

Ringberg Castle November 2012

Cluster scaling relations: the SZ-signal – Halo mass relation

62 [Mpo/h]

Simon White Max Planck Institute for Astrophysics

Cluster abundances as a cosmological probe

Halo abundances are very well estimated as a function of mass and cosmological parameters from N-body simulations.

Current accuracies are of order a few percent

Abundance depends on mass <u>definition</u> in a given simulation by much larger factors

Scatter

Relations between mass measures show scatter because of: (i) internal structure (ii) orientation (iii) environment (iv) line-of-sight proj'ns

Relations to observable mass proxies show <u>additional</u> scatter because of: (v) extra astrophysics (vi) observational error

 $\sim 20\%$ scatter in Y_X--M according to sample selection and fit type Astrophysical and observational sources of scatter <u>not</u> included

~ 20% scatter in Y_X --M according to sample selection and fit type Astrophysical and observational sources of scatter <u>not</u> included

Scatter in y-profiles for 62 Planck clusters

Planck Collaboration 2012 PIP-V

Scatter among the y-profiles is big, reflecting differing internal structure

Beyond R₅₀₀ the mean pressure lies above the universal profile of A10

Scatter in y-profiles for 62 Planck clusters

Scatter among the y-profiles is big, reflecting differing internal structure

Beyond R₅₀₀ the mean pressure lies above the universal profile of A10

"Excess" does not correlate with inner structure

...and mean stacked $L_{X,500}$ is related to mean stacked Y_{500} as predicted by A10 for the <u>full</u> maxBCG sample.

A complete sample of locally brightest galaxies

All SDSS/DR7 galaxies in the main spectroscopic sample with: r < 17.7 (extinction-corrected Petrosian mag.), z > 0.03, and no brighter companion with $\Delta r_p < 1$ Mpc, $|c\Delta z| < 1000$ km/s in either the spectroscopic or photometric catalogues

LBG's are predominantly halo central galaxies

Planck Collaboration 2012: PIP-XI

LBG's selected according to the observational criteria in a mock catalogue constructed from the Guo et al (2012) model of galaxy formation in the Millennium Simul'n (scaled to WMAP7)

At least 83% of LBGs are the central galaxies of their dark haloes

2/3 of the rest are <u>brighter</u> than the central galaxy of their halo

LBG stellar mass is related to halo mass

Stacked Planck y-maps for LBGs

Planck Collaboration 2012: PIP-XI

∆I (deg)

∆I (deg)

-1.0 1.0 0.5 0.0 -0.5 -1.0 Δl (deg)

Mean \boldsymbol{Y}_{500} as a function of \boldsymbol{M}_{*} for LBGs

Planck Collaboration 2012: PIP-XI

Signal is detected down to $\log M_{\bullet}/M_{\odot} \sim 11.0$

Mean Y--M_{*} as expected for self-similar Y--M_h

To each real LBG assign a random mock LBG of the same M_* Use offset and M_h of mock LBG with $Y = A M_h^{\ \beta} + A10$ profile "Detect" using same filter as for observations, stack and compare Fit for A and β — Cosmic baryon fraction + self-similar β !

Inferred Y--M_h compared to X-ray cluster result

Planck Collaboration 2012: PIP-XI

LBG and MCXC results consistent to 20% – Malmquist bias in MCXC? Scaling continues down to log M_h / M_o ~ 12.5 <u>with no break</u>. Planck has seen about 25% of all cosmic baryons in this SZ signal!

Conclusions

- Cluster scaling relations and their evolution are the critical factor in using cluster abundances for cosmology
- The currently quoted uncertainties on scaling relations often appear to be underestimated
- Scatter in mass proxies can interact with sample selection to produced biased results. Scatter between all observables and the mass must be fully modelled
- Adopting a cosmology allows cluster physics to be studied
- By stacking LBGs, Planck detects Y down to $M_h \sim 10^{12.5} M_{\odot}$
- SZ-detected hot gas in halos accounts for $\sim 25\%$ of all baryons