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The total potential within a homogeneous

ellipsoidal overdensity in an otherwise unperturbed universe is

approx.

V= -“GZ [(Pe = po)oy + %po)xi®

d?a,
—» g2 = —27G[pyey + (3 — )psla;,
d?R 4
c.f. T; s ¥ GpyR» ,

—=== a(t)]a(t)) = Jato)R,(t) + [1 = Jeu(to)]R,(1)



JS + DEFW circa 1982




Springel et al 2008

Newtonian “experiment” with 100 million bodies — forming a dark matter halo



The four elements of ACDM halos

I  Smooth background halo
-- NFW-like cusped density profile

-- near-ellipsoidal equidensity contours

I1 Bound subhalos

-- most massive typically 1% of main halo mass
-- total mass of all subhalos <10%

-- less centrally concentrated than the smooth component

III Tidal streams

-- remnants of tidally disrupted subhalos

IV Fundamental streams
-- consequence of smooth and cold initial conditions
-- very low 1nternal velocity dispersions
-- produce density caustics at projective catastrophes
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I. Smooth background halo

Aquarius Project: Springel et al 2008
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Density profiles of
simulated DM-only
ACDM halos are now
very well determined
-- to radii1 well inside
the Sun's position
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ACDM halo profiles vs lensing observations

Wang et al 2016
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Weak lensing profiles around stacks

{ of1solated SDSS galaxies as a

function of their stellar mass.

| Predictions from a SDSS “mock”

catalogue made from a SAM 1n the

Planck cosmology with parameters
| adjusted to fit galaxy abundances.

{ No further parameter adjustment to
1 fit lensing/clustering observations.
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Bound subhalos: conclusions

Substructure is primarily in the outermost parts of halos

The radial distribution of subhalos 1s almost mass-independent

The total mass in subhalos converges (weakly) at small m

Subhalos contain a very small mass fraction in the inner halo
(~0.1% near the Sun) and so will not be relevant for direct
detection experiments

(Small) subhalos dominate the total annihilation luminosity at
large radius
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I11. Tidal Streams
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Produced by partial or total tidal disruption of subhalos
Analogous to observed stellar streams in the Galactic halo
Distributed along/around orbit of subhalo (c.f. meteor streams)

Localised 1n almost 1-D region of 6-D phase-space (X, v)



Dark matter phase-space structure in the inner MW
M. Maci
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Dark matter phase-space structure in the inner MW
M. Maciejewski
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Local density in the inner halo compared

to a smooth ellipsoidal model

Vogelsberger et al 2008
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Estimate a density p at each
point by adaptively smoothing
using the 64 nearest particles

| Fit to a smooth density profile

stratified on similar ellipsoids

1 The chance of a random point

lying in a substructure is < 10™

The rms scatter about the smooth

model for the remaining points is
only about 4%
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IV. Fundamental streams

After CDM particles become nonrelativistic, but before nonlinear
objects form (e.g. z > 100) their distribution function 1s

fix,v,t) =p)[1 +ox, )] N[{v - V(x,1)}/c]

where p(7) 1s the mean mass density of CDM,
o(x,?) 1s a Gaussian random field with finite variance < 1,
V(x,t) = Vy(x,t) where Vy oc J,
and N is normal with 6> << (V> (today ¢ ~ 0.1 cm/s)

CDM occupies a thin 3-D 'sheet' within the full 6-D phase-space
and 1ts projection onto x-space 1s near-uniform.

Df/ Dt = 0 — only a 3-D subspace 1s occupied at a/l times.
Nonlinear evolution leads to multi-stream structure and caustics




Similarity solution for spherical collapse in CDM
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IV. Fundamental streams

Consequences of Df/ Dt =0 ‘

The 3-D phase sheet can be stretched and folded but not torn
At least one sheet must pass through every point x
In nonlinear objects there are typically many sheets at each x

Stretching which reduces a sheet's density must also reduce
its velocity dispersions to maintain /= const. ~— » 6 ~ p'”

At a caustic, at least one velocity dispersion must — > o

All these processes can be followed 1n fully general simulations
by tracking the phase-sheet local to each simulation particle



The geodesic deviation equation

Wiite 6X(t) =D(X,t)-0X , then differentiating w.r.t. tume gives,

p=[%5]D with D =1

Integrating this equation together with each particle's trajectory gives
the evolution of 1ts local phase-space distribution

No symmetry or stationarity assumptions are required

det(D) =1 at all times by Liouville's theorem

For CDM, l/|det(D_)| gives the decrease in local 3D space density of
each particle's phase sheet. Switches sign and 1s infinite at caustics.



Radial distribution of peak density at caustics
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Vogelsberger & White 2011

Milky Way mass halo

Initial velocity dispersion
assumes a standard
WIMP with

m = 100 GeV/c*



intra / smooth

Fraction of annihilation luminosity from caustics
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Initial velocity

dispersion assumes a

standard WIMP with
m = 100 GeV/c’

Note: caustic emission
1s compared to that
from the smooth DM
component here, but
the dominant emission
at large radius 1s from
small subhalos



Voronoi-estimated DM densities at the particle positions in the two
Millennium Simulations, estimated as:  p. oc 1/V,,_ .
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Voronoi-estimated DM densities at the particle positions in the two
Millennium Simulations, estimated as:  p. oc 1/V,,_ .
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Voronoi-estimated DM densities at the particle positions in the two

Millennium Simulations, estimated as:

pi x 1/\/Vori

Failure to resolve smallest
halos causes void densities
to be overestimated
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Volume-weighted density distributions in the two MS.

Stuecker et al 2017
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What 1s the median density of the Universe?




The median density is sensitive to the amount of small-scale
structure: voids are emptier with more small-scale structure.

20 250eV . ‘ lkeV

15

y [Mpc/h]
-
o

D !
0 5 10 15 200 5 10 15 20
X |Mﬁcfh| x [Mpc/h]
i i [ [ ]
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.1
log(p/(p))

Stuecker et al 2017



The amount of small-scale structure depends on the nature of
the dark matter.
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An excursion set model for single-stream regions

Most cosmic volume 1s in single-stream regions where the matter has
never passed through a caustic. Their Lagrangian to Eulerian mapping
involves stretching but no folding of the phase sheet. The GDE can then

be approximated by & = a ’p;
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In an excursion set model, the density distribution 1n single stream
regions depends only on o, hence on the nature of DM

scale factor a (WIMP)
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Do single-stream regions percolate?

Stuecker et al 2017

Single Stream Regions (5127 bing)
A8 . WS

ensity Field

In Eulerian space the
answer 1s strongly
resolution-dependent

At higher resolution more
connections are found



Do single-stream regions percolate?
Stuecker et al 2017

Colours from Eulerian connectivity. Colours from Lagrangian connectivity.

In Lagrangian space, however, they do not percolate for 0 =6.4 and
seem less likely to percolate for larger o




Conclusion?

* There are still many aspects of the nonlinear DM distribution that
we do not understand well, even for vanilla CDM
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Conclusion?

* There are still many aspects of the nonlinear DM distribution that
we do not understand well, even for vanilla CDM

e We still have no good indication that the DM is in fact vanilla CDM

———— Still lots of work to do, Joe! Many happy returns!
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