Ensenada March 2008

Galaxy halos at (very) high resolution

Simon White & Mark Vogelsberger

Max Planck Institute for Astrophysics

Milky Way halo seen in DM annihilation radiation

Aquarius simulation: $N_{200} = 190,000,000$

Small-scale structure of the CDM distribution

- Direct detection involves bolometers/cavities of meter scale which are sensitive to particle momentum
 - -- what is the density structure between m and kpc scales?
 - -- how many streams intersect the detector at any time?
- Intensity of annihilation radiation depends on

 ∫ ρ²(x) ⟨σ v⟩ dV
 what is the density distribution around individual CDM particles on the annihilation interaction scale?

Predictions for detection experiments depend on the CDM distribution on scales <u>far</u> below those accessible to simulation

We require a good theoretical understanding of mixing

Well *after* CDM particles become nonrelativistic, but *before* they dominate the cosmic density, their distribution function is

$$f(x, v, t) = \rho(t) [1 + \delta(x)] N [\{v - V(x)\}/\sigma]$$

where $\rho(t)$ is the mean mass density of CDM, $\delta(\mathbf{x})$ is a Gaussian random field with finite variance $\ll 1$, $V(\mathbf{x}) = \nabla \psi(\mathbf{x})$ where $\nabla^2 \psi(\mathbf{x}) \propto \delta(\mathbf{x})$ and *N* is standard normal with $\sigma^2 \ll \langle |\mathbf{V}|^2 \rangle$

CDM occupies a thin 3-D 'sheet' within the full 6-D phase-space and its projection onto \mathbf{x} -space is near-uniform.

 $Df/Dt = 0 \longrightarrow$ only a 3-D subspace is occupied at later times. Nonlinear evolution leads to a complex, multi-stream structure.

Similarity solution for spherical collapse in CDM

Bertschinger 1985

Evolution of CDM structure

Consequences of
$$Df/Dt = 0$$

- The 3-D phase sheet can be stretched and folded but not torn
- At least 1 sheet must pass through every point **x**
- In nonlinear objects there are typically many sheets at each **x**
- Stretching which reduces a sheet's density must also reduce its velocity dispersions to maintain f = const.
- At a caustic, at least one velocity dispersion must $\longrightarrow \infty$
- All these processes can be followed in fully general simulations by tracking the phase-sheet local to each simulation particle

The geodesic deviation equation

Particle equation of motion: $\dot{\mathbf{X}} = \begin{bmatrix} \dot{\mathbf{X}} \\ \dot{\mathbf{V}} \end{bmatrix} = \begin{bmatrix} \mathbf{V} \\ -\nabla\phi \end{bmatrix}$

Offset to a neighbor: $\delta \dot{\mathbf{X}} = \begin{bmatrix} \delta \mathbf{v} \\ \mathbf{T} \cdot \delta \mathbf{x} \end{bmatrix} = \begin{bmatrix} 0 & \mathbf{I} \\ \mathbf{T} & \mathbf{0} \end{bmatrix} \cdot \delta \mathbf{X} ; \mathbf{T} = -\nabla(\nabla \phi)$

Write $\delta X(t) = D(X_0, t) \cdot \delta X_0$, then differentiating w.r.t. time gives,

$$\dot{\mathbf{D}} = \begin{bmatrix} 0 & \mathbf{I} \\ \mathbf{T} & \mathbf{0} \end{bmatrix} \cdot \mathbf{D} \text{ with } \mathbf{D}_0 = \mathbf{I}$$

- Integrating this equation together with each particle's trajectory gives the evolution of its local phase-space distribution
- No symmetry or stationarity assumptions are required
- det(D) = 1 at all times by Liouville's theorem
- For CDM, $1/|det(D_{xx})|$ gives the decrease in local 3D space density of each particle's phase sheet. Switches sign and is infinite at caustics.

Static highly symmetric potentials

Mark Vogelsberger, Amina Helmi, Volker Springel

Axisymmetric Eddington potential

$$\Phi(r,\theta) = v_{\rm h}^2 \log (r^2 + d^2) + \frac{\beta^2 \cos^2 \theta}{r^2}$$

Changing the number of frequencies

Spherical logarithmic potential

$$\Phi(r,\theta) = v_{\rm h}^2 \log \left(r^2 + d^2\right)$$

Chaotic mixing

Compare frequency analysis results with geodesic deviation equation results

Dark matter streams in a triaxial NFW

Inner potential shape $a:b:c \sim 1.0:0.9:0.8$

outer orbit: similar stream behaviour in spherical and triaxial cases

Chaotic mixing in a triaxial NFW?

A particle orbit in a live Halo

Number of Caustic Passages

x [kpc]

x [kpc]

Conclusions (so far)

- GDE robustly identifies caustic passages and gives fair stream density estimates for particles in fully 3-D CDM simulations
- Many streams are present at each point well inside a CDM halo (at least 100,000 at the Sun's position)

quasi-Gaussian signal in direct detection experiments

• Caustic structure is more complex in realistic 3-D situations than in matched 1-D models but the caustics are weaker

negligible boosting of annihilation signal due to caustics

• Boost due to small substructures still uncertain but appears modest