cure for this problem and achieve a quiet post-shock
flow in the Noh problem with the help of judiciously intro-
duced extra dissipation. We expect that the unstructured
fixed mesh should be less susceptible to such grid alignment
effects. Indeed, the result for this case (top right panel of
Figure 30) shows no coherent oscillations and preferred di-
rections of the kind seen for the Cartesian grid, but it nev-
ertheless exhibits a similar degree of noise.

Our calculation with a moving unstructured mesh and
constant mass resolution (middle left in Figure 30) bene-
fits from an automatically higher spatial resolution in high
density regions. As a result, the position of the shock front
is recovered more accurately, and the shock is nicely round.
Nevertheless, this solution suffers from a similar degree of os-
cillatory behaviour in the post-shock region. Finally, we con-
sider our calculation with a dynamically refined/derefined
moving mesh, shown in the middle right of Figure 30. Here
the shock is also recovered well, with an accuracy that is
slightly better than for the fixed mesh results, thanks to
slightly smaller cell sizes at the shock front. In the post-
shock region, the oscillations are noticeably reduced. This is
a result of the derefinement procedure that is active in this
region, which tends to smooth out high frequency noise. It is
in any case reassuring that our dynamical mesh refinement
and derefinement schemes work robustly in this difficult hy-
drodynamic problem without introducing any artefacts. The
suppression of the density at the origin is perhaps caused by
so-called ‘wall heating’ (Ryder, 2000), which is commonly
seen at a similar level in other calculations of the Noh prob-
lem (e.g. Liska & Wendroff, 2003; Stone et al., 2008).

The bottom three panels of Figure 30 show the mesh
geometry at the final time of the three calculations that use
an unstructured mesh. It is nicely seen how the constant
mass-resolution case (bottom middle panel) produces a mesh
that varies strongly in spatial resolution. On the other hand,
the dynamically created and derefined mesh (bottom right
panel) shows almost no trace of the spherical shock front,

due to the particular derefinement criterion used. Note that
the latter is arbitrary, and if desired, one could for example
refine the mesh only in the region of the shock, and derefine
it elsewhere.

Finally, we now consider 3D calculations of the Noh
problem. This represents a still more demanding test than
the 2D problem due to the larger density contrast reached in
the 3D case. To test many of the new features of our moving-
mesh code, we carry out this test with dynamic generation
of mesh cells, and dynamic derefinement in the high-density
region. Specifically, a cell is created if its mass content lies
above mi > 1.5 m, and it is dissolved if its volume has
dropped below Vi < 0.05 V , where m and V are the ini-
tial average mass and volume per cell. In Figure 31, we give
results for two different initial resolutions, corresponding to
∼ 16.73 (m = V = 2.16 × 10−3) and ∼ 503 cells in the
unit octant. With the above refinement/derefinement crite-
ria, by t = 2.0 the effective resolution in the lower resolution
calculation has grown to Neff ∼ 34 at r = 1, and in the
central high-density region, it is limited to a maximum of
∼ 45.2. For the higher resolution calculation, these numbers
are three times as large. We note that in the lower resolu-
tion calculation, about 812620 cells have been created, and
225209 were destroyed during the course of the calculation.
For the higher resolution calculation, these numbers are a
factor ∼ 27 higher. In Figure 31, we see that the moving-
mesh code with dynamic mesh refinement/derefinement is
able to integrate this problem robustly, with satisfactory ac-
curacy given the effective resolutions employed here, never-
theless some limited postshock oscillations are present. Also,
some ‘wall heating’ is clearly present at the centre (Ryder,
2000; Liska & Wendroff, 2003).

8.7 Kelvin-Helmholtz instability

Fluid instabilities are among the most interesting phenom-
ena of hydrodynamics, and they play a crucial role in mix-
ing processes and the production of turbulence. Their im-
portance in cosmological gas dynamics is potentially very
large. For example, fluid instabilities are thought to be im-
portant for an accurate treatment of stripping of gas from
satellite galaxies, and for calculating the correct level of tur-
bulence and entropy expected in the intracluster gas of clus-
ters of galaxies. Recently, numerical inaccuracies of SPH in
the treatment of fluid instabilities across contact discontinu-
ities with large density jumps have caused concern about the
scheme’s ability to adequately treat such problems (Agertz
et al., 2007). Fixes have been proposed for this issue (Price,
2008; Wadsley et al., 2008), but it is not clear yet whether
they can be applied successfully in general calculations with-
out introducing inaccuracies in other regimes.

On the other hand, it is not obvious that Eulerian meth-
ods provide superior accuracy for fluid instabilities in all
regimes, even though this is often assumed by advocates of
these schemes. One can certainly expect that problems due
to the Galilean non-invariance of Eulerian codes could be
a source of concern here. In this subsection we will exam-
ine these issues with the important example of the Kelvin-
Helmholtz (KH) instability. This occurs across contact dis-
continuities in the presence of a tangential shear flow.

For simplicity, we first consider a simple shear-flow in
two dimensions, where we strongly excite a single mode by
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Figure 31. The Noh-problem in 3D at two different effective resolutions, calculated with dynamical mesh creation and mesh derefinement.
The panels on the left are for a low-resolution calculation, where cells are created at the edge of the box such that the mass resolution

does not drop below 1.5 × m, with m = 2.16 × 10−3, and cells in the high-density region are eliminated if their volume drops below
Vi < 0.05V , with V = 2.16×10−3. The high-resolution calculation on the right hand side has 27 times better mass and volume resolution.

In both cases, the bottom panels give the effective resolution per dimension for the cells as a function of radius, defined as N i
eff = 1/V

1/3
i ,

where Vi is the volume of a cell. Only a random subset of 2000 of the cells is shown in each panel.

imposing a suitable velocity perturbation. In a periodic do-
main of unit length on a side, with principal coordinate
range [0, 1]2, we set-up gas with density ρ = 2 in the central
horizontal strip described by |y − 0.5| < 0.25, and give it
velocity vx = 0.5 to the right, whereas the rest of the box is
filled with gas of density ρ = 1 that moves to the left with
speed vx = −0.5. The pressure is set to P = 2.5 everywhere,
with γ = 5/3. There are hence two contact discontinuities
along which KH instability can develop.

To make sure that initially a single mode will dominate
the linear growth of the instability, we excite a single mode
with a wave-length equal to half the box size by perturbing
the vy velocity field according to

vy(x, y) = w0 sin(4πx) × (124)
{

exp

[

− (y − 0.25)2

2σ2

]

+ exp

[

− (y − 0.75)2

2σ2

]}

with w0 = 0.1 and σ = 0.05/
√

2. The two exponential damp-
ing factors restrict the perturbation to the region close to
the two interfaces. The details of how this perturbation is
imparted are relatively unimportant for the test.

We first carry out a test at low resolution, using 50×50
cells that are initially arranged as a Cartesian mesh. This
allows us to visualize the motion of the mesh as a function
of time when our moving-mesh approach is used. This is

illustrated in the time-sequence shown in the top four pan-
els of Figure 32§, which includes an overlay of the Voronoi
mesh. We see that the moving-mesh approach develops well-
defined KH-billows and is able to maintain a relatively
sharply defined boundary between the two fluids, with only
a small amount of mixing between them. Also, the moving
mesh approach has no problem coping with the strong shear
present in this simulation. This has traditionally been a sig-
nificant challenge for Lagrangian hydrodynamics codes.

In the bottom two panels of Figure 32 we show the fi-
nal result at t = 2.0 obtained for the same initial conditions
when the mesh is kept fixed instead, in one case calculated
with our own code, in the other with ATHENA. Reassuringly,
the two codes give nearly indistinguishable solutions when
a fixed mesh is used. This confirms that our code AREPO

is comparable in accuracy to state-of-the-art second order
accurate Eulerian codes when run with a fixed mesh. The
two fixed-mesh calculations of Figure 32 can also be com-
pared to the moving-mesh result shown in the top four pan-
els. Clearly, the results are qualitatively similar, but there
is substantially more mixing in the fixed-mesh calculations,

§ A video of this simulation as well as other videos of
our example calculations may be found at http://www.mpa-

garching.mpg.de/∼volker/arepo
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AREPO, moving, t =  0.5 AREPO, moving, t =  1.0

AREPO, moving, t =  1.5 AREPO, moving, t =  2.0

AREPO, fixed, t =  2.0 ATHENA, t =  2.0

Figure 32. The top four panels show the time evolution of the Kelvin Helmholtz instability in a low resolution (50×50) test calculation
with the moving-mesh method. Each panel gives the density field (at times t = 0.5, 1.0, 1.5 and 2.0), with the Voronoi mesh overlaid in

black in the lower half of the box. For comparison, the lower two panels show the results for the same initial conditions, but this time
computed keeping the initial Cartesian mesh fixed. The panel on the bottom left shows the result at time t = 2.0 obtained with our code
AREPO for a fixed mesh, while the bottom right gives the result of ATHENA (with second order reconstruction and the Roe solver).

The latter two results are nearly identical. Note however that in the non-linear regime the KH instability appears to evolve somewhat
faster for the moving-mesh code compared with the fixed grid.
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AREPO, fixed, t = 2.0, V = 1 AREPO, fixed, t = 2.0, V = 10 AREPO, fixed, t = 2.0, V = 100

Figure 33. Kelvin Helmholtz instability test at time t = 2.0, computed with AREPO with a fixed mesh. In the three cases, different
boost velocities along both the x- and y- directions have been applied. The fact that the results do not agree (and in particular not with

the V = 0 result shown in the bottom of Figure 32) is direct evidence for a violation of Galilean invariance of the Eulerian approach.
We note that we have obtained nearly identical results for this test when it is carried out with ATHENA instead of our code AREPO.

moving-mesh, 1024x1024

t = 2.0

fixed-mesh, 1024x1024

t = 2.0

Figure 34. Kelvin Helmholtz instability test at high resolution, using a 1024× 1024 initial mesh. We compare results obtained with the
moving-mesh approach (left panel) to those on a fixed grid (right panel), at time t = 2.0. Quite strikingly, small-scale features of the
flow are preserved in the moving mesh code with much less mixing, albeit at the price of earlier generation of asymmetries in the flow.

which wash out the KH-billows to nearly constant density
at this resolution. While this effect is expected to become
smaller with increasing resolution, the effective numerical
diffusivity of the Eulerian calculation is clearly much higher
than that of the moving mesh approach, a finding that is
also expected based on the advection tests of a contact dis-
continuity carried out at the beginning of this section. There
is also a further important difference between the moving-
mesh and the fixed-mesh results. In the non-linear regime,
the KH instability appears to evolve somewhat faster for the
moving-mesh approach than for the fixed mesh. In fact, the
fixed-mesh result at t = 2.0 is more similar to the t = 1.5
moving-mesh output than to its t = 2.0 output.

We next consider the ability of the schemes to cope with

additional bulk fluid motion, or in other words, with a trans-
formation into a boosted frame of reference. To this end we
simply add a constant velocity vector to all cells of the initial
conditions, and we shall again compare the results at time
t = 2.0. The physics does not change due to such a Galilean
boost, and we should therefore get the same results. We have
already seen that this is not in general the case for Eulerian
codes. Here we test how strong the resulting effects are in
practice. In Figure 33, we show what AREPO returns for
velocities equal to v = 1, 10, or 100, imposed both in the x-
and y-directions, if the mesh is kept fixed. Thanks to the pe-
riodic boundary conditions, the system will have returned at
time t = 2.0 again to the its original position, after the code
had to advect it one or several times through the box. In
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Figure 35. Time evolution of a Rayleigh-Taylor instability in simulations with a moving (top) and a static (bottom) mesh. The resolution
is quite low, only 48 × 144 cells have been used for this test.

principal, all three results should therefore be identical. But
the actual results are very different; in this Eulerian mode,
the code’s result and hence the error in the calculation is
a strong function of the magnitude of the bulk velocity rel-
ative to the rest-frame of the calculation. Especially when
these velocities become supersonic, the calculated solution
can become qualitatively and quantitatively inaccurate. For
the somewhat brutal test of v = 100, the calculated solution
is completely dominated by advection errors, with the den-
sity field in the box becoming almost homogeneous. We have
also evolved the same initial conditions with the ATHENA

code, finding very similar results. We expect this behaviour
to be generic for Eulerian codes. The accuracy with which
fluid instabilities are calculated across contact discontinu-
ities quickly deteriorates if the contact discontinuity moves.
In contrast, when we run the same initial conditions with
the moving mesh of AREPO, we recover the same results in
all three cases, and they are identical to the v = 0 result
shown in Figure 32.

Is this a serious problem for Eulerian codes? This very
much depends on the problem that is studied. In many
applications, an individual system is studied and one can
freely choose a convenient reference frame for the calcu-
lation. One will then pick one in which velocities relative
to the calculational frame are small. The issue of Galilean
non-invariance may then not be of great concern. However,
we argue that this is not the case for cosmological simu-
lations, where multiple objects are simulated at the same
time, many of them moving with large velocities compared
to their sound speed. In this case, the accuracy of the cal-

culation correlates strongly with the bulk velocity of the
galaxies, a rather worrying effect.

However, Galilean non-invariance may not be the only
problem that troubles the Eulerian approach when the
Kelvin-Helmholtz instability is considered. We have found
that in an Eulerian calculation of this problem at high res-
olution, multiple secondary KH billows are spawned in the
early evolution due to grid irregularities. On the other hand,
the moving-mesh method appears less susceptible to this
problem, thanks to its ability to advect the mesh with the
contact discontinuity. Some of these grid-induced features
can even affect the long-term evolution of the instability.
In Figure 34, we compare fixed and moving-mesh versions
of the same KH instability test at a resolution of 10242.
The moving-mesh preserves much more fine detail in the
flow. This is because contact discontinuities between differ-
ent phases can be advected with large speeds without be-
ing necessarily mixed. We think this is a very interesting
difference, which makes the moving-mesh code particularly
attractive for the study of multi-phase media.

8.8 Rayleigh-Taylor instability

Another important type of fluid instability arises in strat-
ified atmospheres in approximate hydrostatic equilibrium
if a denser fluid lies above a lighter phase. In such a
Rayleigh-Taylor (RT) unstable state, energy can be gained
if the lighter fluid rises in the gravitational field, triggering
buoyancy-driven fluid motions.

We consider a simple test in 2D where we excite a sin-
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Figure 36. Rayleigh-Taylor instability calculated with different

Galilean boosts vx in the horizontal direction (the simulation do-
main is periodic in the x direction). The correct result should in
principal be independent of v. The top row shows the result at
time t = 15.0 computed with our moving-mesh approach, while

the bottom row of panels gives the corresponding results for a
fixed-mesh calculation with AREPO.

gle Rayleigh-Taylor mode for clarity. Our setup is a small
variation of a similar test considered in Liska & Wendroff
(2003), and also similar to a test described in Jim Stone’s
test suite of ATHENA. The computational domain is chosen
as x ∈ [0, 0.5] and y ∈ [0, 1.5], with periodic boundary con-
ditions at the x-boundaries, and reflecting walls at the top
and bottom of the domain. The density is ρ = 2 in the top
half of the domain, and ρ = 1 in the bottom half. The pres-
sure in the vertical midplane is P0 = 2.5 (with γ = 1.4) and
varies vertically as P (y) = P0+g (y−0.75)ρ, where g = −0.1
is an imposed external gravitational field. This ensures an
initial hydrostatic equilibrium. The initial velocities are zero
everywhere, except for a small perturbation that is designed
to excite a single mode for the Rayleigh-Taylor instability.
We adopt for this perturbation

vy(x, y) = w0 [1 − cos(4πx)][1 − cos(4πy/3)], (125)

where w0 = 0.0025. For the tests discussed in the following,
we deliberately use a comparatively low resolution of 48×144
cells.

In Figure 35, we first compare the time evolution of the
system between a calculation carried out with a static Carte-
sian mesh, and one with our new moving-mesh approach.
Clearly, the evolution is rather similar during the early linear
growth of the perturbation. However, the moving-mesh ap-
proach is able to maintain a sharper contact discontinuity, as
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Figure 37. Kinetic energy in our Rayleigh-Taylor test calcula-

tions as a function of time. For the boosted simulations, the ki-
netic energy was defined by first subtracting the horizontal boost
from the vx velocity component. The black solid lines show the
moving-mesh calculations, for velocity boosts vx = 0, vx = 1 and

vx = 10 (the thickness of the lines decreases in this sequence).
The dashed lines give the results for fixed-mesh calculation with
our code, for the same three velocities, from top to bottom. Fi-
nally, for comparison, the dotted line gives the result obtained

with ATHENA for vx = 0.

expected. Eventually, the evolution starts to differ markedly
once the dynamics becomes very non-linear. The moving-
mesh solution loses vertical symmetry and starts to develop
turbulence. In contrast, the fixed mesh calculation is able to
maintain perfect symmetry for a longer time, but it shows
much stronger mixing than the moving-mesh calculation,
which also damps the fluid motion. In both cases, the loss
of symmetry is caused by small round-off errors, but in the
moving mesh approach their growth in the transverse direc-
tion is faster and less benign. This is due to a kind of bend-
ing instability in the mesh. When the mesh is compressed
strongly in one direction, it automatically means that the
cells develop a large aspect ratio, which can only be relaxed
(in the sense that the cells become rounder again) through
some transverse motions. It turns out that the mesh likes to
respond to transverse perturbations in this situation; they
tend to grow quickly, and numerical round-off is sufficient to
trigger this. This also means that the moving mesh can itself
be a source of unwanted perturbations, but they only really
become relevant in poorly resolved flows, where the shape
of an individual cell directly matters. This is similar to the
Kelvin-Helmholtz problem on a Cartesian mesh, where at
high resolution small-wavelength secondary billows are trig-
gered by perturbations originating at the mesh corners. If
the Rayleigh-Taylor problem is simulated with higher res-
olution and with resolved (i.e. softened) phase boundaries,
symmetry is maintained much longer in the moving-mesh
approach.

We have also used this Rayleigh-Taylor test to investi-
gate once more the question of Galilean invariance. To this
end we have added a constant velocity vx to the initial state.
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As the system is periodic in the x-direction, the evolution
should in principle not change if viewed in the rest-frame of
the moving fluid. In Figure 36, we show a comparison of the
resulting fluid state when either a moving mesh or a fixed
mesh is used in our code AREPO. We carry out this com-
parison for horizontal flow velocities of vx = 0.033, vx = 1,
vx = 10, and vx = 100. It is seen that the Eulerian result
changes significantly along this sequence. The horizontal mo-
tion leads to a damping of the growth rate of the instabil-
ity, additional mixing, and also to a loss of symmetry. In
fact, for a sufficiently large velocity boost, the instability
is suppressed entirely. We note that in this case the Eule-
rian calculations also become much more expensive, as their
Courant condition becomes limited by the bulk velocity. The
moving-mesh calculation does not suffer from this problem,
and it produces a Galilean-invariant solution as expected.
However, the way the symmetry is lost in the calculation
tends to vary, as this is determined by small numerical noise
in the mesh motion.

In Figure 37 we show the kinetic energy in the simula-
tions as a function of time. The thick dashed line and the
dotted line show the results for a fixed mesh with no veloc-
ity boost, comparing our code AREPO with ATHENA (the
latter using the Roe solver and second-order accurate re-
construction). The results of the two codes for the evolution
of the kinetic energy agree qualitatively very well, showing
first a maximum, followed by a rapid decline to a nearly con-
stant level that then declines over a much longer timescale.
This is produced by the initially very symmetric evolution of
the RT instability when a Cartesian mesh is used, and the
subsequent transition to turbulent motions at later times.
The symmetry is broken when a velocity boost is applied
in the Eulerian calculations, and even a velocity as small as
vx = 0.033 is sufficient for that. The other two dashed lines
of Fig. 37 show the evolution of the kinetic energy (relative
to the rest frame of the gas) when a boost of vx = 1 or
vx = 10 has been applied, respectively. Now the pronounced
maximum is gone, and for increasingly larger boost veloci-
ties the plateau of the kinetic energy becomes ever smaller.
For the moving mesh case on the other hand, the results are
insensitive to the velocity boost. This is shown by the three
solid lines, which give the kinetic energy for vx = 0, vx = 1
and vx = 10, respectively. These Lagrangian calculations
also do not produce the strong maximum seen in the vx = 0
case for the Eulerian code, which we interpret as effectively
being an artefact of the grid symmetry, because the higher
asymmetries in the numerical round-off errors present in the
moving-mesh approach are sufficient to break the symmetry
in the evolution early on.

8.9 Moving boundaries

As briefly discussed earlier, the moving mesh approach can
also be quite easily adapted to describe curved boundaries
of essentially arbitrary shape, and if desired, these bound-
aries can also move in complex ways. While this feature is
probably not helpful in most astrophysical problems, it has
potentially very useful applications in other areas, for ex-
ample aerodynamics. We here discuss a simple example to
illustrate this possibility.

In Figure 38, we show how a special curved bound-
ary can be constructed in terms of two parallel strings of
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Figure 38. Example of a reflective curved boundary condition,
realized with two adjacent strings of 60 mesh-generating points
(top panel). The blue points are on the fluid side, while the red
points are ‘outside’. The Voronoi faces between these points are

given reflective boundary conditions, while the rest of the mesh
is treated in a regular fashion. In the bottom panel, we show the
mesh geometry at a slightly later time, when the special points

have moved as a solid body on a prescribed path, while the rest of
the mesh and the surrounding fluid have reacted to this motion.

mesh-generating points that have an equal distance from ei-
ther side of the desired contour. In our example, we want
to model a solid obstacle, where the red points are meant
to be inside the obstacle, and the blue points are outside,
i.e. on the side of the fluid. The Voronoi faces between the
points will be modelled with reflecting boundaries by the
code, and represent the surface of the solid body. Unlike the
other mesh-generating points that define the mesh, the red
and blue points are only moved together, as a rigid body.
We can now impose a motion for our solid object, and the
fluid will always be forced to flow around it. In our chosen
example, we will move the object with constant velocity ac-
cording to a prescribed path, with the fluid being initially at
rest. This means we will effectively stir the fluid with the ob-
ject, much like moving a spoon in a coffee cup, except that
our “coffee cup” is two-dimensional here. The lower panel
of Figure 38 shows the mesh geometry around the object
after it has moved by a small amount. It is nicely seen that
the points that model the curved boundary condition have
moved together as a rigid body, while the background mesh
reacted to this motion by starting to flow around the object.

In Figure 39 we show the time evolution of a test prob-
lem calculated with such a moving boundary. The back-

c© 0000 RAS, MNRAS 000, 000–000



Galiliean-invariant cosmological hydrodynamical simulations on a moving mesh 53

Figure 39. Time evolution of the mixing of two fluids induced by the motion of a solid object. This test illustrates the ability of AREPO
to cope with arbitrarily curved, moving boundary conditions. As illustrated, the orange ‘spoon’ is moved on a circular path, through a
two-phase gaseous medium that is initially at rest. The mixing is shown in terms of a tracer dye that is advected with the flow, and
which was given an initial value of 1 (white) in the lower-density top phase, and a value of 0 (black) in the higher-density lower phase.
Each frame shows the value of the dye in grey-scale, at different times as labeled. The square domain was initially populated with a
768 × 768 mesh-generating points on a Cartesian grid, and has reflective boundary conditions at the outer walls.

ground fluid is represented with 768 × 768 points, and the
solid object with 600 particles. The domain [0, 1] × [0.1] is
modelled with reflecting boundaries on the outside. The up-
per half for y > 0.6 is filled with gas of density ρ = 0.5,
the lower with gas at unit density ρ = 1. The pressure is
P = 1 everywhere, with γ = 5/3. Our solid object is ro-
tated around the centre in counter-clockwise direction with
an angular velocity ω = 2π/5. In this particular example we
are especially interested in the mixing of the two phases of
the initial configuration. To this end we give each phase a
‘dye’, a conserved tracer variable. This is followed as a pas-
sive conserved scalar along with the ordinary fluid variables
by the code. In Figure 39, we show the value of this dye as
function of time, with the solid body displayed in orange.

It is nicely seen how the motion of the object induces
complex gas motions, including the generation of vorticity
and turbulence. This eventually leads to a complete mixing
of the two phases, but for a long time partially mixed re-
gions survive. Thanks to the motion of the mesh with the
flow, contact discontinuities between the two media can be
advected almost without numerical errors, allowing the foli-
ated structure of partially mixed fluid to remain intact even
while moving. Such a low level of numerical diffusivity would
be very difficult to achieve with an Eulerian treatment.

9 TEST PROBLEMS WITH SELF-GRAVITY

As the long discussion in Section 5 made clear, an accurate
treatment of self-gravity in finite volume codes is actually a
surprisingly subtle and tricky problem, more so than in SPH.
In this section we will first discuss a three-dimensional gravi-
tational collapse problem of a cold gaseous sphere, which is a
good test for energy conservation in the presence of a strong
virialization shock, a scenario that is of direct relevance for
cosmological simulations. We then examine the collapse of
Zeldovich pancakes as a basic test of the cosmological in-
tegration in AREPO. We finally turn to two example ap-
plications of our new code, a colliding galaxy problem and
the ‘Santa Barbara cluster’. Both of these problems are pri-
marily meant to illustrate that the AREPO code introduced
here is fully functional and suitable for science applications
in computational cosmology.

9.1 Evrard’s collapse test

Evrard (1988) has introduced an interesting collapse prob-
lem that has been frequently used in the literature to test
SPH simulation codes (e.g. Hernquist & Katz, 1989; Dave
et al., 1997; Springel et al., 2001; Wadsley et al., 2004), but
results for mesh codes have been rarely reported. The initial
conditions consist of a sphere of gas with mass M = 1 and
radius R = 1, with an initial density profile of the form
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ρ(r) =

{

M/(2πR2r) for r ≤ R
0 for r > R.

(126)

The gas with adiabatic index γ = 5/3 is initially at rest
and has thermal energy u = 0.05 per unit mass, which is
negligible compared with the gravitational binding energy
(assuming G = 1).

In the beginning of the evolution, the gas is freely falling
towards the origin under self-gravity. Eventually, it bounces
back in the centre, with a strong shock propagating outwards
through the still infalling outer parts of the gas sphere. The
system then virializes and settles to a spherical distribution
in hydrostatic virial equilibrium. The time evolution of the
system is hence characterized by a conversion of gravita-
tional potential energy first to kinetic energy, and then to
heat energy. As such, it tests a situation that is prototypical
for gravitationally driven structure growth, and also pro-
vides a sensitive test of the ability of a code to conserve the
total energy accurately in self-gravitating gaseous systems.

In Figure 40, we show radial profiles of density, veloc-
ity, and entropic function A = P/ργ at time t = 0.8, when
the strong shock has formed. We compare simulations car-
ried out with different calculational schemes, but all with
the same number of 24464 resolution elements in the ini-
tial radius of the sphere. The top three rows give results
calculated with our mesh-code AREPO. In the first case,
we consider a fixed Cartesian mesh, which we expect to be
challenged by the large dynamic range of this problem. In
the second and third row we use a radially stretched mesh
as initial conditions, which has equal mass per cell initially.
This mesh is much better adjusted to the radial symmetry
of the system, and the increase of density towards the ori-
gin. The simulation shown in the second row keeps this un-
structured mesh fixed throughout the evolution, while in the
third row the full moving-mesh approach is applied, where
the mesh-generating points are moved with the local flow ve-
locity. Finally, in the bottom row, an alternative Lagrangian
result is shown, this time based on SPH, using the ‘entropy-
formulation’ of Springel & Hernquist (2002) as implemented
in GADGET-2 (Springel, 2005).

Among these calculations, the least accurate result is
clearly produced by the fixed Cartesian mesh, which offers
the poorest spatial resolution in the central regions of the
sphere, as a result of its lack of adaptivity. The stretched
fixed grid already gives much better results, but the cen-
tral density distribution is still significantly underestimated.
However, if the mesh is allowed to move, a significantly im-
proved solution is obtained, even though here also the lim-
ited spatial resolution produces a shock front that is radially
too far advanced compared to the expected solution for close
to infinite resolution. The latter is shown as a solid line and
was produced by a one-dimensional PPM calculation kindly
provided by Steinmetz & Müller (1993). We note that the
SPH result shown in the bottom row also produces the main
features quite well, but its shock is significantly broader than
in the moving mesh calculation, and there is also substantial
pre-shock entropy production in the infall region ahead of
the shock, as a result of the artificial viscosity that becomes
active in converging parts of the flow.

The timing offset in the shock location appears to be a
result of the low resolution used in this test, as this vanishes
for better resolution. To illustrate this point, we show in Fig-

ure 41 an equivalent plot for a high-resolution simulation of
the same problem using 1.56 × 106 mesh-generating points,
arranged in a stretched mesh that is here kept fixed during
the evolution (the moving mesh gives an essentially indistin-
guishable result). The result reveals an excellent agreement
with the high-accuracy one-dimensional calculation.

Finally, we consider the conservation of total energy in
this problem, as this is not readily guaranteed in the finite
volume approach with self-gravity. In Figure 42, we show the
time evolution of the thermal, kinetic, and potential energy,
for simulations of the Evrard collapse carried out with differ-
ent numerical resolutions and different strategies to couple
the gravitational field to the hyperbolic Euler equations. In
the left panel, results for the “standard” approach to treat-
ing self-gravity, discussed in subsection 5.2 are shown. We
can see that there are substantial errors in the total energy,
which amount to a relative error as large as ∼ 50% for the
poorest resolution considered here, where 24464 cells are in-
side the initial radius of the sphere. With better spatial res-
olution, the size of the error progressively shrinks. However,
it cannot be made smaller by improving the time integration
as it is ultimately caused by spatial discretization errors. The
cell-centred mass fluxes used to estimate the gravitational
work on a cell are not accurately balancing the amount of
energy actually extracted from the gravitational field when
the strong virialization shock propagates outwards. As a re-
sult, a substantial energy error is produced, which, in this
example corresponds to a gain of energy of the whole sys-
tem. Clearly, the energy error from this can become quite
severe, especially for poor resolution, so the first generation
of cosmic structures could be quite strongly affected by this
problem.

However, rewriting the gravitational work term in terms
of a surface integral, as described in subsection 5.4, leads to
much better energy conservation. This is shown in the right-
hand panel of Fig. 42, where the same simulations are shown
but this time using our improved coupling of self-gravity to
the Euler equations. We see that in this case the relative
error in the total energy stays well below 10−3 and does not
show any systematic resolution dependence, which is a dra-
matic improvement relative to the results above. For these
results, the gravitational work-term was calculated with the
gravitational potentials, as described in equation (96). If the
simpler formulation of equation (94) is used instead, the
maximum relative errors become considerably larger (up to
10−2 in the peak) but are still acceptable. All the simula-
tions shown in Fig. 42 were calculated for an unstructured
stretched mesh that was kept fixed; if the mesh is allowed
to move instead, the errors tend to be slightly smaller.

Lastly, we would like to examine whether the softening
correction factors discussed in subsection 5.5 make a sig-
nificant difference for the energy conservation. First, note
that such a difference is really only expected if the gravi-
tational interaction between two neighbouring points is af-
fected by the softening kernel. In other words, the quantities
ηj defined in equation (103) are only different from zero if
the gravitational softening lengths are large enough so that
some ‘overlap’ with neighbouring cells occurs at least in a
fraction of the cells. This can be guaranteed by choosing a
sufficiently large value for the softening constant fh, for ex-
ample fh = 2.5. In simulations of the Evrard collapse with
this setting, we find a maximum energy error of the same
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Figure 40. Shock profiles in the ‘Evrard-collapse’ problem, carried out with different simulation techniques. In all cases, the same
number of resolution elements inside the initial radius R = 1 of the gas cloud has been used. The top panel gives the result at t = 0.8

for a fixed Cartesian grid. The second row shows the result for AREPO when the mesh-generating points are arranged as a stretched
grid of points such that the mass per cell is constant for the initial ρ ∝ 1/r profile, but the mesh was kept static in this case. This is
different in the third row; here the mesh was allowed to move with the flow, and in addition the mesh-shaping scheme based on the
‘inverse Zeldovich’ approach was enabled. Finally, the bottom row gives the equivalent result obtained with the same particle number

using SPH, as implemented in the GADGET-2 code. The red solid line is a one-dimensional PPM result obtained by Steinmetz & Müller
(1993).
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Figure 41. High resolution result (symbols) for the Evrard collapse problem calculated with AREPO, using 1.56 × 106 resolution
elements in the initial gas sphere of radius R = 1. An analytic solution for this problem is unavailable, but the solid gives the results of

a one-dimensional high-resolution PPM calculation kindly provided to us by Steinmetz & Müller (1993) which should be fairly close.
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Figure 42. Energy evolution in the ‘Evrard-collapse’ problem, calculated for different numerical resolutions and different calculational
schemes to couple self-gravity to the Euler equations. In the panel on the left, results for a standard approach to treat self-gravity are
shown. Here the gravitational work on a cell is estimated with cell-centred mass fluxes. This can however produce substantial errors in
the presence of strong shock waves, especially when the spatial resolution is quite coarse. The plot on the right gives results for the same

simulations, except that the gravitational work term is estimated based on the mass-fluxes determined by the Riemann solver at the
surfaces of cells. This leads to a quite accurate conservation of the total energy of the system.

size as above, i.e. it stays below 10−3. However, if we disable
in the code the corrective force of equation (107) that ac-
counts for changes of the softening lengths, the energy error
goes up by more than a factor of 10, and reaches slightly
more than 1% in the peak. This shows that this correction
factor should indeed be included for high-precision results.

9.2 Zeldovich pancake

A useful standard test for cosmological codes is the evolu-
tion of a sinusoidal density perturbation in an expanding
Einstein-de-Sitter universe. After an initial linear growth
phase, the one-dimensional wave collapses to a Zeldovich
pancake, involving a pair of very strong shocks. As this prob-
lem can be viewed as a ‘single-mode’ of the general cosmolog-
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Figure 43. Zeldovich pancake test at two different times, and for two different ways to move the mesh. The top row of panels shows the
pancake at z = 2.14 when it is still in the linear regime, before the collapse occurs at zc = 1. We show the analytic solution as a thick

dashed line in red, while a high-resolution calculation with 1024 cells is shown as a solid line and the blue symbols give a low-resolution
result with 32 fixed cells, for comparison. The middle and bottom rows of panels give the state of the pancake at z = 0, well into the
non-linear regime, once calculated with a fixed mesh and once with the moving mesh approach. Again, we compare with a high-resolution

result based on 1024 fixed cells (solid line). Note in particular that the temperature in the unshocked parts of the flow is very accurate,
thanks to the energy-entropy formalism that is applied by the code in very cold parts of the flow.
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ical structure formation problem, it is a particularly useful
test of any cosmological code. Furthermore, it is also a use-
ful test-bed for the dual entropy-energy treatment described
in subsection 3.5, as the initial gas temperature is negligibly
small and drops further through the cosmic expansion.

The comoving position x corresponding to an initial un-
perturbed coordinate q at redshift z is given by (Zeldovich,
1970)

x(q, z) = q − 1 + zc

1 + z

sin(kq)

k
, (127)

where k = 2π/λ is the wavenumber of the perturbation of
wavelength λ. The comoving density corresponding to the
displacement is given by

ρ(x, z) =
ρ0

1 − 1+zc

1+z
cos(kq)

, (128)

and the peculiar velocity is

vpec(x, z) = −H0
1 + zc

(1 + z)1/2

sin(kq)

k
. (129)

Here ρ0 are the background density (equal to the critical
density), and H0 is the Hubble constant today. These equa-
tions describe the solution exactly up to the redshift zc of
collapse.

We follow Bryan et al. (1995) and Trac & Pen (2004),
and choose λ = 64 h−1Mpc and zc = 1. Our test simulations
are started at zi = 100, with an initial gas temperature of
Ti = 100K. As the pressure forces are negligible up to the
formation of the pancake, the temperature should evolve
adiabatically as

T (x, z) = Ti

[

(

1 + z

1 + zi

)3 ρ(x, z)

ρ0

]2/3

(130)

until collapse. We carry out tests of the Zeldovich problem
both using a moving mesh and a fixed mesh. This in par-
ticular serves as a useful test of the correct implementation
of the cosmological time integration, and the coupling of
the gasdynamics to self-gravity in an expanding background
space. As our code AREPO has presently no one-dimensional
gravity solver, we carry out the tests in two dimensions in-
stead, and for simplicity, we use only the PM solver in two
dimensions with a sufficiently large mesh.

In Figure 43, we show the density, velocity and tem-
perature profiles of the Zeldovich pancake at two different
times, briefly before collapse at redshift z = 2.14, and well
into the non-linear evolution of the pancake at z = 0. In all
panels, a high resolution result (based on 1024 fixed points
per dimension) is shown with solid lines, and symbols of a
low resolution calculation with initially 32 points per dimen-
sion are overlaid. In the high redshift result shown in the top
panel, we also include the analytic solution of Zeldovich in
terms of a thick-dashed line. Before the collapse of the pan-
cake at z = 1, both the fixed mesh and the moving mesh
calculation trace the analytic result with comparable accu-
racy, we therefore only show one of the results. In the middle
row of panels, the fixed-mesh result at z = 0 is shown. Out-
side of the shock-fronts, the solution is still very accurate,
but the lack of resolution inside the collapsed region leads to
a poor representation of the structure of the pancake, even
though its characteristic values of density and temperature
are reasonably well reproduced. The moving mesh calcula-

tion shown in the lower row of panels does significantly bet-
ter in this respect. Remarkably, even though only 32 points
were available initially, the density- and temperature struc-
ture of the pancake, as well as the location of the two strong
shocks, are represented very accurately.

Note that the temperature evolution in this Zeldovich
pancake test is particularly difficult to get right, as there is
a very large dynamic range between the initially cold gas
and the shocked heated gas in the pancake, amounting to
a difference of ∼ 10 orders of magnitude. Before the gas is
heated by the shocks, the flow is extremely cold and dom-
inated by gravitational forces, meaning that the problems
discussed in subsection 3.5 with respect to spurious heating
of very cold flows in finite volume methods are bound to
be present in this Zeldovich pancake test. Indeed, in the re-
sults shown in Figure 43 we have applied the entropy-energy
scheme described in subsection 3.5. The ordinary treatment
based on the total energy alone invariably leads to signifi-
cant heating of the gas well outside of the shock-front prior
to the collapse of the pancake. While this does not alter the
motion of the gas (the resulting pressure forces remain way
too small), the temperature evolution of the gas becomes
inaccurate, especially when the resolution is comparatively
low. However, with the entropy scheme, a very accurate so-
lution is recovered in a robust way. We note that especially
with respect to the temperature evolution, our results also
compare favourably to those of Trac & Pen (2004) obtained
with their moving-frame formalism. They also show much
sharper shock fronts than obtained with SPH (Dave et al.,
1997).

9.3 The Santa Barbara cluster

In the ‘Santa Barbara Cluster Comparison Project’ (Frenk
et al., 1999) a large number of cosmological hydrodynamic
codes were applied to the same initial conditions, set-up to
produce a rich cluster of galaxies in an Einstein-de-Sitter
universe. The inter-comparison of the results produced by
a this set of different codes, which included both SPH and
Eulerian AMR methods, allowed an assessment of the sys-
tematic uncertainties in such cosmological structure forma-
tion simulations. While a fair amount of scatter between the
different results was found, there was still quite reasonable
agreement in most of the cluster bulk properties (such as
total mass, temperature, etc.), and in the radial cluster pro-
files (such as the radial run of density, baryon fraction, etc.),
with typical code-to-code scatter of order 10%. The same
initial conditions have also been regularly used as hydro-
dynamic code test in subsequent work (e.g. Wadsley et al.,
2004; Springel, 2005; Thacker & Couchman, 2006).

It seems likely that the scatter in the results for the
Santa Barbara cluster would be smaller if the experiment
was repeated today with the most recent versions of the
most commonly employed cosmological codes, thanks to the
progress made in the numerical simulation techniques in re-
cent years. However, at the same time there is little indica-
tion that arguably the most important systematic difference
found by Frenk et al. (1999) between the Lagrangian SPH
and the Eulerian AMR codes, namely the systematic dif-
ference in the entropy predicted for the central cluster gas,
has gone away. This entropy was found to be lower in SPH
than in the AMR calculations, which in turn also affects the
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Figure 44. Evolution of the mean mass-weighted temperature

in four low-resolution calculations (2× 323) of the Santa Barbara
cluster. The dashed green line shows the result of the moving-
mesh approach when the ordinary total energy approach is ap-
plied. Here the gravitationally dominated cold flows at high red-

shift are clearly subject to some spurious heating. The red solid
line shows the result when our entropy-energy scheme is used
with a Mach-number threshold Mthresh = 1.1, which turns out
to be ineffective in preventing the high redshift heating, as the

Mach numbers responsible for it are very high. If we instead use
our alternative scheme for deciding when to preserve the entropy
(with αS = 0.05) we obtain the blue solid line, where now the
heating in very cold, low-density gas is suppressed and the ex-
pected adiabatic decline of the mean temperature at high redshift
is obtained. For comparison, the dashed lines gives an SPH result
obtained with GADGET-2 at the same resolution.

temperature and gas density profiles in the inner parts of
the cluster. This also has an impact on cluster cooling rates
if radiative cooling is allowed, and on important observables
such as the emitted X-ray luminosity.

In SPH, entropy is accurately conserved (Springel &
Hernquist, 2002; Ascasibar et al., 2003), but it could be arti-
ficially low due to the absence of entropy production through
mixing and to SPH’s tendency to spuriously suppress fluid
instabilities. On the other hand, the Eulerian codes may
overestimate the central entropy as a result of numerical
diffusivity and overmixing. Also, they are more prone to
suffer from heating caused by the noisy gravitational field
produced by the collisionless matter. Recently, the idea that
the difference may ultimately arise from differences in the
treatment of mixing has found some support in numerical ex-
periments (Mitchell et al., 2009). Presently, it remains how-
ever unclear what the correct entropy profile for the Santa
Barbara profile really is, even though this is an important
question for numerical cosmology. Note that due to the ab-
sence of radiative cooling in this problem, the Santa Barbara
cluster represents comparatively clean and ‘easy’ physics. If
even this case cannot be calculated fully reliably, it is clear
that the more demanding simulations that also account for
radiative cooling are fraught with numerical uncertainties.

We here give first results for the Santa Barbara Cluster
with our new moving mesh code, calculated at compara-
tively low resolution. All our simulations follow the original
initial conditions in a periodic box of side-length 32 h−1Mpc,
using homogeneous sampling of the dark matter component,
and an equal number of mesh-generating points as dark mat-
ter particles. The simulations are started at redshift z = 50,
and use cosmological parameters of a critical density cosmol-
ogy with dark matter content Ωdm = 0.9, baryonic density
Ωb = 0.1, and Hubble constant H0 = 100 h km s−1Mpc−1

with h = 0.5.

In Figure 44, we first show the evolution of the mean
mass-weighted temperature of the whole simulation box,
from the starting redshift to the present time. Initially, no
structures have formed yet, so that the mean mass-weighted
temperature should decline as T ∝ a−2 for a while. Eventu-
ally, the thermal energy content in the shock-heated gas of
the first forming cosmic structures starts to dominate and
the mean temperature begins to rise rapidly. This general
evolution is reflected in the four simulation results depicted
in Figure 44, albeit with interesting differences in detail. The
green dashed line shows the result of the moving-mesh ap-
proach when the ordinary total energy approach is applied.
The red line gives the result when the energy-entropy formal-
ism is used with a Mach number threshold Mthresh = 1.1,
while the solid blue line uses our alternative switch for decid-
ing whether the entropy should be kept instead of updating
it with the total energy equation. In the latter case, the en-
tropy is used if the thermal energy is at most a small fraction
αS = 0.05 of the local kinetic energy. This proves effective
to yield the expected adiabatic decline of the mean temper-
ature at high redshift. On the other hand, the Mach-number
based switch does not make a difference in this regime, as
the shock waves responsible for this high-z heating are typi-
cally quite strong. However, it can still effectively act against
noise-induced heating in virialized structures at lower red-
shift. For comparison, the dashed light blue line gives an
SPH result obtained with GADGET-2 at the same resolu-
tion. It yields a high-redshift evolution very similar to the
moving-mesh code when the entropy scheme is used for the
cold gas, but at low redshifts its gas ends up being notice-
ably colder on average. A substantial part of this difference
in the final temperature is probably simply caused by the
lower effective resolution of SPH, which tends to reduce the
heating through shocks. Higher resolution SPH calculations
yield a mean temperature that is 5-8% higher, quite close to
the mesh based result.

Radial profiles of mean gas density, gas entropy, gas
temperature and dark matter density of the final Santa Bar-
bara cluster are given in Figure 45. We show results for the
different numerical resolutions of 323, 643, and 1283 with
solid circles, in different colours as labelled. All these sim-
ulations use the entropy-energy formalism with a threshold
Mach number Mthresh = 1.1 in order to suppress spuri-
ous heating from the noise in the gravitational field induced
by the dark matter. The thermodynamic profiles converge
reasonably well, but not nearly as well as the dark matter
density. Interestingly, the central cluster entropy is actually
quite close to the SPH result that is shown for comparison,
but the innermost entropy profile shows a shallower slope
that produces a temperature profile that keeps slowly rising
to the very centre. If the total energy equation is applied
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Figure 45. Radial profiles of the gas entropy (top left), gas temperature (top right), gas density (bottom left) and dark matter density

(bottom right) of the Santa Barbara cluster, calculated with different resolutions and with different calculational methods. For our
moving-mesh approach, results for the three resolutions 2 × 323, 2 × 643 and 2 × 1283 are shown with solid circles. Here we applied
our entropy-energy scheme with a Mach number threshold Mthresh = 1.1. The open circles show the result for the 2 × 1283 run when
only the total energy equation is used, and the gravitational work term is estimated based on the actual mass fluxes. However, the

results at this high resolution show no difference when the gravitational work term is estimated with cell-centred fluxes instead. Finally, a
high-resolution result obtained with the SPH code GADGET-2 is shown with diamonds. The vertical dotted lines mark the virial radius
of the cluster (Rvir = 2.754 Mpc), while for comparison the dashed line in the top left panel illustrates the shape of the dark matter
density distribution in terms of the best-fit NFW profile (with concentration c = 7.5), scaled by the gas to dark matter mass ratio.

throughout the calculation in the 1283 run, we obtain the
result shown with hollow circles. It produces much higher
core entropy and central gas temperature, as well as a low-
ered central gas density, when compared with our default
mesh-based calculation. We think these results clearly show
that the origin of the discrepancy found first in Frenk et al.
(1999) between the central cluster entropy in SPH and AMR
codes is caused by dissipation in extremely weak shocks and
the production of mixing entropy in effectively smooth parts
of the flow. Part of this dissipation is clearly artificial and
caused by gravitational N-body noise, which has much more

drastic consequence in mesh-based calculations than in SPH.
It therefore appears clear that mesh-based results that use
the energy equation alone will overestimate the central en-
tropy. Unfortunately, it is less clear how much suppression
of dissipation is warranted, and where hence the true en-
tropy level ultimately lies. This will be investigated further
in future work.

We note that the dark matter density profiles found
with AREPO converge very well, and are consistent with
the ones found with GADGET-2. Also, we have found that
at high resolution (643 and 1283) it makes essentially no
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Figure 46. Scatter plot of the mass per cell as a function of local
gas density (top panel). The mass is here expressed in units of
the mean mass per cell, 〈m〉, and the measurement was made
at z = 0 for our 2 × 323 run of the Santa Barbara cluster. The

bottom panel shows the distribution function of m/ 〈m〉, which
has roughly log-normal shape.

difference to the results whether the ‘standard’ approach
to treat the gravitational work term is employed, or our
alternative scheme based on the actual mass fluxes at the
surfaces of cells. Only at the low resolution of 323 we have
found that the cell-centred approach gives slightly higher
central cluster entropy and temperature.

It is also interesting to examine the final state of the
Santa Barbara run with respect to statistical properties of
the geometry of its Voronoi mesh. For example, we would
like to know whether the calculation was able to maintain
roughly constant mass per mesh-cell, and whether the final
mesh consists mostly of ‘roundish’ cells, as desired. The first
of these questions is addressed by Figure 46, where we show
in the top panel a scatter plot of the gas mass per cell as
a function of gas density. It is seen that roughly constant
mass per cell has been maintained over a dynamic range of ∼
105 in density (and hence also in volume). The distribution
function of the mass per cell is shown in the bottom panel
of Figure 46. It has roughly log-normal shape, with a typical
scatter of ∼ 20%. This small scatter is the direct result of
our mesh-steering algorithm discussed in subsection 4.2.

In Figure 47, we show various statistics of the geometry
of the final mesh at z = 0 in our 2 × 323 run of the Santa
Barbara cluster. The top panel histograms the number of
faces per cell and compares it to the same statistic for a
Poisson distribution with the same number of points. The
average number of faces is 14.6 per cell, meaning that on av-
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Figure 47. Geometry statistics of the final mesh at z = 0 in
our moving-mesh calculation of the Santa Barbara cluster. The

histogram in the top panel (thick line) counts the number of faces
per cell; the average number is 14.6. The thin line is the same
statistic for a Poisson sample (∼ 15.5 faces per cell on average).
The middle panel gives the distribution function of the distance d

of mesh-generating points to their cell’s centre-of-masses, in units
of the cell radius. Again, we compare the cosmological simulation
(thick line) to a Poisson sample (thin line). Finally, the bottom

panel gives the distribution of the ratio η = S3/2/(6
√

π V ) of the
surface areas of cells to their volumes.

erage we need to calculate 7.3 Riemann problems per mesh-
generating point. For a structured Cartesian mesh, a factor
2.43 fewer Riemann problems per cell need to be solved. The
middle panel gives the distribution function of the distance
d of a mesh-generating point to the centre-of-mass of its cell,
in units of the fiducial radius R = (3V/4π)1/3 of each cell.
This quantity was used in our method to ensure reasonably
roundish cells, as described in subsection 4.1. The parameter
χ was set to χ = 0.2, meaning that the algorithm tries to
make cells with d > 0.2 rounder, something that clearly has
worked well. Finally, another statistic that shows that our
final mesh is significantly more regular than a Poisson mesh
is given in the bottom panel. Here we show the distribution
function of the ratio η = S3/2/(6

√
π V ) of surface area S of
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a cell to its volume V . For a sphere, η = 1 is reached, and
cells with high aspect ratios will produce larger values. For
our mesh, η peaks around ∼ 1.2.

Finally, it is of interest to comment on the overall code
speed of AREPO for such a real-world cosmological prob-
lem in comparison to an equivalent SPH simulation. In our
present implementation, AREPO is a factor 1.6 slower than
GADGET-3 (an updated version of GADGET-2, Springel,
2005) for the Santa Barbara cluster, using the same num-
ber of dark matter particles and cells/particles. This was
measured for runs on 4 processors, for the 2 × 323 initial
conditions. A full timestep of the moving mesh hydrody-
namics takes about ∼ 2.8 times as much CPU-time as the
SPH calculations, and this cost is dominated by the mesh-
construction, which weighs in with twice the cost of the SPH
calculations, whereas the calculations for the finite-volume
hydrodynamics itself (gradient estimation, flux estimation
with Riemann solver, etc.) is slightly faster than SPH, as
this requires no neighbour searches. However, the calculation
of self-gravity is costly in high force-accuracy cosmological
codes, and in fact makes up nearly two thirds of the cost
in the GADGET-3 calculation. This cost stays roughly equal
in AREPO, as expected, such that only a rather modest in-
crease of the overall run-time in the new code remains. This
additional CPU-time is well invested in our view, given that
the new method yields a substantial improvement in accu-
racy. Furthermore, we note that so far comparatively little
effort has been spent on optimizing the speed of AREPO,
whereas GADGET-3 has been developed and tuned over
many years. There is hence certainly room for substantial
further performance improvements of AREPO in the future.

9.4 A galaxy collision simulation

The hierarchical bottom-up formation of structure from
small building blocks is the leading theory of galaxy for-
mation (White & Rees, 1978). In this scenario, galaxies fre-
quently collide and merge to form bigger systems. In fact,
according to the ‘merger hypothesis’ (Toomre & Toomre,
1972) galaxy collisions are a primary means to form large
elliptical galaxies out of disk systems, and are hence one of
the main drivers of the morphological evolution of galaxies.

Major mergers of spiral galaxies are observed in many
spectacular systems in the local Universe. They have also
been extensively studied with N-body and N-body/SPH
simulations, leading to important insights for the nature of
starbursts, the formation of spheroidal galaxies, and the sec-
ular evolution of galaxies (e.g Gerhard, 1981; Negroponte &
White, 1983; Hernquist, 1989; Barnes & Hernquist, 1992;
Mihos & Hernquist, 1996; Athanassoula & Misiriotis, 2002).
In recent times, galaxy merger calculations were also used to
study the growth of supermassive black holes at the centres
of galaxies, and their energy feedback on the host systems
(Di Matteo et al., 2005; Springel et al., 2005). This has led to
important theoretical insights for the co-evolution of galax-
ies and supermassive black holes (Hopkins et al., 2006), and
for the characterization of merger remnants and elliptical
galaxies as two-component systems (Hopkins et al., 2008).

Interestingly, essentially all of the work thus far on iso-
lated galaxy mergers has been carried out with the La-
grangian SPH technique. Not without reason. SPH can ef-
fortlessly deal with the large bulk velocities present in the

colliding galaxies before they coalesce, and the large dy-
namic range in density and spatial scales that need to be
resolved. At the same time, the resolution automatically fol-
lows the mass, and is concentrated where it is needed most,
which in these calculations is naturally at the centres of the
galaxies. Achieving this same set of features with AMR is
technically and numerically substantially more challenging.
This is certainly one of the primary reasons why this method
has so far not been widely applied to this very important
type of cosmological simulation. An added difficulty in the
high-speed collisions of galaxies is that there is no conve-
nient frame of reference where both galaxies are simultane-
ously at rest. In particular, the calculational hot spots where
the AMR refinements are most needed are quickly moving,
which invokes the problems of Galilean non-invariance in-
herent in the Eulerian approach. While a successful applica-
tion of AMR techniques to galaxy mergers should certainly
be possible in principle, AMR does not appear particularly
well matched to the nature of the problem.

In this last subsection, we show that our new moving-
mesh code can deal quite well with the particular challenges
posed by simulations of pairs of colliding galaxies. We here
focus on the technical aspects of carrying out such simula-
tions with AREPO and give an illustrative example, defer-
ring a scientific analysis of the results of moving mesh based
galaxy mergers to future work.

We begin by briefly discussing the creation of appro-
priate initial conditions. SPH can easily deal with vacuum
boundary conditions, and it is hence straightforward to rep-
resent isolated gaseous disks in otherwise empty space. In
contrast, our moving-mesh code always requires a well de-
fined total volume that is tessellated by the mesh. We there-
fore enclose the isolated galaxies with a large box that com-
fortably contains all the material of the galaxies and their
tidal debris. The outer walls of this box have reflective
boundary conditions for the gas, but collisionless particles
are allowed to penetrate freely. Also, the calculation of grav-
ity is not influenced by the presence of the box. Next, we
need some sort of background grid to fill all of this empty
space through which galaxies with their cells and gas can
move. Ideally, we would like to be able to add this back-
ground grid automatically to existing initial conditions of
SPH calculations, such that equivalent moving-mesh initial
conditions result. This allows continued use of the same ini-
tial conditions codes and facilitates easy comparison of the
results. We have implemented the following functionality in
AREPO to produce appropriate initial conditions that fulfill
these requirements:

(i) Starting with a set of gas particles from an existing
SPH initial conditions, we first generate a new set of points
for tessellating the whole volume of the simulation box. We
want this set of points to produce cells of constant volume
far away from the galaxy (or galaxies), but close to the orig-
inal gas distribution, there should be cells of smaller size
such that the original gas distribution stays well localized
when the Voronoi mesh is constructed. We want to avoid
that particles at the surface of the original SPH particle dis-
tribution end up having Voronoi cells that extend far out
into empty space, which would cause a low-density leakage
of the mass. We generate an appropriate set of additional
points via a special Barnes & Hut (1986) oct-tree construc-
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Figure 48. The top left panel shows the projected gas density in the original SPH particle distribution, which we adapt automatically
to be used in the moving-mesh code. In the top-right panel, we show the resulting gas distribution in the Voronoi mesh that is created

automatically based on the original SPH particle distribution. The lower left panel gives the density distribution after 32 mesh relaxation
steps have been applied, which improves the mesh regularity and somewhat reduces the density fluctuations present in the original
initial conditions. Finally, the lower right shows two sections through the three-dimensional Voronoi mesh corresponding to the lower
left distribution.

c© 0000 RAS, MNRAS 000, 000–000



64 V. Springel

Figure 49. Time evolution of the projected gas density in a galaxy collision with non-radiative gas, calculated with the moving-mesh
code AREPO. Each frame has a length of 160 h−1kpc on a side, and the elapsed time since the start of the simulation is given in units

of h−1Myr. The brightness of each pixel encodes the projected gas surface density, and the colour hue the mass-weighted projected gas
temperature.

tion. We start with a Cartesian grid with cells of size equal
to the desired coarsest background resolution. We then fill
in the gas particles of the SPH initial conditions one by one,
requiring that a new set of 8 empty daughter cells is created
whenever a particle falls into a leaf cell that already contains
a particle. (Note that unlike in the ordinary tree construc-
tion of GADGET-2, the creation of empty cells is not pre-
vented here.) Finally, we create mesh-generating points at
the centres of all empty leaf cells. This procedure effectively
creates an adaptively refined grid that follows the original
SPH particle distribution.

(ii) We now assign the mass, momentum, and thermal
energy of the original SPH particles to the new set of mesh-
generating points. This is done by distributing these quan-
tities to the new points in a conservative fashion, using the
SPH kernel and the original SPH smoothing lengths, and by
weighting each new point with the volume of its associated
parent tree node. This produces new initial conditions that
faithfully represent the gas distribution of the original SPH
simulation, and which can be directly fed to the AREPO

code.

(iii) As an optional step, we may now relax the created
Voronoi mesh by moving the mesh-generating points with
the technique described in subsection 4.2. If desired, this

can also be used to downsample the mesh resolution to ex-
actly match the particle number of the original SPH initial
conditions. The spatial distribution of the mass density, mo-
mentum density and thermal energy density stays fixed in
this step, only the mesh is moved by solving the advection
equation. The mesh relaxes to a distribution where the factor
mi/m̃ + Vi/Ṽ is roughly constant for all the cells, see equa-
tion (69). Here m̃ is the original mean gas particle mass in
the SPH initial conditions, and Ṽ is the volume of the coars-
est cell used in background grid. These values of m̃ and Ṽ
may then also be kept later on to steer the mesh motion
during the dynamical evolution. We note that the numeri-
cal diffusion from the mesh advection in this step reduces
Poisson noise in the initial particle set, if present, which is
a welcome effect in this case.

In Figure 48, we illustrate the outcome of this pro-
cedure when applied to an isolated galaxy model. We se-
lected SPH initial conditions created with the methods de-
scribed in Hernquist (1993) and Springel & White (1999).
The model has circular velocity Vc = 160 km s−1, total mass
M200 = 9.52 × 1011 h−1M⊙, and spin parameter λ = 0.05.
Most of the mass is in an NFW-halo of concentration c = 9.0,
represented with 50000 collisionless dark matter particles.
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Figure 50. Spherically averaged density profiles of the remnant
galaxy formed in the merger simulation carried out with the

moving-mesh code AREPO, at time 2 h−1Gyr after the start of
the simulation. The thick red solid line is for the gas, the thin blue
solid for the stars. Dashed lines give the result of a corresponding

merger calculation carried out with the SPH-code GADGET-2.

The fluctuation seen in the thick red line at small radii is due

to counting statistics, as the number of cells there is small and
each cell is counted in full towards the logarithmic bin in which

its centre falls.

A fraction of md = 0.05 of the mass is in a disk with
an exponential surface mass profile with a scale-length of
Rd = 3.6 h−1kpc, and a vertical scale height of 0.15 × Rd.
Half of the disk mass is in a stellar disk, represented with
30000 collisionless particles, the rest in a gaseous disk of
30000 SPH particles. We enclosed the whole system in a
box of size 1200 h−1kpc on a side, and applied the initial
conditions modification algorithm described above with a
background grid of 323 cells. This increased the final num-
ber of mesh-generating points from 30000 to 109602.

In the top-left panel of Figure 48 we show the projected
gas density in the original SPH particle distribution, pro-
jected with the adaptive SPH kernel. In the top-right panel,
we show the gas distribution in the Voronoi mesh that is
created after step (ii) in the above procedure has been com-
pleted. Here we projected the gas again with an SPH kernel,
now seeking neighbours among the mesh-generating points.
Clearly, the gas mass in the new mesh is localized well, as
desired, but there is a large amount of high-frequency noise
both in the local mesh structure and in the gas distribution.
This noise is partially eliminated in step (iii), as shown in
the bottom left panel, where we show the mass distribution
after iterating the advection equation for 32 relaxation steps.
Finally, in the bottom right panel we show planar sections
through the three-dimensional Voronoi mesh corresponding
to the relaxed initial conditions. The small pieces of cells
that occasionally occur in these sections are corners from
cells that are intersected far from their centres-of-mass.

The above procedures can also be readily applied to
produce initial conditions that contain two galaxies on a col-
lision orbit. We consider a prograde merger of two identical
copies of the above galaxy model, placed at an initial sepa-

ration of 160 h−1kpc, and set-up on a zero-energy orbit with
impact parameter 2 h−1kpc. In Figure 49 we show the time
evolution of this galaxy merger simulated with the moving-
mesh code. The baryons are treated as a non-radiative gas
in this calculation. The galaxies freely fall together with in-
creasing velocity until they undergo a first encounter. Tidal
forces and shocks largely destroy the disks during this first
passages, but the inertia of the galaxies lets them separate
again. After sufficient braking from the dynamical friction
of their dark matter halos, the galaxies turn around and
fall together a second time. This is soon followed by com-
plete coalescence, violent relaxation of the collisionless com-
ponents, and virialization of the gas distribution. By time
∼ 2 h−1Gyr, a reasonably relaxed spheroidal remnant galaxy
has formed. We note that the images of Figure 49 have
been created by ray-tracing through the Voronoi tessellation
for each pixel, and integrating up the linearly reconstructed
density field along all ray segments cells that intersect in-
dividual cells . This technique faithfully preserves the full
information in the three-dimensional density field and does
not rely on additional smoothing steps.

In Figure 50, we show the radially averaged density
profiles of gas and stars of the final merger remnant, at
time 2 h−1Gyr. We compare the results with the outcome of
the same merger calculation carried out with the SPH code
GADGET-2. Interestingly, both the stellar and gas density
profiles are extremely similar, even though there is a hint
that the gas density profile is slightly more concentrated in
the moving-mesh calculation in the outer parts of the halo,
and the innermost gas density profile is a bit shallower. We
have used our entropy-energy formalism with a Mach num-
ber threshold of Mthresh = 1.1 in this moving-mesh calcula-
tion, which has suppressed entropy production in very weak
shocks. If this threshold is raised to Mthresh = 1.3, the cen-
tral gas density increases somewhat, while without any such
threshold it is substantially lowered, because in this case the
cold gas in the disks already experiences significant heating
from noise in the gravitational field prior to the actual col-
lision of the two galaxies. Further work will be required to
better understand the dissipation in the moving-mesh code
in the presence of a collisionless particle component, and to
establish the most accurate setting of Mthresh, or to find an
alternative approach to suppress spurious dissipation in the
finite volume approach when coupled to self-gravity and a
collisionless N-body system.

10 DISCUSSION

We have introduced a novel moving-mesh hydrodynamical
scheme that is second-order accurate both in space and time
and does not require an artificial viscosity. The method is
based on a finite volume discretization of the Euler equations
on an unstructured mesh. The mesh is constructed as the
Voronoi tessellation of a finite set of mesh-generating points,
which are free to move during the time evolution. However,
unlike in many other moving-mesh approaches, there are no
mesh-tangling or mesh-twisting effects since the motion of
the mesh-generating points induces a continuous deforma-
tion of the mesh, without the occurrence of ‘bow-tie’ cells or
other topological artefacts. The freedom to move the mesh
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with a nearly arbitrary flow field adds considerable flexibility
to the method.

If the mesh-generating points are fixed, the method be-
comes effectively identical to an Eulerian code, formulated
with an unsplit MUSCL-Hancock scheme on an unstruc-
tured grid. If the points are fixed and arranged on a Carte-
sian grid, the method becomes identical to an ordinary Eu-
lerian code on a regular structured mesh. However, the most
attractive mode of operation is obtained by tying the mesh
motion to the local fluid velocity, in the simplest case making
the velocities of the mesh-generators equal to the fluid ve-
locities of the corresponding cells. In this Lagrangian mode,
the dynamics becomes Galilean-invariant and benefits from
the automatic adaptivity of Lagrangian approaches, which
is advantageous for many problems of interest.

Conceptually, our method shares aspects of SPH and
of Eulerian hydrodynamics. From SPH, it inherits the con-
cepts of points as carriers of thermodynamic quantities and
their spatial distribution sets the resolution in the flow.
From Eulerian codes it inherits the concept of finite vol-
ume discretization of the Euler equations, and the Godunov
approach to accurately estimate the exchange of conserved
quantities across cell faces. On the other hand, our approach
avoids some of the weaknesses of these two schemes. For ex-
ample, it does not show the same level of noise and diffu-
siveness as SPH, and it avoids the Galilean non-invariance
of Eulerian codes. In our view, this new synthesis of prop-
erties makes our new approach a very attractive technique,
providing a better numerical accuracy for many problems
compared with the alternative methods available thus far.

We note that our new method is significantly different
from other approaches to improve SPH, such as, e.g. the ap-
proaches discussed by Inutsuka (2002), where SPH is com-
bined with a Riemann solver. The important new concept in
our method is the introduction of a well-defined mesh, while
SPH by its very definition a mesh-free technique.

In this paper, we have described in detail the numeri-
cal and algorithmic approaches taken in our new cosmolog-
ical code AREPO, ranging from parallel mesh-construction
techniques in 2D and 3D, to spatial reconstruction and flux
estimation techniques, as well as time integration with indi-
vidual and adaptive schemes. We have shown that our new
code performs very well on a wide range of test problems.
We therefore consider it to be an attractive alternative to
SPH or AMR codes used presently in cosmology, and argue
that it has the potential to become the method of choice for
a number of applications. We note, in particular, that our
treatment of self-gravity should be more accurate and better
suited for the problem of cosmic structure growth than that
in the current generation of cosmological AMR codes.

We note that our new moving mesh method can also
make use of many advanced concepts that have been devel-
oped for Eulerian codes, for example to deal with magnetic
fields and radiative transfer. In particular, if constrained
transport methods for ideal magnetohydrodynamics (MHD)
can be adapted to a Voronoi mesh, this would provide the ex-
citing possibility of constructing a Lagrangian MHD code.
Another interesting idea is to apply the ideas outlined in
this paper in the modelling of relativistic flows, which may
yield a Lorentz invariant numerical scheme. Also, it seems
possible to increase the order of our scheme by employing
more sophisticated reconstruction steps, e.g. those known as

weighted essentially non-oscillatory (WENO) schemes (e.g.
Feng et al., 2004). However, the second-order approach fol-
lowed here is probably best for cosmological structure for-
mation, as the integration of the collisionless component is
of second order only and involves a relatively noisy gravita-
tional field.
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Serrano M., Español P., 2001, Phys Rev E, 64, 046115
Shirokov A., Bertschinger E., 2005, ArXiv Astrophysics e-prints,

astro-ph/0505087
Slyz A., Prendergast K. H., 1999, A&AS, 139, 199
Springel V., 2005, MNRAS, 364, 1105
Springel V., Di Matteo T., Hernquist L., 2005, MNRAS, 361, 776

Springel V., Hernquist L., 2002, MNRAS, 333, 649
Springel V., White S. D. M., 1999, MNRAS, 307, 162
Springel V., White S. D. M., Frenk C. S., et al., 2008, Nature,

456, 73
Springel V., Yoshida N., White S. D. M., 2001, New Astronomy,

6, 79
Stadel J., Potter D., Moore B., et al., 2009, MNRAS, 398, L21
Steinmetz M., Müller E., 1993, A&A, 268, 391
Steinmetz M., White S. D. M., 1997, MNRAS, 288, 545
Stone J. M., Gardiner T. A., Teuben P., Hawley J. F., Simon

J. B., 2008, ApJS, 178, 137
Stone J. M., Norman M. L., 1992, ApJS, 80, 753
Strang G., 1968, SIAM Journal on Numerical Analysis, 5, 3, 506
Tasker E. J., Brunino R., Mitchell N. L., et al., 2008, MNRAS,

390, 1267
Thacker R. J., Couchman H. M. P., 2006, Computer Physics Com-

munications, 174, 540
Toomre A., Toomre J., 1972, ApJ, 178, 623
Toro E., 1997, Riemann solvers and numerical methods for fluid

dynamics, Springer
Trac H., Pen U.-L., 2004, New Astronomy, 9, 443
Trac H., Sills A., Pen U.-L., 2007, MNRAS, 377, 997
Truelove J. K., Klein R. I., McKee C. F., et al., 1998, ApJ, 495,

821
van de Weygaert R., 1994, A&A, 283, 361
van de Weygaert R., Schaap W., 2009, in Lecture Notes in

Physics, Berlin Springer Verlag, edited by V. J. Mart́ınez,
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