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Grey Book Science Goals — Large Scale Structure

e Has structure grown through gravitational instability?

* What are the properties/origin of the primordial fluctuations?
* What 1s the dark matter?

* What are the values of Q and A?

e How did galaxies form?

e What physics, other than gravity, played a role?

e What determines galaxy luminosity, size, color, morphology?

e What is the relation between the galaxy and mass distributions?

“Because galaxies are the markers by which we trace large scale
structure, we cannot address the first category of questions
without simultaneously addressing the second, especially the final
question about galaxies and mass.”



Grey Book Methods to achieve Science Goals

Survey Design

e Large-sky area, covering full north Galactic cap
localised window function for P(k) measurements

e Full sampling of area both for photometry and spectroscopy
sensitivity to morphology of large scale structure

 5-band photometry to enable photo-z's
increase volume and depth surveyed

Statistical tools

e Power spectra, correlation functions, redshift space distortions

e High order correlations, counts, void studies, morphology/topology
» Large scale flows

e Cluster abundance and evolution, cluster morphology

e QSO metal line clustering

MISSING! Ly a forest, gravitational lensing



LETTERS TO NATURE (1990)

The cosmological constant and
cold dark matter

G. Efstathiou, W. J. Sutherland & S. J. Maddox

Department of Physics, University of Oxford, Oxford 0X1 3RH, UK

THE cold dark matter (CDM) model'™ for the formation and
distribution of galaxies in a universe with exactly the critical
density is theoretically appealing and has proved to be durable,
but recent work>® suggests that there is more cosmological struc-
ture on very large scales (/> 10 k" Mpc, where h is the Hubble
constant H, in units of 100 kms™' Mpc™') than simple versions
of the CDM theory predict. We argue here that the successes of
the CDM theory can be retained and the new observations
accommodated in a spatially flat cosmology in which as much as
80% of the critical density is provided by a positive cosmological
constant, which is dynamically equivalent to endowing the vacuum
with a non-zero energy density. In such a universe, expansion was
dominated by CDM until a recent epoch, but is now governed by
the cosmological constant. As well as explaining large-scale struc-
ture, a cosmological constant can account for the lack of fluctu-
ations in the microwave background and the large number of
certain kinds of object found at high redshift.

In 1993 there were no measures
of CMB doppler peaks
of an accelerated expansion
of LBG's/Madau plots

Nevertheless, the ACDM model
was already the de facto standard
because of LSS studies

(There were also no exoplanets, star
streams, Dark Energy or concordance
cosmology!)



LETTERS TO NATURE (1990)

The cosmological constant and
cold dark matter
G. Efstathiou, W. J. Sutherland & S. J. Maddox

Department of Physics, University of Oxford, Oxford 0X1 3RH, UK

THE cold dark matter (CDM) model'™ for the formation and
distribution of galaxies in a universe with exactly the critical
density is theoretically appealing and has proved to be durable,
but recent work>® suggests that there is more cosmological struc-
ture on very large scales (/> 10 k" Mpc, where h is the Hubble
constant H, in units of 100 kms™' Mpc™') than simple versions
of the CDM theory predict. We argue here that the successes of
the CDM theory can be retained and the new observations
accommodated in a spatially flat cosmology in which as much as
80% of the critical density is provided by a positive cosmological
constant, which is dynamically equivalent to endowing the vacuum
with a non-zero energy density. In such a universe, expansion was
dominated by CDM until a recent epoch, but is now governed by
the cosmological constant. As well as explaining large-scale struc-
ture, a cosmological constant can account for the lack of fluctu-
ations in the microwave background and the large number of
certain kinds of object found at high redshift.

LETTERS TO NATURE (1995)

The observational case for a
low-density Universe with a
non-zero cosmological constant

J. P. Ostriker® & Paul J. Steinhardt’

* Department of Astrophysical Sciences, Princeton University,
Princeton, New Jersey 08544, USA

T Department of Physics and Astronomy, University of Pennsylvania,
Philadelphia, Pennsylvania 19104, USA

OssErvaTiONS are providing progressively tighter constraints on
cosmological models advanced to explain the formation of large-
scale structure in the Universe. These include recent determinations
of the Hubble constant'™ (which quantifies the present expansion
rate of the Universe) and measurements of the anisotropy of the
cosmic microwave background*®. Although the limits imposed by
these diverse observations have occasionally led to suggestions®
that cosmology is facing a crisis, we show here that there remains
a wide range of cosmological models in good concordance with
these constraints. The combined observations point to models in
which the matter density of the Universe falls well below the critical
energy density required to halt its expansion. But they also permit
a substantial contribution to the energy density from the vacuum
itself (a positive ‘cosmological constant’), sufficient to recover the
critical density favoured by the simplest inflationary models. The
observations do not vet rule out the possibility that we live in an
ever-expanding ‘open’ Universe, but a Universe having the critical
energy density and a large cosmological constant appears to be
favoured,
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r'<17.55, d>2", 6%slice

Grey Book Simulations

Park & Gott 1993
PM with N=5.5x 10", ¢ = 1 Mpe,
Q =04, Q =0.6,0,=0.76

redshift space
62295 galaxies

real space
64978 galaxies

GalaXy lumanSﬂ:les’ pOSItlonS and . Figure 11.1 Slices from a simulation of the SDSS redshift survey. The up-
VGIOCI'[IGS from a Statlstlc al blas reCIPG per panel (repeated from Figure 2.1.3) shows a 6 degree by 130 degree slice

1n redshift space — each point represents a galaxy, plotted at the distance in-
dicated by its redshift. The lower panel shows the same slice in real space,
with no peculiar velocity effects.



Millennium Simulation

Springel, Frenk & White 1996 .
TreePM with N=10", € = 5 kpc,
Q =025 Q =0.75,6,=09

Galaxy luminosities, positions and
velocities from simulating galaxy
formation within the model



correlation function §(7)

SDSS estimates “‘classical” clustering measures with
extraordinary precision: €. g. LRG correlations....
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correlation function §(7)

SDSS estimates “‘classical” clustering measures with
extraordinary precision: €. g. LRG correlations....
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....S0 they constrain galaxy and structure formation
strongly on both linear and nonlinear scales



The Tegmark representation of power spectrum data (2006)
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SDSS enables a good measurement of the topology of LSS
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Gott et al 2008

G(v)

DR4+
6 Mpc/h smoothing

Genus curve agrees well in amplitude and shape with ACDM
predictions, but 1t shows a shift to negative v whereas the
simulations show a slight shift towards positive v



Galaxy-galaxy lensing around isolated LRGs gives the mean
surface density profile of their halos: AL =X (r)—X()

Spectroscopic LRGs
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Galaxy-galaxy lensing around isolated LRGs gives the mean

surface density profile of their halos: AL =X (r)—X()

Spectroscopic LRGs
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Profile 1s a good match to ACDM expectation -- strong features
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are expected at larger radi1 which scale with halo mass
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Galaxy-galaxy lensing around isolated LRGs gives the mean

surface density profile of their halos: AL =X (r)—X()
Sheldon et al 2008 "
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Profile 1s a good match to ACDM expectation -- strong features
are expected at larger radi1 which scale with halo mass



Galaxy-galaxy lensing around isolated LRGs gives the mean

surface density profile of their halos: AL =X (r)—X()
Sheldon et al 2008
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Mean ACDM density profiles break sharply at the 1-halo 2-halo transition
-- a clear indicator of dark matter over MOND?
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Mean ACDM density profiles break sharply at the 1-halo 2-halo transition
-- a clear indicator of dark matter over MOND?
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Maybe — or maybe not!



...at least, a direct, high S/N measure of M/L as a function of Mhal
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...at least, a direct, high S/N measure of M/L as a function of Mhal
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...which agrees well with that in ACDM simulations of galaxy formation



(Near) future tests of the structure formation model

* Tests of gaussianity
---morphology, high-order correlations, cluster mass function

e Tests of gravity
---halo shapes and density profiles (vs MOND, or coupled models)

* Tests of the nature of dark energy
---BAOQO's, cluster abundance evolution

e Tests of the nature of dark matter
---Ly a forest, small-scale structure
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How well do density profiles converge?
Aquarius Project: Springel et al 2008
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How well do density profiles converge?
Aquarius Project: Springel et al 2008
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Conclusions from high resolution ACDM simulations

o The predicted DM fraction in lumps with M > 10 M_ s

~0.01 within r= 100 kpc
~0.001 within r = 8 kpc

e Small DM lumps should have negligible effect on the structure
and orbits of inner halo objects

* The (smooth) DM near the Sun should be distributed in > 10
cold streams — indistinguishable from a smooth distribution

* DM caustics are very weak 1n the inner halo and have no
discernible dynamical effects on observed tracers

» Caustics and small clumps (say < 10° M, ) make no significant

contribution to the DM annihilation flux from the inner halo
(r <100 kpc) of our Galaxy. The most easily detectable signal
will probably be that of the main diffuse halo.



Milky Way halo seen in DM annihilation radiation

Aquarius simulation: N =1.1x 10




