Echoes of Creation: the origin and evolution of structure in our Universe

Simon D.M. White
Max Planck Institut für Astrophysik
The Three Pillars of the Big Bang

I The expansion of the Universe

Eternally unchanging with continual Creation
or
Unending evolution after an instantaneous Creation

II The abundance of the elements

74% Hydrogen, 24% Helium, 2% `Dirt'
the ashes of the first three minutes and of long-dead stars

III The Cosmic Microwave Background

An all-pervading fossil of our fiery past
Hubble's Law rules the Cosmic Expansion

An accelerating Universe? The return of Einstein's "Eselei" or the discovery of a new form of mass/energy -- the Dark Energy?
The Three Pillars of the Big Bang

I The expansion of the Universe
 Eternally unchanging with continual Creation
 or
 Unending evolution after an instantaneous Creation

II The abundance of the elements
 74% Hydrogen, 24% Helium, 2% `Dirt'
 the ashes of the first three minutes and of long-dead stars

III The Cosmic Microwave Background
 An all-pervading fossil of our fiery past
Element formation in the Early Universe

- During the very first 3 minutes the Universe "cools" to 10^9 C
- The nuclei of a few light elements are formed
 - Hydrogen (1H, 2H)
 - Helium (3He, 4He)
 - Lithium (7Li)
- All the other elements formed later through nuclear reactions in stars and stellar explosions

The atoms in our bodies were made in stars
The Three Pillars of the Big Bang

I
The expansion of the Universe

Eternally unchanging with continual Creation
or
Unending evolution after an instantaneous Creation

II
The abundance of the elements

74% Hydrogen, 24% Helium, 2% 'Dirt'
the ashes of the first three minutes and of long-dead stars

III
The Cosmic Microwave Background

An all-pervading fossil of our fiery past
Three instruments

Far Infrared Absolute Spectroph.

Differential Microwave Radiom.

Diffuse InfraRed Background Exp.
Spectrum of the Cosmic Microwave Background
What do we learn from the COBE spectrum?

- The microwave background radiation looks like thermal radiation from a `Planckian black-body'. This determines its temperature $T = 2.73K$.

- In the past the Universe was hot and almost without structure -- Void and without form -- At that time it was nearly in thermal equilibrium.

- There has been no substantial heating of the Universe since a few months after the Big Bang itself.
COBE's temperature map of the entire sky

\[T = 2.728 \text{ K} \]

\[\Delta T = 0.1 \text{ K} \]
COBE's temperature map of the entire sky

$T = 2.728 \text{ K}$

$\Delta T = 0.0034 \text{ K}$
COBE's temperature map of the entire sky

$T = 2.728 \, \text{K}$

$\Delta T = 0.00002 \, \text{K}$
Structure in the COBE map

- One side of the sky is `hot', the other is `cold'
- The Earth's motion through the Cosmos $V_{Milky Way} = 600$ km/s
- Radiation from hot gas and dust in our own Milky Way
- Structure in the Microwave Background itself
Structure in the Microwave Background

Where is the structure?
 In the cosmic `clouds', 40 billion light years away

What are we seeing?
 Weak sound waves in the clouds

When do we see these clouds?
 When the Universe was 400,000 years old, and was 1,000 times smaller and 1,000 times hotter than today

How big are the structures?
 At least a billion light-years across (in COBE maps)

When were they made?
 A tiny fraction of a second after the Big Bang

What did they turn into?
 Everything we see in the present Universe
What can we learn from these structures?

The pattern of the structures is influenced by several things:

--the Geometry of the Universe
 finite or infinite
 eternal or doomed to end

--the Content of the Universe: its fractions in
 normal (baryonic) matter
 non-baryonic Dark Matter
 unseen radiation (neutrinos?)
 Dark Energy - a cosmological constant?

--the process which created the structure
 Quantum effects during early inflation?
 Topological knots from an early phase transition?
The Boomerang balloon flight (1998 - 1999)
A tour of the South Pole

Height 37 km

Weight 1500 kg

Telescope size 1.2m

Frequ. 90, 150, 240, 400 Ghz

3% of the sky was mapped
The Boomerang and COBE maps
The Boomerang map at 150 Ghz
Structure in Boomerang maps of the microwave sky

Strength of waves

- Weak
- Strong H_0
- Weak $\Omega_{tot} = 1$ & LSS

Data points:
- DMR
- B98
The *WMAP* Satellite at Lagrange-Point L2
The *WMAP* of the whole CMB sky

Bennett et al 2003
The Emergence of the Cosmic Initial Conditions

- Temperature-temperature and temperature-polarisation power spectra for WMAP and interferometers
- Best ΛCDM model

 \begin{align*}
 t_0 &= 13.7 \pm 0.2 \text{ Gyr} \\
 h &= 0.71 \pm 0.03 \\
 \sigma_8 &= 0.84 \pm 0.04 \\
 \Omega_t &= 1.02 \pm 0.02 \\
 \Omega_m &= 0.27 \pm 0.04 \\
 \Omega_b &= 0.044 \pm 0.004 \\
 \tau_e &= 0.17 \pm 0.07
 \end{align*}

- Parameters in excellent agreement with other astronomical data
What have we learned from Boomerang and WMAP?

- Our Universe is flat -- its geometry is that imagined by Euclid

- Only a small fraction of it is made of ordinary matter -- about 4%
 there is a lot of dark, nonbaryonic matter (about 30%)
 (which can be `seen' through gravitational lensing)

- Most of it must be a new kind of dark energy (perhaps a cosmological constant) as also inferred from the apparently accelerating expansion

- All structure in the Universe originated as quantum zero-point fluctuations of the vacuum, perhaps 10^{-30} s after the Big Bang!

Everything has formed from nothing
How Boomerang measured cosmic geometry
What have we learned from Boomerang and WMAP?

- Our Universe is flat -- its geometry is that imagined by Euclid

- Only a small fraction of it is made of ordinary matter -- about 4%
 there is a lot of dark, nonbaryonic matter (about 30%)
 (which can be `seen' through gravitational lensing)

- Most of it must be a new kind of dark energy (perhaps a cosmological constant) as also inferred from the apparently accelerating expansion

- All structure in the Universe originated as quantum zero-point fluctuations of the vacuum, perhaps 10^{-30} s after the Big Bang!

Everything has formed from nothing
Gravitational lensing by a galaxy cluster

Abell 2218 \(z=0.17 \)
What have we learned from Boomerang and WMAP?

- Our Universe is flat -- its geometry is that imagined by Euclid

- Only a small fraction of it is made of ordinary matter -- about 4%
 - there is a lot of dark, nonbaryonic matter (about 30%)
 - (which can be `seen' through gravitational lensing)

- Most of it must be a new kind of dark energy (perhaps a cosmological constant) as also inferred from the apparently accelerating expansion

- All structure in the Universe originated as quantum zero-point fluctuations of the *vacuum*, perhaps 10^{-30} s after the Big Bang!

Everything has formed from nothing
Fraction in dark + baryonic matter

Cosmology after Boomerang and SNIa
What have we learned from Boomerang and WMAP?

- Our Universe is flat -- its geometry is that imagined by Euclid
- Only a small fraction of it is made of ordinary matter -- about 4%

 there is a lot of dark, nonbaryonic matter (about 30%)

 (which can be `seen' through gravitational lensing)
- Most of it must be a new kind of dark energy (perhaps a cosmological constant) as also inferred from the apparently accelerating expansion
- All structure in the Universe originated as quantum zero-point fluctuations of the vacuum, perhaps 10^{-30} s after the Big Bang!

Everything has formed from nothing
Nearby large-scale structure
Evolving the Universe in a computer

- Follow the matter in an expanding cubic region
- Start 300,000 years after the Big Bang
- Match initial conditions to the observed Microwave Background
- Calculate evolution forward to the present day
The local Universe at $z = 2.4$
The local Universe at $z=0.8$
The local Universe today
The local Universe with galaxies
Telescopes as time machines: seeing the past directly

The Hubble Deep Field

Steidel et al 1999

Extinction corrected

$\log_{10}(SFR/Mpc^3)$

Redshift

0 1 2 3 4
The local Universe with galaxies
Bright galaxies at redshift $z=2.4$
SFR>5.0
Present-day descendents of bright galaxies from redshift $z=2.4$
The local Universe with galaxies
Our Universe began in fire 14 billion years ago

The expansion is accelerating into an eternal frost

All structure originated in rolls of the quantum dice

We are made from the ashes of stars

Most of the Universe is made of something else, as yet unseen on Earth