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2dF Galaxy Redshift Survey
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Spectrum of the microwave background
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e Spectrum matches a Planckian black-body to better than 1 in 10*
e The early universe was hot, smooth and in thermal equilibrium
e No significant energy input later than ~1 month after the Big Bang



COBE's temperature map of the entire sky

'T=2.728K
AT=0.1K



COBE's temperature map of the entire sky

T=2.728K
AT =0.0034 K



COBE's temperature map of the entire sky

T=2.728K
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Structure in the COBE map

® One side of the sky 1s "hot', the other 1s cold'

== the Earth's motion through the Cosmos
\Y = 600 km/s

Milky Way

e Radiation from hot gas and dust in our own
Milky Way

e Structure in the Microwave Background
itself




Structure in the Microwave Background

* The structure lies in cosmic 'clouds', ~ 4 10" 1-yrs away
e It reflects weak “sound” waves, A ~ 10™, in the clouds

e At the time the Universe was only 400,000 years old, and
was 1,000 times smaller and 1,000 times hotter than today

The pattern of structure reflects

A: The global geometry and topology of the Universe

B: The constituents and thermal evolution of the Universe

C: The process which generated the structure



.. The WMAP Satellite at Lagrange-Point L2 "




The WMAP ot the whole CMB sky
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| The Emergence of

the Cosmic Initial
Conditions

i » Temperature-temperature

i and temperature-polarisation
i power spectra for WMAP

i and interferometers

1o Best ACDM model

t=13.7£0.2 Gyr
h=0.71£0.03  64,=0.84+0.04
Q=1.02+0.02 Q_=0.27+0.04

Q,=0.044+0.004

1,=0.17+0.07

e Parameters 1n excellent
agreement with other
astronomical data
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What have we learned from WMAP?

e Our Universe is flat -- its geometry is that imagined by Euclid

e Only a small fraction of it 1s made of ordinary matter -- about 4.5%

== there 1s a lot of dark, nonbaryonic matter (about 23%)
(which can be “seen” through gravitational lensing)

* Most of 1t must be a new kind of dark energy (perhaps a cosmological
constant) as also inferred from the apparently accelerating expansion

e All structure in the Universe originated as quantum zero-point
fluctuations of the vacuum, perhaps 107°s after the Big Bang!

Everything has formed from nothing




Abell 2218 z=0.17
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What have we learned from WMAP?

e Our Universe is flat -- its geometry is that imagined by Euclid

e Only a small fraction of it 1s made of ordinary matter -- about 4.5%

== there 1s a lot of dark, nonbaryonic matter (about 23%)
(which can be “seen” through gravitational lensing)

* Most of 1t must be a new kind of dark energy (perhaps a cosmological
constant) as also inferred from the apparently accelerating expansion

e All structure in the Universe originated as quantum zero-point
fluctuations of the vacuum, perhaps 107°s after the Big Bang!

Everything has formed from nothing




Hubble's “Law” and the expansion history
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An accelerating Universe! The return of Einstein's "Esele1" or

perhaps the discovery of a new form of mass/energy -- the Dark Energy.
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* The SN data require an accelerated expansion today
e With large-scale structure data, they imply a flat Universe with DE
* The DE appears to behave “like” a cosmological constant, w ~ —1

* The implied parameters agree with those obtained independently
from the cosmic microwave background
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“Explanations” for Dark Energy

e A cosmological constant (1.e. another constant of gravity)

e Dynamical Dark Energy, e.g. quintessence

e Aresult of “leakage” from higher dimensions

e A reflection of the need to extend/modify General Relativity

e A consequence of the nonlinear behaviour of GR

e The result of systematics in the SN data



What have we learned from WMAP?

e Our Universe is flat -- its geometry is that imagined by Euclid

e Only a small fraction of it 1s made of ordinary matter -- about 4.5%

== there 1s a lot of dark, nonbaryonic matter (about 23%)
(which can be “seen” through gravitational lensing)

* Most of 1t must be a new kind of dark energy (perhaps a cosmological
constant) as also inferred from the apparently accelerating expansion

e All structure in the Universe originated as quantum zero-point
fluctuations of the vacuum, perhaps 107°s after the Big Bang!

Everything has formed from nothing




The next step...

The Planck satellite
has just reached L2
and both instruments
are currently
functioning nominally



Evolving the Universe in a computer

Time

e Follow the matter in an expanding cubic region
e Start 400,000 years after the Big Bang
e Match 1nitial conditions to the observed Microwave Background

e Calculate evolution forward to the present day


file:///home/swhite/presentations/movies/volker/play_universe.sh

Views of the dark matter in a Virtual Universe

® The growth of dark matter structures 1n a thin slice

o A flight through the dark matter distribution

® The assembly of the Milky Way's halo



Processes shaping the visible Universe

e Shock-heating, radiative cooling and gravitational condensation
of gas in DM potential wells

e Star formation and stellar evolution

e Energetic and chemical feedback from star evolution/death
 Black hole formation and feedback from Active Galactic Nuclel
 Collisions and merging of galaxies

e Condensation and distribution of dust









Springel, Frenk
& White 2006
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Galaxy autocorrelation function

Springel et al 2005; the Millennium Simulation
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dark matter

z=8.55

T=0.6 Gyr
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Large-scale
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A bright quasar and its surroundings
at 1 billion years

One of the most massive dark matter clumps, containing one of
the most massive galaxies and most massive black holes.
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The quasar's descendant and its surroundings
at t = 13.7 billion years

One of the most massive galaxy clusters. The quasar's descendant
1s part of the central massive galaxy of the cluster.




Galaxy formation simulations fit the full low-z population

Guo et al 2009
The stellar mass function of galaxies r-band luminosity function of galaxies
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....even the ultrataint satellites of the Milky Way
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Guo et al 2009
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The same model reproduces the
abundance of small satellite
galaxies around the Milky Way.

Reionisation is significant in
suppressing formation of the
faintest systems



Galaxy formation simulations fit low-z groups and clusters

104+

10" __'

Hilbert & White (2009)
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Observational data from the

SDSS/maxBCG catalogue
(Johnson et al 2007)
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Goals for “late-time” structure formation

studies

e Linking the linear early Universe with today's nonlinear world

e Understanding the (coupled) formation and evolution
of the first nonlinear objects
of galaxies, stars and planets
of the central black holes 1n galaxies
of element abundances
of large-scale structure

e Clarifying whether visible cosmic structures retain information
about the nature of Dark Matter, Dark Energy or the process
which originally generated structure



ELEMENTARY |
PARTICLES

oo

Three Generations of Matter







fotal emission

2.0 Log(intensity)

Maybe the annihilation of Dark
Matter will be seen by Fermi?
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Maybe Dark Matter can be detected in a laboratory




Current understanding of the dark side

e Dark Matter appears to account for more than 80% of all
the material 1n and around galaxies and galaxy clusters

e It is also needed to explain how today's cosmic structure
grew from that seen in the microwave background

e [t cannot be made of “ordinary” baryonic matter
e It 1s currently only detected by its gravitational effects

* [t might be possible to see its annihilation radiation or to
detect 1t 1n a laboratory on Earth



Current understanding of the dark side

* Dark Energy is needed to explain the accelerated expansion
of today's universe

* Observed structure 1n the Cosmic Microwave Background
implies that the Universe is flat but that only 25% of the
necessary mass-energy can be in baryons+Dark Matter
The other 75% must be Dark Energy

* Dark Energy does not clump and 1s apparently detectable
only by its effects on the cosmic expansion, thus only by
astronomical observations

* We don't have a clue what it 1s or how it 1s related to the
rest of physics. It appears to behave like the
“cosmological constant” in Einstein's theory of gravity



