

Paris, January 2004

Structure formation and its impact on the CMB

Simon D.M. White Max Planck Institute for Astrophysics

The WMAP of the whole CMB sky

Bennett et al 2003

Hubble Space Telescope image of a galaxy cluster

Abell 2218 z=0.17

Rosat X-ray image of the cluster Abell 3667

Cluster shadows on the microwave background

13^h47^m36^s 32^s 28^s 24^s Right Ascension (J2000)

- Compton upscattering of CMB photons by e⁻ in the hot intracluster gas leaves a deficit in the background
 Sunyaev-Zeldovich effect
- Map made using the BIMA interferometer Carlstrom et al 2001

Structure in the intergalactic medium

Young galaxies and the cosmic star formation history

Evolving the Universe in a computer

- Follow the matter in an expanding cubic region
- Start 450,000 years after the Big Bang
- Match initial conditions to the observed Microwave Background
- Calculate evolution forward to the present day

What are simulations good for?

- To gain intuition and to make precise predictions for behaviour in the nonlinear regime
- To model observational effects
 - -- selection bias
 - -- visual appearance
 - -- effects of observational errors
 - -- "cosmic variance"
- To extrapolate into (as yet) unobserved regimes
 - -- smaller scales
 - -- higher redshifts
- To understand links between high and low z objects

Utility of results is usually limited by accuracy with which observables are modelled (M_B, B-V, τ_{HI} , L_X, T_X, ΔT_{SZ} , κ , γ ,..).

Are simulations accurate enough? Halo abundance as a function of mass

Results from simulations of different scale and resolution *can* agree at the few percent level (also for power spectra, correlation functions...)

Abundance of halos can be predicted to within about 20% from the linear power spectrum.

Requirements for 'precision' results

- Accurate initial conditions
 - --- artifact-free uniform particle load
 - --- accurate and accurately imposed initial PS
 - --- correct velocities (thermal and bulk)

Large enough simulated volume
 --- minimal effects from sparse Fourier sampling
 --- small cosmic variance in relevant statistics

- Accurate time integration
 - --- good linear growth rates
 - --- proper treatment of highly nonlinear regions
- Proper testing of effects of resolution limitations
 - --- softening of gravitional interaction
 - --- discreteness effects (relaxation, sampling noise)

Gravitational effects of structure on the CMB

• The integrated Sachs-Wolfe effect

--- vanishes in an Einstein de Sitter universe

- --- affects only the lowest multipole modes
- --- can be isolated by cross-correlation with observed large-sky-coverage samples of galaxies/clusters

• The Rees-Sciama effect

--- differential gravitational redshift due to passage through a time-dependent potential (e.g. a collapsing or moving cluster)

Gravitational lensing

- --- conserves ΔT but distorts pattern
- --- smooths the power spectrum
- --- introduces non-gaussian features
- --- convergence map recoverable from the ΔT map

Baryonic structure imprints on the CMB

Thermal SZ effect from galaxy clusters/LSS
 --- surface brightness ∞ line integral of electron pressure
 --- frequency variation *almost* independent of gas temp.
 --- no effect at 217 Ghz

• Kinematic SZ effect

--- surface brightness ∞ line integral of electron momentum
--- frequency variation corresponds to variation in T
--- typical values smaller than thermal SZ/primary fluct'ns
--- significant effects at reionisation

Compton scattering effects from reionisation

--- principal effect is washing out of high *l* structure --- strength \propto line integral of Thompson optical depth --- WMAP τ requires early reionisation

Thermal SZ effect for a 1 degree patch

Yoshida, priv comm

Constructed from past light-cone back to $z \sim 5$

Kinetic SZ effect for a 1 degree patch

Yoshida, priv comm

Constructed from past light-cone back to $z \sim 5$

Simulating the whole visible Universe

$$\Omega_{\Lambda} = 0.7 \quad \Omega_{\rm m} = 0.3$$

ACDM LInivara

Simulated with $N=10^9$

Evrard et al 2001 The Virgo Consortium

Thermal SZ map from the Hubble volume simulation + high resolution simulations

Pfrommer, Schaefer Planck Simulation Pipeline

x 10[°] 2.5

2

1.5

0.5

-0.5 0 0.5 relative ecliptic longitude λ [deg]

Kinetic SZ map from the Hubble volume simulation + high resolution simulations

Pfrommer, Schaefer Planck Simulation Pipeline

x 10⁻⁵

3

2

1

0

-1

-2

-3

20 degree patch from the Planck simulation pipeline with central massive cluster

Schaefer & Pfrommer 143 GHz

Foregrounds included

-- synchrotron

- -- free-free
- -- dust
- -- CO

0.031918

No noise or planets

20 degree patch from the Planck simulation pipeline with central massive cluster

Schaefer & Pfrommer 217 GHz

Foregrounds included

-- synchrotron

- -- free-free
- -- dust
- -- CO

0.017000

No noise or planets

Field vs cluster evolution of the galaxy population

Field vs cluster evolution of the galaxy population

Field vs cluster evolution of the galaxy population

$$\leftarrow 20 \text{ h}^{-1}\text{Mpc} \rightarrow$$

$$ho_* = 0.093 \langle
ho_0
angle$$

$$\rho_* = 0.018 \langle \rho_0 \rangle$$
$$M_{gal} > 10^9 M_{sun}$$
$$z = 10$$

Reionization of cluster and field regions

Ciardi, Stoehr & White 2003

Are motions visible on the CMB sky?

Cluster 53

Optical depth to electron scattering in comparison to WMAP

Ciardi, Ferrara & White 2003

- Reionisation efficiency depends on: $\epsilon_{\text{massive * form.}} \times \epsilon_{\gamma \text{ prod.}} \times \epsilon_{\text{escape}}$ • Optimistic but physically plausible
 - Optimistic but physically plausible efficiencies reproduce the *WMAP* τ_e
 - without -- miniquasars
 - -- H₂ cooling/Pop III stars

z=13.7 z=17.6 z=15.5

-- galaxies with $M_{tot} < 10^9 M_{\odot}$

Ciardi & Madau 2003

Seeing structure before reionisation

Pre-reionisation sources of UV

 $\begin{array}{c} -2 \\ \text{of Ly } \alpha \\ \text{photons} \end{array}$

 $\begin{bmatrix} -6 \\ -8 \end{bmatrix}$ $\begin{bmatrix} -8 \\ -8 \end{bmatrix}$

Detectable 21cm emission (LOFAR)

Open issues on the CMB/structure formation interface

- How accurate must DM simulations be for precision cosmology?
 --- Are fitting formulae (e.g. Peacock/Dodds) good enough?
 --- Are baryonic effects on the mass distribution significant?
- Are correlations between DM and baryonic effects significant? --- correlation of lensing and SZ effects?
 - --- correlation of point sources with structure in the DM?
- Do we need to include additional DM or DE physics?
 --- DM self-interaction, annihilation, interaction with baryons?
 --- fluctuations in the DE field? DE effects on gravity?
- Is the small scale baryonic physics important for CMB? --- cooling and feedback within clusters?
 - --- early enrichment of the IGM -- resonant line scattering?
- Do nonlinear secondary effects influence primary measurements?
 --- can SZ contribution to PS be accurately estimated/measured?
 --- what about effects from reionisation?