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The growth of nonlinear dark matter structures

e Structure grows through gravitational amplification of the seed
fluctuations visible in the CMB

e Nonlinear dark matter objects (“halos”) like that in which the Milky
Way lives grow by the infall of diffuse material and smaller halos
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The four elements of ACDM halos

I  Smooth background halo
-- NFW-like cusped density profile

-- near-ellipsoidal equidensity contours

I1 Bound subhalos

-- most massive typically 1% of main halo mass
-- total mass of all subhalos < 10%

-- less centrally concentrated than the smooth component

III Tidal streams

-- remnants of tidally disrupted subhalos

IV Fundamental streams
-- consequence of smooth and cold 1nitial conditions
-- very low internal velocity dispersions
-- produce density caustics at projective catastrophes



p(r) / <p>

102

10"

I. Smooth background halo

Aquarius Project: Springel et al 2008

———

? {q{“ ?
ol bl
0.1 1.0 10.0 100.0

r [ kpe ]

e Density profiles of
simulated DM-only
ACDM halos are now
very well determined
-- to radi1 well 1nside
the Sun's position



The four elements of ACDM halos

I  Smooth background halo
-- NFW-like cusped density profile

-- near-ellipsoidal equidensity contours

I1 Bound subhalos

-- most massive typically 1% of main halo mass
-- total mass of all subhalos < 10%

-- less centrally concentrated than the smooth component

III Tidal streams

-- remnants of tidally disrupted subhalos

IV Fundamental streams
-- consequence of smooth and cold 1nitial conditions
-- very low internal velocity dispersions
-- produce density caustics at projective catastrophes



| I\INILIIII| 11 IIIIIIl I IIIIIIL | I.I IIIII| .I | IIIIII| [ IIIIII| |

ol N Aquarius Project: Springel et al 2008 I1. Bound subhalos

107 — —
TE@ 10™ — B
Eﬁ I * Abundance of self-bound
> subhalos 1s measured

10°% — -

Ag-A-1 to below 107 M
~  Ag-A-2 | halo
. Aqg-A-3 s
o Ao AN | e Most subhalo mass is in
| AQ-A-S . . .
the biggest objects (just)
1D-1U 1 1 IIIIII| 1 1 IIIIII| 1 | IIIIII| | 1 IIIIII| (| IIIIII| 1 1 IIIIII|\
10° 10° 10° 107 108 10° 10"
M, [Mo]
I [ I A B L B AL B AL AL ALY b=
= F :
- B

3
3
E‘E A ERTTI N AR R N1 R S AN R TR T B S SN R A AT1] BN AN W AR 1T B AR R AR 11 B

10° 10° 10° 107 10° 10° 10"
M., [ Mg]



Bound subhalos: conclusions

e Substructure is primarily in the outermost parts of halos

 The radial distribution of subhalos i1s almost mass-independent

* The total mass in subhalos converges (weakly) at small m

e Subhalos contain a very small mass fraction in the inner halo
(~0.1% near the Sun) and so will not be relevant for direct
detection experiments
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I11. Tidal Streams

Qrphan
stream

- Sagittarius -
stream ot Monoceros
. strearm

Y. Balekuraw, Ind Cambridge / Sloan Digital Sky Sureeay

184 160
right ascension [degrees]

e Produced by partial or total tidal disruption of subhalos
* Analogous to observed stellar streams 1n the Galactic halo
e Distributed along/around orbit of subhalo (c.f. meteor streams)

e Localised 1in almost 1-D region of 6-D phase-space (X, ¥)



Dark matter phase-space structure in the inner MW
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Dark matter phase-space structure in the inner MW
M. Maciejewski
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IV. Fundamental streams

After CDM particles become nonrelativistic, but before nonlinear
objects form (e.g. z > 100) their distribution function 1s

fix,v,t) =p)[1 +o(x,t)] N[{v - V(x,1)}/c]

where p(7) 1s the mean mass density of CDM,
o(x,?) 1s a Gaussian random field with finite variance < 1,
V(ix,t) = Vy(x,t) where V2 oc 6,
and N is normal with 6> << {|V|") (today o ~ 0.1 cm/s)

CDM occupies a thin 3-D 'sheet' within the full 6-D phase-space
and 1ts projection onto x-space 1s near-uniform.

Df/ Dt =0 — only a 3-D subspace 1s occupied at all times.
Nonlinear evolution leads to multi-stream structure and caustics




IV. Fundamental streams

Consequences of Df /Dt = 0 ‘

* The 3-D phase sheet can be stretched and folded but not torn
* At least one sheet must pass through every point x
 In nonlinear objects there are typically many sheets at each x

e Stretching which reduces a sheet's density must also reduce
its velocity dispersions to maintain f=const. — » ¢ ~ p °

* At a caustic, at least one velocity dispersion must — » o

* All these processes can be followed 1n fully general simulations
by tracking the phase-sheet local to each simulation particle



The geodesic deviation equation

Particle equation of motion: X = [f,] = [_%(l) ]

: 0 |
Offset to a neighbor: 0X = [T-gx] = [Qf 0 ]-BX; T=-V(V¢)

Write oX(t) =D(X,t)-0X , then differentiating w.r.t. time gives,

D = [QF o |D with D =1

e Integrating this equation together with each particle's trajectory gives
the evolution of its local phase-space distribution

e No symmetry or stationarity assumptions are required

e det(D) =1 at all times by Liouville's theorem

o For CDM, 1l/|det(D_)| gives the decrease in local 3D space density of
each particle's phase sheet. Switches sign and 1is infinite at caustics.



Similarity solution for spherical collapse in CDM
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Simulation from self-similar spherical initial conditions

Geodesic deviation equation > phase-space structure local to each particle

y Vogelsberger et al 2009




Simulation from self-similar spherical initial conditions

Vogelsberger et al 2009

The radial orbit
instability leads to a
system which 1s
strongly prolate 1n
the inner nonlinear
regions




Caustic crossing counts in a ACDM Milky Way halo

Vogelsberger & White 2011
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Caustic crossing counts in a ACDM Milky Way halo

Vogelsberger & White 2011

-] hese are tidal streams not fundamental streams

Self-bound subhalos excluded
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Stream density variations along orbits in a ACDM halo
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Stream density distribution in Aquarius halos

Vogelsberger & White 2011
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Stream density distribution at the Sun

Vogelsberger & White 2011 :
Cumulative stream

density distribution
for particles with
7 kpc <r <13 kpc

Probability that the

g 10_25 ! \ ‘ Sun 1S 1n a stream with
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Local density in the inner halo compared

to a smooth ellipsoidal model

Vogelsberger et al 2008
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e Estimate a density p at each
point by adaptively smoothing
using the 64 nearest particles

| * Fit to a smooth density profile

stratified on similar ellipsoids

1+ » The chance of a random point

lying in a substructure is < 10™

e The rms scatter about the smooth
model for the remaining points 1s
only about 4%
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Energy space features

Vogelsberger et al 2008
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— fossils of formation

1 The energy distribution within
1 (2 kpc)’ boxes shows bumps which

-- repeat from box to box
-- are stable over Gyr timescales

-- repeat 1n stmulations of the
same object at varying resolution

-- are different in simulations of
different objects

These are potentially observable
fossils of the formation process



Conclusions for direct detection experiments

* With more than 99.9% confidence the Sun lies in a region where
the DM density differs from the smooth mean value by <20%

* The local velocity distribution of DM particles 1s similar to a
trivariate Gaussian with no measurable “lumpiness” due to
individual DM streams

e The strongest stream at the Sun should contain about 10~ of the
local DM density. Its energy width is AE/E < 107" so it would
be detectable as a “spectral line” 1n an axion experiment.

* The energy distribution of DM particles should contain broad
features with ~20% amplitude which are the fossils of the detailed
assembly history of the Milky Way's dark halo

— Dark matter astronomy






100.005' T T TT] T T T 1T 111 T T IIIIIIIE 1ODE|||||| T T T T T 11 T T T T 11 =
- | 3 = Solar 3
- | - B radius
I S _|
10.00 L = e i / =
2 | : - " ;
J{'\---'.." : : : 10—2 i .-'fl , Ilf |
L 100k o
= = 10 Mo < M,,, < 10°M X, 31 < g
i E 10° Mg < M, < 10" Mg N i 10° Aq-A-2 _
107 Mg < My, < 10° M A¢B2 3
P10 10t Mo < M < 107 M 3 i i prez
F 10" Mo < M, <10"° M | ] 104 Abz |
i ¥ - Aq-E-2 5
0.01 Lol Ll o |||J E AQ'F'Z E
1 0 1 DD 1 ODO 10_5 , L1 1 |4|- |kpC | | L1 I4I.OI|]‘<pC | | 4.IOI()|1|< C |
. . r [ kpe ] 0.01 0.10 1.00
Aquarius Project: Springel et al 2008 P/
1.000F T[T T =
B L | « All mass subhalos are
£ OF | = similarly distributed
3 F i : :
R B T 71 * A small fraction of the
22 0.010=— b T — . .
gE ; = inner mass in subhalos
[ Ag-A-1 | =
| Ag-A-2 i _
0001 nias | _| * <<1% of the mass near
S L = the Sun is in subhalos

10 10°




fotal emission
Springel et al 2008

2.0 Log(intensity)

Maybe the annihilation of Dark
Matter will be seen by Fermi?

Fei'n’fi Y-ray -obgrvatoify



fotal emission
Springel et al 2008

2.0 Log(intensity)

Maybe the annihilation of Dark
Matter will be seen by Fermi?
Might caustics be visible?

Fei'n’fi Y-ray ob rvatoi"-'y



Radial distribution of peak density at caustics

Pmax ¢ Pp
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Vogelsberger & White 2011

Initial velocity

dispersion assumes a

standard WIMP with
m = 100 GeV/c*



intra. / smooth

Fraction of annihilation luminosity from caustics

Vogelsberger & White 2011
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| Imitial velocity

dispersion assumes a
standard WIMP with

m = 100 GeV/c’

| Note: caustic emission
1s compared to that

| from the smooth DM
| component here, but

the dominant emission

1 1s from small subhalos
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IGalaxy formation simulations
fit low-z groups and clusters

' The simulated cluster population

fits the detailed shape of the

' mean mass profile of groups and
. clusters as a function of richness

This holds for total masses
10" M <M <10°M

©

Lensing data from SDSS/maxBCG
(Sheldon et al 2007)
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