

The evolution of cosmic structure

Simon White Max Planck Institute for Astrophysics

COBE's near-infrared map of the whole sky

Spiral galaxies like our own

NGC 891

Galaxy map of the whole sky

Two Micron All Sky Survey Image Mosaic: Infrared Processing and Analysis Center/Caltech & University of Massachusetts

"Nearby" large-scale structure

The deepest photo ever made

A 300 hour exposure with the Hubble Space Telescope

Galaxies visible at z>5when $t < 0.1 t_{a}$

The COBE satellite (1989 - 1993)

- Two instruments made maps of the whole sky in microwaves and in infrared radiation
- One instrument took a precise spectrum of the sky in microwaves

2006 Physics Nobel Prize

Spectrum of the microwave background

- Spectrum matches a Planckian black-body to better than 1 in 10⁻⁴
- The early universe was hot, smooth and in thermal equilibrium
- No significant energy input later than ~1 month after the Big Bang

COBE's temperature map of the entire sky

COBE's temperature map of the entire sky

COBE's temperature map of the entire sky

Structure in the COBE map

One side of the sky is `hot', the other is`cold'
 the Earth's motion through the Cosmos V_{Milky Way} = 600 km/s

 Radiation from hot gas and dust in our own Milky Way

• Structure in the Microwave Background itself

Structure in the Microwave Background

- The structure lies in cosmic 'clouds', $\sim 4 \ 10^{10}$ l-yrs away
- It reflects weak "sound" waves, $A \sim 10^{-4}$, in the clouds
- At the time the Universe was only 400,000 years old, and was 1,000 times smaller and 1,000 times hotter than today

The pattern of structure reflects

- A: The global geometry and topology of the Universe
- **B**: The constituents and thermal evolution of the Universe
- C: The process which generated the structure

The WMAP Satellite at Lagrange-Point L2

The WMAP of the whole CMB sky

Bennett et al 2003

		Parameter	3 Year Mean	5 Year Mean				
		$100\Omega_b h^2$	2.229 ± 0.073	2.273 ± 0.062				
		$\Omega_c h^2$	0.1054 ± 0.0078	0.1099 ± 0.0062				
		Ω_{Λ}	0.759 ± 0.034	0.742 ± 0.030				
	WMAP5	n_s	0.958 ± 0.016	$0.963^{+0.014}_{-0.015}$				
		au	0.089 ± 0.030	0.087 ± 0.017				
		$\Delta^2_{\mathcal{R}}$	$(2.35\pm 0.13)\times 10^{-9}$	$(2.41 \pm 0.11) \times 10^{-9}$				
		σ_8	0.761 ± 0.049	0.796 ± 0.036				
		Ω_m	0.241 ± 0.034	0.258 ± 0.030				
		$\Omega_m h^2$	0.128 ± 0.008	0.1326 ± 0.0063				
		H_0	$73.2^{+3.1}_{-3.2}$	$71.9^{+2.6}_{-2.7}$				
F		$z_{\rm reion}$	11.0 ± 2.6	11.0 ± 1.4				
6000 -		t_0	13.73 ± 0.16	13.69 ± 0.13				
F	I							
F								
× 1000								
ן <u>ש</u>		τα. 	· · · · · · · · · · · · · · · · · · ·					
C ¹ /2								
(+1)								
× 2000 -		\mathcal{N}						
ŀ								
F								
F								
₀ ⊨		400	800					
Multipole moment <i>l</i>								

What have we learned from WMAP?

- Our Universe is flat -- its geometry is that imagined by Euclid
- Only a small fraction of it is made of ordinary matter -- about 4.5%
 there is a lot of dark, nonbaryonic matter (about 23%) (which can be "seen" through gravitational lensing)
- Most of it must be a new kind of dark energy (perhaps a cosmological constant) as also inferred from the apparently accelerating expansion
- All structure in the Universe originated as quantum zero-point fluctuations of the *vacuum*, perhaps 10^{-30} s after the Big Bang!

Everything has formed from nothing

Gravitational lensing by a galaxy cluster

Abell 2218 z=0.17

Large-scale structure from weak lensing

What have we learned from WMAP?

- Our Universe is flat -- its geometry is that imagined by Euclid
- Only a small fraction of it is made of ordinary matter -- about 4.5%
 there is a lot of dark, nonbaryonic matter (about 23%) (which can be "seen" through gravitational lensing)
- Most of it must be a new kind of dark energy (perhaps a cosmological constant) as also inferred from the apparently accelerating expansion
- All structure in the Universe originated as quantum zero-point fluctuations of the *vacuum*, perhaps 10^{-30} s after the Big Bang!

Everything has formed from nothing

Hubble's "Law" and the expansion history

An accelerating Universe! The return of Einstein's "Eselei" or perhaps the discovery of a new form of mass/energy -- the Dark Energy.

The ESSENCE Survey Wood-Vasey et al 2007

- The SN data require an accelerated expansion today
- With large-scale structure data, they imply a flat Universe with DE
- The DE appears to behave "like" a cosmological constant, $w \approx -1$
- The implied parameters agree with those obtained independently from the cosmic microwave background

Class	Parameter	WMAP 5-year Mean ^b	WMAP+BAO+SN Mean	
Primary	$100\Omega_b h^2$	2.273 ± 0.062	2.265 ± 0.059	Putting it
	$\Omega_c h^2$	0.1099 ± 0.0062	0.1143 ± 0.0034	all to goth or
	Ω_{Λ}	0.742 ± 0.030	0.721 ± 0.015	all together
	n_s	$0.963^{+0.014}_{-0.015}$	$0.960^{+0.014}_{-0.013}$	
	au	0.087 ± 0.017	0.084 ± 0.016	
	$\Delta^2_{\mathcal{R}}(k_0^{e})$	$(2.41 \pm 0.11) \times 10^{-9}$	$(2.457^{+0.092}_{-0.093}) \times 10^{-9}$	
Derived	σ_8	0.796 ± 0.036	0.817 ± 0.026	_
	H_0	$71.9^{+2.6}_{-2.7} \text{ km/s/Mpc}$	$70.1 \pm 1.3 \text{ km/s/Mpc}$	
	Ω_b	0.0441 ± 0.0030	0.0462 ± 0.0015	Komatsu et al 2008
	Ω_c	0.214 ± 0.027	0.233 ± 0.013	
	$\Omega_m h^2$	0.1326 ± 0.0063	0.1369 ± 0.0037	
	z_{reion}^{f}	11.0 ± 1.4	10.8 ± 1.4	
	$t_0{}^g$	$13.69 \pm 0.13 \text{ Gyr}$	$13.73 \pm 0.12 \text{ Gyr}$	

"Explanations" for Dark Energy

- A cosmological constant (i.e. another constant of gravity)
- Dynamical Dark Energy, e.g. quintessence
- A result of "leakage" from higher dimensions
- A reflection of the need to extend/modify General Relativity
- A consequence of the nonlinear behaviour of GR
- The result of systematics in the SN data

What have we learned from WMAP?

- Our Universe is flat -- its geometry is that imagined by Euclid
- Only a small fraction of it is made of ordinary matter -- about 4.5%
 there is a lot of dark, nonbaryonic matter (about 23%) (which can be "seen" through gravitational lensing)
- Most of it must be a new kind of dark energy (perhaps a cosmological constant) as also inferred from the apparently accelerating expansion
- All structure in the Universe originated as quantum zero-point fluctuations of the *vacuum*, perhaps 10^{-30} s after the Big Bang!

Everything has formed from nothing

Evolving the Universe in a computer

- Follow the matter in an expanding cubic region
- Start 400,000 years after the Big Bang
- Match initial conditions to the observed Microwave Background
- Calculate evolution forward to the present day

Views of the dark matter in a Virtual Universe

• The growth of dark matter structures in a thin slice

- A zoom from the whole visible Universe into a galaxy cluster
- A flight through the dark matter distribution
- The assembly of the Milky Way's halo

Processes shaping the visible Universe

- Shock-heating, radiative cooling and gravitational condensation of gas in DM potential wells
- Star formation and stellar evolution
- Energetic and chemical feedback from star death/supernovae
- Black hole formation and feedback from Active Galactic Nuclei
- Collisions and merging of galaxies
- Condensation and distribution of dust

z = 0 Galaxy Light

Galaxy autocorrelation function

Springel et al 2005

For such a large simulation the purely statistical error bars are negligible even for the galaxies

Large-scale structure at high redshift

Springel, Frenk & White 2006

Large-scale structure in the galaxy distribution evolves very little with redshift

It is as strong at z=8.5 as at z=0

A bright quasar and its surroundings at 1 billion years

One of the most massive dark matter clumps, containing one of the most massive galaxies and most massive black holes.

The quasar's descendant and its surroundings today, at t = 13.7 billion years

One of the most massive galaxy clusters. The quasar's descendant is part of the central massive galaxy of the cluster.

Formation of the "first"star in the Universe

Yoshida et al 2006

- ΛCDM cosmology
- _z = 19
- Coherent collapse of "primordial" gas in a ~10⁶ M_o halo
- Formation of a single star of $\sim 60 100 \text{ M}_{\odot}$

•Objects that reionized the Universe?

Goals for "late-time" structure formation studies

- Linking the linear early Universe with today's nonlinear world
- Understanding the (coupled) formation and evolution of the first nonlinear objects of galaxies, stars and planets of the central black holes in galaxies of element abundances of large-scale structure
- Clarifying whether visible cosmic structures retain information about the nature of Dark Matter, Dark Energy or the process which originally generated structure