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1 SPH in two dimensions: Sampling noise and the clumping

instability

This exercise carries out a couple of simple experiments with 2D dimensional SPH in a
squared region. We start with an innocent (but slightly naive) attempt to construct a
homogenous particle load. This leads to a surprise, and prompts us to think a bit more
about the kernel.

1.1 Making an equilibrium particle configuration in SPH

A Cartesian grid is an obvious possibility to realize a constant density gas, but it has
preferred directions and is therefore not natural for the SPH formalism. Instead, it is
sometimes desirable to use an irregular distribution where the particles are spread out
evenly and the repulsive pressure forces all cancel, yet preferred directions are avoided.
Such a thing we could call an ‘SPH-glass’ in analogy to the gravity glasses that are
sometimes used for CDM initial conditions.

Let’s try to create such a thing in a simple way. Make a random distribution of
N = 1000 particles in a periodic square box of unit length on a side (i.e. a Poisson
sample in 2D). Assign unit density and pressure to the particles. (An example of how
this could be done in IDL is provided on the web-site.) The density fluctuations in these
initial conditions will trigger some gas motions that we can damp away with a moderate
setting of the artificial viscosity.

Run this set-up with the Gadget2 code in 2D SPH mode (TWODIMS switch). Make
sure that you switch of gravity in the makefile (NOGRAVITY switch). In the parame-
terfile, set the system of units factors all to 1, and ask the code to evolve the system from
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0 to 10 time units, with relatively finely spaced outputs in time (e.g. with TimeBet-
Snapshot=0.05) such that you can take a look at the particle motion when you display
the dumps as particle dot plots.

It is normally expected that the kernel interpolation approach of SPH should become
more accurate when a larger number of neighbors is used for the smoothing. With this
in mind, let’s set DesNumNgb = 96 in the parameterfile, motivated by the desire to
have low noise in the density field. Pick a relatively small viscosity, say ArtBulkVisc-
Const=0.3.

Look carefully at the motion of the points, and the final particle configuration. What
happened here? Also, create a scatter plot of the density values at the final time, and
look at the rms density fluctuations as a function of time.

1.2 The role of the number of neighbors

Repeat the experiment above with a smaller number of neighbors, say DesNumNgb = 18.
Again, look at the final particle configuration and the density noise. What changed?
What’s determining the neighbor number that one should pick? What should be taken
in 3D?

1.3 Kernel steepening

One idea to suppress the clumping instability that you witnessed in the first simulation
lies in modifying the kernel shape, preventing that the repulsive force smoothly drops to
zero towards the origin, see e.g. Steinmetz (1996, MN, 278, 1005), or the recent paper
by Read et al. (2009, arXiv:0906.0774).

The kernel normally used by Gadget2 for SPH is the standard cubic spline,
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which is here normalized for 3D use.
Construct a new kernel W̃ which has the same first derivate as W , except for all radii

smaller than the radius u0 where the minimum of W ′(u) is attained. For radii u < u0

simply keep this value of the derivative, i.e. set W̃ ′(u) = min(W ′) for u < u0. The new
kernel will then still have a continuous second derivative, except at the origin, where it
will be peaky. Renormalize the new kernel properly for 2D use.

Now, let’s locate the kernel evaluation routines in Gadget2, which you can find in the
files density.c and hydro.c, approximately at lines 543 and 463/483, respectively. Create
a patched copy of Gadget2 where you implement your new kernel shape with the ‘peaked
kernel’. Then repeat the run with 96 neighbors from above. What has changed?
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1.4 Interpolation accuracy

Are such ad-hoc modifications of the kernel shape ‘allowed’? They are certainly allowed
in principle, but what ultimately counts is the accuracy that is achieved.

Look at the density estimates at the final time produced by the run with 96 neighbors
and the peaky kernel. How well is the mean density (which should be unity) reproduced?
Now repeat the run with just 18 neighbors and the peaked kernel. Look at the mean
density that is estimated in this case, and compare with the result obtained with the
ordinary kernel. Explain the difference. What does the result imply for the utility of
the peaked kernel shape?

1.5 Making a good SPH glass

Go back to your simulation with the ordinary SPH kernel and 18 neighbors. For the final
output, look at a scatter plot of the density versus the x-coordinate and similarly for
the pressure. Why is the scatter in the density apparently larger than in the pressure?

Now go back to the initial conditions code and activate flag entropy in the header
of the initial conditions file. Also, in the u-block of the ICs, store P/ργ instead of
u = P/[(γ−1)ρ]. This means you initialize the entropic function of each particle instead
of the temperature. Furthermore, disable the production of entropy in the code – to
this end, locate line 320 in hydra.c and set the DtEntropy variable to zero there. Run
again, perhaps also with a higher setting of the artificial viscosity. Look at the density
scatter at the final time. Why is this approach for making a ‘glass’ better than the ones
considered above?
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