

2nd Thinkshop Astrophysikalisches Institut Potsdam Potsdam, June, 2003

The Local Group as a Cosmological Training Sample

Simon D.M. White Max Planck Institut für Astrophysik

Why study the Local Group?

For cosmology, of course!

Local Group studies and cosmological questions

(Cold) Dark Matter Issues

- Measures of the *total* mass of the big galaxies
- Measures of the density profile and flattening of the halo
- Constraints on substructure in the halo
- Possible insights into the *nature* of dark matter

Galaxy Formation/Evolution Issues

- Star formation/enrichment histories of diverse galaxies
- Gaseous structures in galaxies
- Dynamical processes modifying galaxy structure
- Assembly history of big galaxies

WMAP Map of the Cosmic Microwave Background

Bennett et al 2003

Weighing galaxy halos

• The massive and extended galaxy halos expected in CDM theories can weighed only by

- -- gravitational ('galaxy-galaxy') lensing
- -- static X-ray halos (for massive central ellipticals)
- -- satellite galaxy dynamics

• In the Local Group halo mass information comes from

- -- the Kahn-Woltjer (1959) timing argument
- -- the Zaritsky et al (1989) timing argument for Leo I
- -- proper motions and radial velocities of satellites
- -- the kinematics of tidal streams

Odenkirchen et al 2003

Dark Matter within Satellites

High quality rotation curves for local dwarfs

NGC3109

'NFW' halo is not as concentrated as expected in Λ CDM

- In hierarchical models like CDM the Milky Way's halo formed out of many smaller halos
- If all progenitors made stars with *reasonable* efficiency too many satellites result
- Star formation must be strongly suppressed in low mass progenitors Reionisation effects?

Too many satellites for CDM?

Kauffmann, Guiderdoni, White 1993

Inconsistency with observed satellite kinematics?

• The number of observed satellites with circular velocity $V = (GM/r)^{1/2}$ (inferred from the *mean* velocity dispersion) exceeding 10 km/s is at least 10 times smaller than the number expected in a Λ CDM halo

Inconsistency with observed satellite kinematics?

• Inconsistency is much less dramatic when one uses the *limiting* circular velocity inferred from the velocity dispersion profiles

Observed velocity dispersion versus potential well depth

Consider a *known* (*i.e.* observed) density distribution of stars $\rho(\mathbf{r})$ in a *given* (*i.e.* simulated) potential well $\Phi(\mathbf{r})$

• For gas in a spherical potential: $d p/d r = -\rho d\Phi / dr = -\rho V_c^2 / r$

• For a spherical stellar distribution $d(\rho\sigma_r^2) / dr + 2\rho(\sigma_r^2 - \sigma_t^2) / r = -\rho V_c^2 / r$ $\longrightarrow \langle \sigma_{1.o.s.}^2 \rangle = \langle V_c^2 \rangle / 3 \text{ independent of anisotropy}$ where $\langle \rangle$ denotes an average over all stars in the dwarf

• For an isotropic velocity dispersion ($\sigma_r = \sigma_t$ at all r)

$$\sigma_{1.o.s.}^{2}(r_{p}) = \int dr \rho V_{c}^{2} (r^{2} - r_{p}^{2})^{1/2} / r / \int dr \rho r / (r^{2} - r_{p}^{2})^{1/2}$$

Satellite circular velocity curves

- Circular velocity curves for 11 of the 30 most massive subhalos in a 10⁷ particle 'Milky Way' halo
- The NFW and 'main halo' curves are scaled to the (r_m,V_m) of largest subhalo
- All curves are narrower than NFW or 'main halo'
- Many profiles approach a constant density core in their inner regions
- The most massive of *these* potentials *could* host the observed satellites

Effects of CDM substructure

• Dynamical heating of Galactic substructures

-- the disk? globular clusters? halo streams?

-- effects dominated by most massive objects -- LMC, SMC

• Relation to high-velocity clouds?

• Visible in annihilation radiation at γ frequencies?

Local Group Constraints on the Nature of DM

- Microlensing signals are *measured* for the Galactic bulge, the Magellanic Clouds and for M31 — stellar mass DM?
- If DM particles have Majorana masses then they have a finite cross-section for annihilation → y emission
- Most WIMPS have a finite cross-section for elastic collision with baryons detection by calorimeters?

Helmi &

White 2002

y-rays from the annihilation of DM particles

Stoehr et al 2003

Image of a 'Milky Way' halo in annihilation radiation Distributions of mass and of smooth and subhalo luminosity

γ -rays from the annihilation of DM particles

- The annihilation luminosity is $L \propto \int \rho^2 dV \propto \int \rho^2 r^2 dr$ for a spherical system \longrightarrow the dominant contribution comes from regions where $\rho \propto r^{-1.5}$
- The simulated Λ CDM Milky Way halo has half its luminosity coming from within 8.6 kpc of the centre
- The luminosity/mass of substructures is independent of mass
 extra luminosity comes from most massive substructures
- The total luminosity exceeds that of a smooth spherical halo with the same $V_{circ}(r)$ by:

+25% due to substructure

+15% due to flattening

+ 8% due to unbound substructure

• Annihilation radiation from $R < R_{sun}$ may be detectable with next generation γ -ray telescopes

How was the Milky Way assembled?

How was the Milky Way assembled?

Monolithic collapse of a protogalaxy

How was the Milky Way assembled?

Monolithic collapse of a protogalaxy

Slow aggregation of fragments

Streams -- fossils of galaxy assembly

Ibata et al 2001

Degrees

•Which progenitors produced streams? When?

- •How many mergers were there?
- •How many streams from each?
- Streams near the Sun? In the disk? In DM detectors?
- •Did the metal-poor halo form this way? the bulge?
- •Relation to globular clusters?

•Enrichment history of the progenitors?

The lowest mass galaxies

- What limits star formation?
 - -- breakdown of L σ relation (cf Draco, Fornax)
 - -- star formation in widely separated bursts
 - -- reionization effects?
 - -- galactic wind effects?
- What is the relation of DwSph to DwIrr?

What is the role of tidal limitation?
 -- do satellites differ from the field? from cluster dwarfs?

Star formation issues in the Local Group

- Which processes regulate star formation?
 - -- molecule formation (and dust)?
 - -- magnetic fields and cosmic ray densities?
 - -- turbulence and shocks?
 - -- radiative and hydrodyamic feedback?
- What initiates star formation bursts in dwarfs?
 - -- tidal effects?
 - -- interactions with halo gas?
 - -- internal latency/activity cycles?
- How active are winds in dwarfs?
 - -- only during bursts?
 - -- heavy element loading?
 - -- differential loss of elements (α /Fe/CNO, dust...)
- Is IMF or binary fraction variable?
 - -- low metallicity, low dust conditions?
 - -- low escape velocity?

Understanding the Galactic gas supply

- Does satellite accretion refuel the galactic disk?
- Is satellite gas lost by ram-pressure stripping on a hot halo?
- Are some high velocity clouds stripped from satellites?
- Are the HVC the 'missing' satellites?
- How is the Galactic fountain/Galactic wind functioning?

Dynamical processes in the Local Group

- Generation of the Galactic warp/flare
- Origin of the thick disk/thin disk dichotomy
- Origin of the Milky Way and M31 bulges
- Connections between element abundance and structure
- Stellar dynamics around central black holes (MW, M31, M32)

And so.....

And so.....

On to the *real* meeting

Thank you!