# Millennium Simulations and beyond

#### Simon White Max Planck Institut für Astrophysik



802

 $l_{Jh}$ 

 $12^{\rm h}$ 

13<sup>h</sup>

R M

## The Millennium Simulation (2005)

125 Mpc/h

15.6 Mpc/h





333 papers making direct use of data from the MS (18-09-2010)Most by authors unassociated with the consortiumMost based on the galaxy catalogues, particularly mock surveys

# **Limitations of the Millennium Simulation**

- Limited volume too small for BAO work, precision cosmology
- Limited resolution too poor to model formation of dwarfs
- No convergence tests are galaxy results numerically converged?
- Only one ("wrong") cosmology
- Users unable to test dependences on parameters/assumptions



# Millennium-II (2008)

Same cosmology

Same N

1/5 linear size

Same outputs/ post-processing

Resolution tests of MS results and extension to smaller scales



# New galaxy formation models based on MS+MS-II

Qi Guo et al 2010

- Implement modelling simultaneously on MS and MS-II
- Test convergence of galaxy properties near resolution limit of MS
- Extend to properties of dwarf galaxies
- Improve/extend treatments of "troublesome" astrophysics
- Adjust parameters to fit new, more precise data
- Test against clustering and redshift evolution

# Things that work well

### The stellar mass function of galaxies



Luminosity functions of galaxies





# Luminosity function of Milky Way satellites

Luminosity functions of satellites around 1500 "Milky Ways" i.e. isolated disk galaxies with  $\log M_* = 10.8$ 

#### **Galaxy colour distributions**



### **Scaling relations**



### **Clustering of massive galaxies**



Data from SDSS/DR7

### Projected galaxy number density profiles of clusters



 $\log M_{gal} > 10.0$ 14.0 <  $\log M_{clus} < 14.3$ 

Note: good agreement of MS with MS-II is *only* when orphans are included

Orphan treatment is physically consistent and needed to fit SDSS











### Galaxy stellar mass versus maximum past halo mass



# "Successful" simulations fail to match this



# Things that work less well



### The cosmic star formation density history



--- <u>observed</u> SFR are inconsistent with <u>observed</u> stellar masses ------ star formation peaks <u>too early</u> in the model ---

#### **Colours of dwarf galaxies**



Too many passive low mass galaxies in the MS-II

--- formation is too fast/too early ---



## **Evolution of stellar mass function**

Lower mass galaxies log  $M_* < 10.5$ form too early

# **Conclusions from MS/MS II comparison**

"Precision" modelling of the formation and evolution of the galaxy population is now possible

Viable models should address abundances *and* scaling relations *and* clustering *and* evolution

The Millennium Simulation amplitude  $\sigma_{g} = 0.9$  is too high

In current models star formation occurs *too early* in low-mass systems



Need a better understanding of star formation and a lower fluctuation amplitude

# **Limitations of the Millennium Simulation**

- Limited volume too small for BAO work, precision cosmology
- Limited resolution too poor to model formation of dwarfs
- No convergence tests are galaxy results numerically converged?
- Only one ("wrong") cosmology
- Users unable to test dependences on parameters/assumptions

# **Moore's Law for Cosmological N-body Simulations**

- Computers double their speed every 18 months
- A naive N-body force calculation needs  $N^2$  op's
- simulation particles Simulations double their size every 16.5 months
- Progress has been roughly equally due to hardware and to improved algorithms



# **Moore's Law for Cosmological N-body Simulations**

Millennium-XXI

- Computers double their speed every 18 months
- A naive N-body force calculation needs  $N^2$  op's
- simulation particles Simulations double their size every 16.5 months
- Progress has been roughly equally due to hardware and to improved algorithms





Angulo et al 2010



Angulo et al 2010

![](_page_34_Picture_0.jpeg)

Angulo et al 2010

![](_page_35_Picture_0.jpeg)

Angulo et al 2010

![](_page_36_Picture_0.jpeg)

Angulo et al 2010

# **Limitations of the Millennium Simulation**

- Limited volume too small for BAO work, precision cosmology
- Limited resolution too poor to model formation of dwarfs
- No convergence tests are galaxy results numerically converged?
- Only one ("wrong") cosmology
- Users unable to test dependences on parameters/assumptions

# Scaling Simulations to neighboring cosmologies

Angulo & White 2010

For example: 'WMAP1' - 
$$\Omega_{m} = 0.25$$
,  $\Omega_{b} = 0.045$ ,  $\sigma_{8} = 0.9$   
to 'WMAP3' -  $\Omega_{m} = 0.238$ ,  $\Omega_{b} = 0.0418$ ,  $\sigma_{8} = 0.76$ 

1) Scale simulation size to match power spectrum slopes of original and target cosmologies on the scales of the original z=0 halos
-- 500 Mpc/h
433 Mpc/h

2) Reassign redshifts to match linear amplitudes on these scales -- z = 0.57, 1.68, 2.92 z = 0, 1, 2

3) Scale particle masses and velocities to match  $\Omega_{\rm m}$  and new size -- 9 x 10<sup>8</sup> M<sub>o</sub>/h 5.6 x 10<sup>8</sup> M<sub>o</sub>/h

4) Adjust for the difference between amplitudes of original and target power spectra on large scales using linear theory.

![](_page_39_Figure_0.jpeg)

Power spectra agree to better than 1% for k < 0.3

Positions agree to a few tens of kpc Peculiar velocities, masses and concentrations to a few percent

### **Goals for the GALFORMOD project**

• Model formation and evolution of the full galaxy population

- -- over volumes comparable to next generation surveys
- -- out to redshifts beyond 6
- -- for all viable gaussian cosmologies
- -- for a wide range of DE and galaxy formation models
- Study the interplay between galaxy formation physics and "precision" estimates of cosmological parameters
- Enable rapid exploration of the full parameter space with accelerated MCMC or similar techniques
- Make the modelling capabilities publicly available through high-speed VO-type databases and web interfaces