

The Dynamics of Galaxies St Petersburg August 2007

The Dynamics of Cold Dark Matter

Simon White & Mark Vogelsberger Max Planck Institute for Astrophysics

The Emergence of the Cosmic Initial Conditions

• Temperature-temperature and temperature-polarisation power spectra from *WMAP1* and interferometers

• Best ACDM model $t_0 = 13.7 \pm 0.2 \text{ Gyr}$ $h=0.71 \pm 0.03$ $\sigma_8 = 0.84 \pm 0.04$ $\Omega_t = 1.02 \pm 0.02$ $\Omega_m = 0.27 \pm 0.04$ $\Omega_b = 0.044 \pm 0.004$ $\tau_e = 0.17 \pm 0.07$

• Parameters in excellent agreement with other astronomical data WMAP3 team

Parameter	First Year	WMAPext	Three Year
	Mean	Mean	Mean
$100\Omega_b h^2$	$2.38^{+0.13}_{-0.12}$	$2.32_{-0.11}^{+0.12}$	2.23 ± 0.08
$\Omega_m h^2$	$0.144_{-0.016}^{+0.016}$	$0.134\substack{+0.006\\-0.006}$	0.126 ± 0.009
H_0	72^{+5}_{-5}	73^{+3}_{-3}	74^{+3}_{-3}
au	$0.17\substack{+0.08 \\ -0.07}$	$0.15\substack{+0.07\\-0.07}$	0.093 ± 0.029
n_s	$0.99\substack{+0.04\\-0.04}$	$0.98\substack{+0.03\\-0.03}$	0.961 ± 0.017
Ω_m	$0.29\substack{+0.07\\-0.07}$	$0.25\substack{+0.03\\-0.03}$	0.234 ± 0.035
σ_8	$0.92^{+0.1}_{-0.1}$	$0.84_{-0.06}^{+0.06}$	0.76 ± 0.05

In just 2 years the Universe:

- Got ionized later $(z \sim 10 \text{ rather than } z \sim 15)$
- Lost weight
- Got smoother, particularly on small scales

z = 0 Galaxy Light

Small-scale structure in ACDM halos

A rich galaxy cluster halo Springel et al 2001

A 'Milky Way' halo Power et al 2002

ACDM galaxy halos (without galaxies!)

- Halos extend to ~10 times the 'visible' radius of galaxies and contain ~10 times the mass in the visible regions
- Halos are not spherical but approximate triaxial ellipsoids
 -- more prolate than oblate
 -- axial ratios greater than two are common
- "Cuspy" density profiles with outwardly increasing slopes -- $d \ln \rho / d \ln r = \gamma$ with $\gamma < -2.5$ at large r $\gamma > -1.2$ at small r
- Substantial numbers of self-bound subhalos contain ~10% of the halo's mass and have $dN/dM \sim M^{-1.8}$

Most substructure mass is in most massive subhalos

Density profiles of dark matter halos

The average dark matter density of a dark halo depends on distance from halo centre in a very similar way in halos of all masses at all times -- a universal profile shape --

$$\rho(r)/\rho_{crit} \approx \delta r_s / r(1 + r/r_s)^2$$

More massive halos and halos that form earlier have higher densities (bigger δ)

A high-resolution Milky Way halo

Navarro et al 2006

$$N_{200} \sim 3 \times 10^7$$

Convergence tests on density profile shape

Navarro et al 2006

DM profiles are converged to a few hundred parsecs The inner asymptotic slope must be shallower than -0.9

•
$$N_{200} = 1.60 \times 10^8$$

- >30,000 subhalos
- 8% of mass within R_{200} in subhalos
- Total subhalo mass (weakly) convergent as $m_{sub} \rightarrow 0$

Observed mean mass profile of galaxy halos

Sheldon et al 2004

Stacked SDSS data

120,000 lenses with spectroscopic redshifts!9 million sources with photometric redshifts!

Mean profile measured from 25 kpc to 5 Mpc

Observed mean halo mass as a function of L

Sheldon et al 2004

 $M \sim L^{1.5}$

Likely Identification of Cold Dark Matter?

• A neutralino?

- -- lightest supersymmetric partner of the known particles
- -- interacts very weakly with photons/baryons/leptons
- -- likely stable or metastable
- -- expected mass $\sim 100 \text{ GeV}$
- -- thermal velocity in unclustered regions $\sim 10^{-4}$ (1+z) cm/s
- -- detectable through energy deposition in a bolometer
- -- annihilation into γ -rays potentially observable

• An axion?

- -- proposed to solve strong CP problem
- -- weak interactions
- -- mass strongly constrained by astrophysics $\, \sim 10 \; \mu eV$
- -- may form as a Bose condensate <u>zero</u> thermal velocity
- -- detectable through resonant interaction with microwaves

At epochs well *after* CDM particles become nonrelativistic, but *before* they dominate the cosmic density, the inflationary model for the origin of structure predicts the distribution function:

$$f(\mathbf{x}, \mathbf{v}, t) = \rho(t) \left[1 + \delta(\mathbf{x})\right] \delta_{D}(\mathbf{v} - \mathbf{V}(\mathbf{x}))$$

where $\rho(t)$ is the mean mass density of CDM, $\delta(x)$ is a Gaussian random field with finite variance $\ll 1$, and $V(x) = \nabla \psi(x)$ where $\nabla^2 \psi(x) \propto \delta(x)$

The phase density of CDM occupies a 3-D 'sheet' within the full 6-D phase-space and its projection onto **x**-space is near-uniform.

Df/Dt = 0 \longrightarrow only a 3-D subspace is occupied at later times. Nonlinear evolution leads to a complex, multi-stream structure.

Similarity solution for a 1-D collapse in CDM

Bertschinger 1985

Small-scale structure of the CDM distribution

- Direct detection involves bolometers/cavities of meter scale which are sensitive to particle momentum
 - -- what is the density structure between m and kpc scales?
 - -- how many streams intersect the detector at any time?
- Intensity of annihilation radiation depends on

 ∫ ρ²(x) ⟨σ v⟩ dV
 what is the density distribution around individual CDM particles on the annihilation interaction scale?

Predictions for detection experiments depend on the CDM distribution on scales <u>far</u> below those accessible to simulation

-> We require a good theoretical understanding of mixing

Lagrangian DM density at the present day

Gao et al 2007

Lagrangian smoothing

The geodesic deviation equation

Particle equation of motion: $\dot{\mathbf{X}} = \begin{bmatrix} \dot{\mathbf{X}} \\ \dot{\mathbf{V}} \end{bmatrix} = \begin{bmatrix} \mathbf{V} \\ -\nabla\phi \end{bmatrix}$

Offset to a neighbor: $\delta \dot{\mathbf{X}} = \begin{bmatrix} \delta \mathbf{v} \\ \mathbf{T} \cdot \delta \mathbf{x} \end{bmatrix} = \begin{bmatrix} 0 & \mathbf{I} \\ \mathbf{T} & \mathbf{0} \end{bmatrix} \cdot \delta \mathbf{X} ; \mathbf{T} = -\nabla(\nabla \phi)$

Write $\delta X(t) = D(X_0, t) \cdot \delta X_0$, then differentiating w.r.t. time gives,

$$\dot{\mathbf{D}} = \begin{bmatrix} 0 & \mathbf{I} \\ \mathbf{T} & \mathbf{0} \end{bmatrix} \cdot \mathbf{D} \text{ with } \mathbf{D}_0 = \mathbf{I}$$

- Integrating this equation together with each particle's trajectory gives the evolution of its local phase-space distribution
- No symmetry or stationarity assumptions are required
- det(D) = 1 at all times by Liouville's theorem
- For CDM, $1/|det(D_{xx})|$ gives the decrease in local 3D space density of each particle's phase sheet. Switches sign and is infinite at caustics.

Static highly symmetric potentials

Code *DaMaFlow* developed for static potentials:

- orbit + geodesic deviation integrator (symplectic DKD/KDK Leapfrog + DOPRI853)
- modular design allows large variety of potentials to be analyzed
- precise spectral analysis on the fly (NAFF algorithm, $1/T^4\,$ accuracy) with integer programming to get the fundamental frequencies of motion

Changing the number of frequencies

Spherical logarithmic potential

$$\Phi(r,\theta) = v_{\rm h}^2 \log \left(r^2 + d^2\right)$$

What about non-trivial potentials?

integrable systems give only rise to regular motion

non integrable (more realistic) systems:

have more complicated phase space structure, possibly with chaotic regions

this has an impact on dark matter stream density

Try to get more insights with our new approach!

Example: triaxial logarithmic potential with core

 $H = \frac{1}{2} \left(X^2 + Y^2 + Z^2 \right) + \ln \left(x^2 + \frac{y^2}{a_c^2} + \frac{z^2}{a_c^2} + R_c^2 \right)$

regular motion box and tube orbits; density decreasing like a <u>power law</u> in time for regular motion

Chaotic mixing

Compare frequency analysis results with geodesic deviation equation results

Resonances in phase space

Resonances: scanning phase space

Realistic dark matter halo potentials

Cosmological simulations:

Hayashi et al, 2007

- outer regions *spherical*
- inner regions *aspherical*
- principal axes well aligned over radius
- halos tend to become more prolate near center

Simple model for triaxial halo potential $\Phi(x, y, z) = \Phi_{NFW}(\tilde{r}(x, y, z)) \qquad \tilde{r} = \frac{(r_a + r)r^E}{(r_a + r^E)}$ Potential:

Potential:

$$r^{E} = \sqrt{\left(\frac{x}{a}\right)^{2} + \left(\frac{y}{b}\right)^{2} + \left(\frac{z}{c}\right)^{2}}$$

y/rs

transition radius

Dark matter streams in a triaxial NFW

How does the radial shape variation influence the stream density evolution?

outer orbit: similar stream behaviour

Stream density in live halo

A first view on stream densities in a tiny (32 Mpc/h)³ cosmological box

Conclusions and uncertainties

- Near the Sun most CDM particles should belong to streams with very low space density
- Since $t_{orb} \sim 10^8$ yrs at this radius, the Solar System should intersect $\sim 10^5$ different streams \longrightarrow smooth anisotropic f(v)
- Individual caustics are generally very weak but there are very many of them insignificant gravitational effects
- What are the effects of the early phases of hierarchical clustering on the phase-space structure?
- What fraction of particles remain in small bound structures rather than large-scale streams?
- What is the distribution of local DM density in the immediate neighborhood of DM particles? Annihilation in caustics?