

galaxies: Venice October 2006

Large-scale Modelling of the: Evolution of galaxies

Simon White

Max Planck Institute for Astrophysics

Moore's Law for Cosmological N-body Simulations

Springel et al 2005

- Computers double their speed every 18 months
- A naive N-body force calculation needs N² op's pire
- Simulations double their size every 16.5 months
- Progress has been roughly equally due to hardware ¹⁰ and to improved algorithms

Simulating galaxies /AGN with the Millennium Run

Springel et al 2005; Croton et al 2006, De Lucia et al 2006, De Lucia & Blaizot 2006

- Build and store merger trees which encode the detailed assembly history of every z=0 halo <u>and</u> of the substructure within it
- Implement models for the formation/evolution of galaxies to follow
 - -- accretion, shock-heating and cooling of diffuse gas into disks
 - -- star formation from the ISM in disks
 - -- stellar evolution
 - -- SN feedback and stellar winds
 - -- chemical enrichment/dust formation
 - -- galaxy merging/morphological transformation

• Implement models for the growth of central black holes to follow

- -- formation and growth from ISM gas during mergers [After Kauffmann
- -- black hole mergers following galaxy mergers

[After Springel et al (2001) and De Lucia et al (2004)]

& Haehnelt (2000)]

z = 0 Galaxy Light

Evolution of mass and galaxy correlations

Springel, Frenk & White 2006

Large-scale structure at high redshift

Springel, Frenk & White 2006

Large-scale structure in the galaxy distribution evolves very little with redshift

It is as strong at z=8.5 as at z=0

The effects of "radio mode" feedback on z=0 galaxies

Croton et al 2006

- In the absence of a "cure" for the cooling flow problem, the most massive galaxies are:

 too bright
 too blue
 disk-dominated
- With cooling flows suppressed by "radio AGN" these galaxies are less massive red elliptical

MAJOR MERGER RATES Qi Guo & SW $\mathbf{R} = \langle \mathbf{t}_{\mathrm{Hubb}} | \mathbf{F} / \Delta \mathbf{t} \rangle$ where F is the fraction of galaxies that had a major merger $(M_{proj, 1} > M_{proj, 2}/3)$

in the last $\Delta t \sim 0.2$ Gyr

RATES Qi Guo & SW $\mathbf{R} = \langle \mathbf{t}_{\mathrm{Hubb}} | \mathbf{F} / \Delta \mathbf{t} \rangle$ where F is the fraction of galaxies that had a major merger $(M_{proj, 1} > M_{proj, 2}/3)$ in the last $\Delta t \sim 0.2$ Gyr

N STELLAR MASS
Qi Guo & SW
$$\mathbf{R} = \langle \mathbf{t}_{Hubb} \Delta \mathbf{M} / \mathbf{M} \Delta \mathbf{t} \rangle$$

DIMENSIONLESS

GROWTH RATES

where $\Delta M/M$ is the stellar mass fraction added over the last ~0.2Gyr through Major Mergers All Mergers **Star Formation**

GROWTH RATES
IN STELLAR MASS
Qi Guo & SW
$$R = \langle t_{Hubb} \Delta M / M \Delta t \rangle$$

where $\Delta M/M$ is the

DIMENSIONLESS

V stellar mass fraction added over the last ~0.2Gyr through Major Mergers All Mergers Star Formation

10

mass growth rate

IN STELLAR MASS
Qi Guo & SW
$$R = \langle t_{Hubb} \Delta M / M \Delta t \rangle$$

DIMENSIONLESS

GROWTH RATES

where ∆M/M is the stellar mass fraction added over the last ~0.2Gyr through Major Mergers All Mergers Star Formation

DIMENSIONLESS
GROWTH RATES
IN STELLAR MASS
Qi Guo & SW
$$R = \langle t_{Hubb} \Delta M / M \Delta t \rangle$$
where $\Delta M/M$ is the
stellar mass fraction
added over the last
~0.2Gyr through

V S a \sim Major Mergers All Mergers **Star Formation**

mass growth rate

Kitzbichler & White 2006

comoving distance Mpc/h

Deep Galaxy Counts

Kitzbichler & White 2006

Deep Galaxy Redshift Distributions

Kitzbichler & White 2006

dN/dz/arcmin^e

Deep galaxy luminosity functions

Kitzbichler & White 2006

Deep galaxy mass functions

Kitzbichler & White 2006

Observational estimates:

Cole et al (2001) z = 0Drory et al (2005) z = 0.5 to 4.5 Fontana et al (2006) z = 0.5 to 3.5

Colour-magnitude relation evolution

Kitzbichler & White 2006

- This particular galaxy formation model is close to most high-z data on abundances and clustering
- It seems to predict slightly too many massive galaxies at redshifts between 1 and 3
- Dust modelling is critical to many comparisons
- For $M_* < 5 \cdot 10^{10} M_{\odot}$ most stars added by *in situ* star formation For $M_* > 10^{11} M_{\odot}$ most stars added by mergers This is a consequence of the adopted model for radio feedback
- Full data on the formation histories of the galaxies and dark halos in this model are available from: http://www.mpa-garching.mpg.de/Millennium

Documentation 1. Introduction 1.1 Simulation 1.2 Semi-analytical galaxy formation 1.3 Science questions 1.4 Storing merger trees 1.5 Peano-Hilbert spatial indexing 1.6 Links 2. Relational databases and SQL 3. Tables 3.1 HALO 3.2 FOF 3.3 SAGFUNIT 3.4 SNAPSHOTS 3.5 GALAXY	<pre>select D. I_HALO, D. SNAPNUM, D. N P as D NP, P1. N P as P1_NP, P2. N P as P2_NP from HALO P1, HALO D where P1. SNAPNUM=P2. SNAPNUM and P1. I_HALO < P2. I_HALO and P1. I_DESCENDANT = D. I_HALO and P2. I_DESCENDANT = D. I_HALO and P1. N P >= .2*D. N P and D. N_P > 1000</pre>			
4. Views 5. Functions 6. Demo queries Halo 1 Galaxy 1 Halo 2 Halo 3 Halo 4 Halo 5 Galaxy 5 Galaxy 6	Maximum number of rows to return to the query form: 10 💌 Previous queries :			
	Halo 1Galaxy 1Find halos/galaxies at a given redshift (SNAPNUM) within a certain part of the simulation volume (X,Y,Z).Halo 2Find the whole progenitor tree, in depth-first order, of a halo identified by its id (I_HALO)Halo 3Find the progenitors at a given redshift (SNAPNUM) of all halos of mass (N_P) greater than 4000 at a later redshift (SNAPNUM). The progenitors are limited to have mass >= 100.Halo 4Find all the halos of mass (N_P) >= 1000 that have just had a major merger, defined by having at least two progenitors of mass >= 0.2*descendant mass.Halo 5Galaxy 5Find the mass/luminosity function of halos/galaxies at z=0 using logarithmic intervals.Galaxy 6Find the Tully-Fisher relation, Mag_b/v/i/k vs V_vir for galaxies with bulge/total mass ratio < 0.1. Subsample by about 1% (RANDOM between 20000 and 30000).	 Find halos/galaxies at a given redshift (SNAPNUM) within a certain part of the simulation volume (X,Y,Z). Find the whole progenitor tree, in depth-first order, of a halo identified by its id (I_HALO) Find the progenitors at a given redshift (SNAPNUM) of all halos of mass (N_P) greater than 4000 at a later redshift (SNAPNUM). The progenitors are limited to have mass >= 100. Find all the halos of mass (N_P) >= 1000 that have just had a major merger, defined by having at least two progenitors of mass >= 0.2*descendant mass. Find the mass/luminosity function of halos/galaxies at z=0 using logarithmic intervals. Find the Tully-Fisher relation, Mag_b/v/i/k vs V_vir for galaxies with bulge/total mass ratio < 0.1. Subsample by about 1% (RANDOM between 20000 and 30000). 		

 Reformat
 CSV

 Plot (VOPlot)
 This button wil attempt to start up VOPlot within an applet, so that the current result can be explored graphically. This clearly requires that the browser has been configured for viewing applets.

 DiscLAIMER This functionality has been partially tested only. Any problems are our responsibility, not VOPlot's. It seems that the applet does not work properly with Konqueror.

Query time (in millisec) = 15623 Number of rows retrieved from database = 12 (Maximum # = 10000)

i_halo	snapnum	d_np	p1_np	p2_np
2576	60	1079	924	222

http://www.mpa-garching.mpg.de/Millennium