

SPIE Marseille 2008

Introduction to the standard cosmological model

Simon White Max Planck Institute for Astrophysics

Our universe is expanding

Hubble 1929

Our universe changes with time

Bennett et al 2003

The COBE satellite (1989 - 1993)

• Two instruments made maps of the whole sky in microwaves and in infrared radiation

One instrument took a precise spectrum of the sky in microwaves

Nobel Prize for Physics 2006 J. Mather & G. Smoot

Our universe was once hot, smooth and in thermal equilibrium

- Photons outnumber protons by a billion to one
- Spectrum matches a Planckian black-body to better than 1 in 10⁻⁴
- No significant energy input later than ~1 month after the Big Bang

At 400,000 years the universe was very smooth

At 400,000 years the universe was very smooth

The strongest signal reflects our motion through the CMB

At 400,000 years the universe was very smooth

The Galactic foreground emission is weak Structure at z=1000 is even weaker, $\Delta T/T \sim 10^{-5}$ \rightarrow dark matter!

Structure in the Microwave Background

- The structure lies in cosmic 'clouds', $\sim 4 \ 10^{10}$ l-yrs away
- It reflects weak "sound" waves, $A \sim 10^{-4}$, in the clouds
- At the time the Universe was only 400,000 years old, and was 1,000 times smaller and 1,000 times hotter than today

The pattern of structure reflects

- A: The global geometry and topology of the Universe
- **B**: The constituents and thermal evolution of the Universe
- C: The process which generated the structure

Our universe is flat

The WMAP Satellite at Lagrange-Point L2

The WMAP of the whole CMB sky

Bennett et al 2003

Supernovae show the expansion is accelerating

Supernovae show the expansion is accelerating

..and that the Dark Energy behaves like a cosmological constant

The high redshift universe has shown us..

how our Universe has evolved hot --> cold, smooth --> lumpy
what its geometry is flat - as imagined by Euclid
what it is made of 23.5% dark matter(?), 4.5% baryons, 72% dark energy(?)
how all structure originated

from quantum fluctuations in the inflationary vacuum(?)

..but it was a very uninteresting place!

• No galaxies, no stars, no planets, no elements beyond Li !

How did today's universe emerge from it?

How structure emerges from the Big Bang

- Start 400,000 years after the Big Bang from the initial conditions seen in the microwave background
- Integrate the equations of motion forwards to the present day in a supercomputer
- The growth of dark matter structures in a thin slice
- A flight through the dark matter distribution

z = 0 Galaxy Light

Gravitational lensing: "seeing" the dark matter

Abell 2218 z=0.17

The Milky Way halo in annihilation radiation: gamma-rays from supersymmetric dark matter?

18. Log (M²_{sun} kpc⁻⁵ sr⁻1)

Aquarius simulation: $N_{200} = 1.1 \times 10^9$

GLAST image after 1 year?

14.

What's next in cosmology?

We have been surprised by

- The cosmic expansion
- Dark Matter
- Cosmic evolution
- The microwave background
- Dark Energy
- ..also white dwarfs, pulsars, quasars, γ-ray bursts, neutrino masses, extrasolar planet properties...

We cannot <u>plan</u> major advances, only improve technical abilities

We do not know which technique will reveal the next surprise

We must remain opportunistic and open-minded, both scientifically and technically, if we are to continue to find surprises