Simon White Max Planck Institute for Astrophysics

The evolution of cosmic structure

COBE's near-infrared map of the whole sky

Spiral galaxies like our own

NGC 891

Galaxy map of the whole sky

Two Micron All Sky Survey Image Mosaic: Infrared Processing and Analysis Center/Caltech & University of Massachusetts

"Nearby" large-scale structure

The deepest photo ever made

A 300 hour exposure with the Hubble Space Telescope

Galaxies visible at z > 6when $t < 0.1 t_{o}$

The COBE satellite (1989 - 1993)

- Two instruments made maps of the whole sky in microwaves and in infrared radiation
- One instrument took a precise spectrum of the sky in microwaves

2006 Physics Nobel Prize

Spectrum of the microwave background

- Spectrum matches a Planckian black-body to better than 1 in 10⁴
- The early universe was hot, smooth and in thermal equilibrium
- No significant energy input later than ~1 month after the Big Bang

COBE's temperature map of the entire sky

COBE's temperature map of the entire sky

COBE's temperature map of the entire sky

Structure in the COBE map

One side of the sky is `hot', the other is`cold'
 the Earth's motion through the Cosmos V_{Milky Way} = 600 km/s

 Radiation from hot gas and dust in our own Milky Way

• Structure in the Microwave Background itself

Structure in the Microwave Background

- The structure lies in cosmic 'clouds', $\sim 4 \ 10^{10}$ l-yrs away
- It reflects weak "sound" waves, $A \sim 10^{-4}$, in the clouds
- At the time the Universe was only 400,000 years old, and was 1,000 times smaller and 1,000 times hotter than today

The pattern of structure reflects

- A: The global geometry and topology of the Universe
- **B**: The constituents and thermal evolution of the Universe
- C: The process which generated the structure

The WMAP Satellite at Lagrange-Point L2

The *WMAP* of the whole CMB sky

Bennett et al 2003

What have we learned from WMAP?

- Our Universe is flat -- its geometry is that imagined by Euclid
- Only a small fraction of it is made of ordinary matter -- about 4.5%
 there is a lot of dark, nonbaryonic matter (about 23%) (which can be "seen" through gravitational lensing)
- Most of it must be a new kind of dark energy (perhaps a cosmological constant) as also inferred from the apparently accelerating expansion
- All structure in the Universe originated as quantum zero-point fluctuations of the *vacuum*, perhaps 10^{-30} s after the Big Bang!

Everything has formed from nothing

Gravitational lensing by a galaxy cluster

Abell 2218 z=0.17

Large-scale structure from weak lensing

What have we learned from WMAP?

- Our Universe is flat -- its geometry is that imagined by Euclid
- Only a small fraction of it is made of ordinary matter -- about 4.5%
 there is a lot of dark, nonbaryonic matter (about 23%) (which can be "seen" through gravitational lensing)
- Most of it must be a new kind of dark energy (perhaps a cosmological constant) as also inferred from the apparently accelerating expansion
- All structure in the Universe originated as quantum zero-point fluctuations of the *vacuum*, perhaps 10^{-30} s after the Big Bang!

Everything has formed from nothing

Hubble's "Law" and the expansion history

An accelerating Universe! The return of Einstein's "Eselei" or perhaps the discovery of a new form of mass/energy -- the Dark Energy.

The ESSENCE Survey Wood-Vasey et al 2007

- The SN data require an accelerated expansion today
- With large-scale structure data, they imply a flat Universe with DE
- The DE appears to behave "like" a cosmological constant, $w \approx -1$
- The implied parameters agree with those obtained independently from the cosmic microwave background

"Explanations" for Dark Energy

- A cosmological constant (i.e. another constant of gravity)
- Dynamical Dark Energy, e.g. quintessence
- A result of "leakage" from higher dimensions
- A reflection of the need to extend/modify General Relativity
- A consequence of the nonlinear behaviour of GR
- The result of systematics in the SN data

What have we learned from WMAP?

- Our Universe is flat -- its geometry is that imagined by Euclid
- Only a small fraction of it is made of ordinary matter -- about 4.5%
 there is a lot of dark, nonbaryonic matter (about 23%) (which can be "seen" through gravitational lensing)
- Most of it must be a new kind of dark energy (perhaps a cosmological constant) as also inferred from the apparently accelerating expansion
- All structure in the Universe originated as quantum zero-point fluctuations of the *vacuum*, perhaps 10^{-30} s after the Big Bang!

Everything has formed from nothing

The next step...

The Planck satellite has just reached L2 and both instruments are currently functioning nominally

Evolving the Universe in a computer

- Follow the matter in an expanding cubic region
- Start 400,000 years after the Big Bang
- Match initial conditions to the observed Microwave Background
- Calculate evolution forward to the present day

Views of the dark matter in a Virtual Universe

• The growth of dark matter structures in a thin slice

• A flight through the dark matter distribution

• The assembly of the Milky Way's halo

Processes shaping the visible Universe

- Shock-heating, radiative cooling and gravitational condensation of gas in DM potential wells
- Star formation and stellar evolution
- Energetic and chemical feedback from star evolution/death
- Black hole formation and feedback from Active Galactic Nuclei
- Collisions and merging of galaxies
- Condensation and distribution of dust

z = 0 Galaxy Light

Galaxy autocorrelation function

Springel et al 2005; the Millennium Simulation

For such a large simulation the purely statistical error bars are negligible even for the galaxies

Large-scale structure at high redshift

Springel, Frenk & White 2006

Large-scale structure in the galaxy distribution evolves very little with redshift

It is as strong at z=8.5 as at z=0, even though only 1% of all z=0 stars have formed

A bright quasar and its surroundings at 1 billion years

One of the most massive dark matter clumps, containing one of the most massive galaxies and most massive black holes.

The quasar's descendant and its surroundings today, at t = 13.7 billion years

One of the most massive galaxy clusters. The quasar's descendant is part of the central massive galaxy of the cluster.

Galaxy formation simulations fit the full low-z population

Guo et al 2009

....even the ultrafaint satellites of the Milky Way

Guo et al 2009

The *same* model reproduces the abundance of small satellite galaxies around the Milky Way.

Reionisation is significant in suppressing formation of the faintest systems

Galaxy formation simulations fit low-z groups and clusters

Average dynamical mass of galaxy clusters as a function of the number of red galaxies within them

Observational data from the SDSS/maxBCG catalogue (Johnson et al 2007)

Galaxy formation simulations fit low-z groups and clusters

The simulated cluster population fits the *detailed* shape of the mean mass profile of groups and clusters as a function of richness

This holds for total masses $10^{13} \text{ M}_{\odot} \le \text{M}_{200} \le 10^{15} \text{ M}_{\odot}$

Lensing data from SDSS/maxBCG (Sheldon et al 2007)

Goals for "late-time" structure formation studies

- Linking the linear early Universe with today's nonlinear world
- Understanding the (coupled) formation and evolution of the first nonlinear objects of galaxies, stars and planets of the central black holes in galaxies of element abundances of large-scale structure
- Clarifying whether visible cosmic structures retain information about the nature of Dark Matter, Dark Energy or the process which originally generated structure

Maybe the annihilation of Dark Matter will be seen by Fermi?

2.0 Log(Intensity)

Maybe Dark Matter can be detected in a laboratory

Current understanding of the dark side

- **Dark Matter** appears to account for more than 80% of all the material in and around galaxies and galaxy clusters
- It is also needed to explain how today's cosmic structure grew from that seen in the microwave background
- It cannot be made of "ordinary" baryonic matter
- It is currently only detected by its gravitational effects
- It might be possible to see its annihilation radiation or to detect it in a laboratory on Earth

Current understanding of the dark side

- **Dark Energy** is needed to explain the accelerated expansion of today's universe
- Observed structure in the Cosmic Microwave Background implies that the Universe is flat but that only 25% of the necessary mass-energy can be in baryons+Dark Matter The other 75% must be Dark Energy
- Dark Energy does not clump and is apparently detectable <u>only</u> by its effects on the cosmic expansion, thus only by *astronomical* observations
- We don't have a clue what it is or how it is related to the rest of physics. It appears to behave like the "cosmological constant" in Einstein's theory of gravity