The Local Group as a Cosmological Training Sample

Simon D.M. White
Max Planck Institut für Astrophysik
Why study the Local Group?
Why study the Local Group?

For cosmology, of course!
Local Group studies and cosmological questions

(Cold) Dark Matter Issues
- Measures of the total mass of the big galaxies
- Measures of the density profile and flattening of the halo
- Constraints on substructure in the halo
- Possible insights into the nature of dark matter

Galaxy Formation/Evolution Issues
- Star formation/enrichment histories of diverse galaxies
- Gaseous structures in galaxies
- Dynamical processes modifying galaxy structure
- Assembly history of big galaxies
WMAP Map of the Cosmic Microwave Background

Bennett et al 2003
- $>10^5$ near-independent 5σ temperature measurements
- Gaussian map: PS fit by a CDM model with parameters consistent with other data
- Extrapolation fits the Ly-\(\alpha\) forest power spectrum
 Confirms standard model to scales well below those of clusters and bright galaxies

Bennett et al 2003

Spergel et al 2003

Halo mass
Weighing galaxy halos

- The massive and extended galaxy halos expected in CDM theories can weighed only by
 -- gravitational ('galaxy-galaxy') lensing
 -- static X-ray halos (for massive central ellipticals)
 -- satellite galaxy dynamics

- In the Local Group halo mass information comes from
 -- the Kahn-Woltjer (1959) timing argument
 -- the Zaritsky et al (1989) timing argument for Leo I
 -- proper motions and radial velocities of satellites
 -- the kinematics of tidal streams

Odenkirchen et al 2003
Dark Matter within Satellites

- Flat stellar velocity dispersion out to the tidal radius
 - rising V_c curve
- Extended DM halos?
- High DM phase density? \sim WDM?
- $V_{c,\text{max}} \geq 25$ km/s?
- Critical observation: extratidal stars?
High quality rotation curves for local dwarfs

Blais-Ouellette, Amram & Carignan 2001

'NFW' halo is not as concentrated as expected in ΛCDM

NGC3109
Too many satellites for CDM?

Kauffmann, Guiderdoni, White 1993

- In hierarchical models like CDM the Milky Way's halo formed out of many smaller halos.
- If all progenitors made stars with *reasonable* efficiency too many satellites result.
- Star formation must be strongly suppressed in low mass progenitors.
 Reionisation effects?
The number of observed satellites with circular velocity $V = (GM/r)^{1/2}$ (inferred from the mean velocity dispersion) exceeding 10 km/s is at least 10 times smaller than the number expected in a ΛCDM halo.
Inconsistency with observed satellite kinematics?

- Inconsistency is much less dramatic when one uses the *limiting* circular velocity inferred from the velocity dispersion profiles
Consider a *known* (*i.e.* observed) density distribution of stars \(\rho(r) \) in a *given* (*i.e.* simulated) potential well \(\Phi(r) \)

- For gas in a spherical potential:
 \[
 \frac{dp}{dr} = -\rho \frac{d\Phi}{dr} = -\rho \frac{V_c^2}{r}
 \]

- For a spherical stellar distribution
 \[
 \frac{d(\rho \sigma_r^2)}{dr} + 2 \rho (\sigma_r^2 - \sigma_t^2) / r = -\rho \frac{V_c^2}{r}
 \]
 \[\langle \sigma_{\text{l.o.s.}}^2 \rangle = \frac{\langle V_c^2 \rangle}{3} \text{ independent of anisotropy}\]
 where \(\langle \ldots \rangle \) denotes an average over all stars in the dwarf

- For an isotropic velocity dispersion \((\sigma_r = \sigma_t \text{ at all } r) \)
 \[
 \sigma_{\text{l.o.s.}}^2(r_p) = \int dr \rho \frac{V_c^2 (r^2 - r_p^2)^{1/2}}{r} / \int dr \rho \frac{r}{(r^2 - r_p^2)^{1/2}}
 \]
Satellite circular velocity curves

Stoehr et al 2003

- Circular velocity curves for 11 of the 30 most massive subhalos in a 10^7 particle 'Milky Way' halo
- The NFW and 'main halo' curves are scaled to the (r_m, V_m) of largest subhalo
- All curves are narrower than NFW or 'main halo'
- Many profiles approach a constant density core in their inner regions
- The most massive of these potentials could host the observed satellites
Effects of CDM substructure

- Dynamical heating of Galactic substructures
 -- the disk? globular clusters? halo streams?
 -- effects dominated by most massive objects -- LMC, SMC

- Differential image magnification in multiply imaged QSOs
 -- dominant substructures have lensing scale smaller than image separation but larger than image size
 intermediate masses

- Relation to high-velocity clouds?

- Visible in annihilation radiation at γ frequencies?
Local Group Constraints on the Nature of DM

- Microlensing signals are measured for the Galactic bulge, the Magellanic Clouds and for M31 stellar mass DM?

- If DM particles have Majorana masses then they have a finite cross-section for annihilation γ emission

- Most WIMPS have a finite cross-section for elastic collision with baryons detection by calorimeters?

Helmi & White 2002
γ-rays from the annihilation of DM particles

Stoehr et al. 2003

Image of a 'Milky Way' halo in annihilation radiation

Distributions of mass and of smooth and subhalo luminosity
γ-rays from the annihilation of DM particles

- The annihilation luminosity is \(L \propto \int \rho^2 \, dV \propto \int \rho^2 \, r^2 \, dr \) for a spherical system \(\rho \propto r^{-1.5} \) the dominant contribution comes from regions where \(\rho \propto r^{-1.5} \).
- The simulated ΛCDM Milky Way halo has half its luminosity coming from within 8.6 kpc of the centre.
- The luminosity/mass of substructures is independent of mass extra luminosity comes from most massive substructures.
- The total luminosity exceeds that of a smooth spherical halo with the same \(V_{\text{circ}}(r) \) by:
 + 25% due to substructure
 + 15% due to flattening
 + 8% due to unbound substructure
- Annihilation radiation from \(R < R_{\text{sun}} \) may be detectable with next generation γ-ray telescopes.
How was the Milky Way assembled?
How was the Milky Way assembled?

Monolithic collapse of a protogalaxy
How was the Milky Way assembled?

- Monolithic collapse of a protogalaxy
- Slow aggregation of fragments
Streams -- fossils of galaxy assembly

Ibata et al 2001

- Which progenitors produced streams? When?
- How many mergers were there?
- How many streams from each?
- Streams near the Sun? In the disk? In DM detectors?
- Did the metal-poor halo form this way? the bulge?
- Relation to globular clusters?
- Enrichment history of the progenitors?
The lowest mass galaxies

- What limits star formation?
 -- breakdown of L - \(\sigma \) relation (cf Draco, Fornax)
 -- star formation in widely separated bursts
 -- reionization effects?
 -- galactic wind effects?

- What is the relation of DwSph to DwIrr?

- What is the role of tidal limitation?
 -- do satellites differ from the field? from cluster dwarfs?
Star formation issues in the Local Group

- Which processes regulate star formation?
 - molecule formation (and dust)?
 - magnetic fields and cosmic ray densities?
 - turbulence and shocks?
 - radiative and hydrodynamic feedback?

- What initiates star formation bursts in dwarfs?
 - tidal effects?
 - interactions with halo gas?
 - internal latency/activity cycles?

- How active are winds in dwarfs?
 - only during bursts?
 - heavy element loading?
 - differential loss of elements (α/Fe/CNO, dust...)

- Is IMF or binary fraction variable?
 - low metallicity, low dust conditions?
 - low escape velocity?
Understanding the Galactic gas supply

- Does satellite accretion refuel the galactic disk?
- Is satellite gas lost by ram-pressure stripping on a hot halo?
- Are some high velocity clouds stripped from satellites?
- Are the HVC the 'missing' satellites?
- How is the Galactic fountain/Galactic wind functioning?
Dynamical processes in the Local Group

- Generation of the Galactic warp/flare
- Origin of the thick disk/thin disk dichotomy
- Origin of the Milky Way and M31 bulges
- Connections between element abundance and structure
- Stellar dynamics around central black holes (MW, M31, M32)
And so.....
And so.....

On to the \textit{real} meeting

Thank you!