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* The surface brightness profile is similar shape to expectation
* The spectral shape is consistent with an annihilation origin
* The 1sophotes are roughly round and inconsistent with disk emission
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* The surface brightness profile is similar shape to expectation
* The spectral shape is consistent with an annihilation origin
* The 1sophotes are roughly round and inconsistent with disk emission

BUT

* The surface brightness 1s everywhere lower than the (uncertain) foregrounds
* The photon count statistics may prefer a pulsar origin

A detection of DM or an upper limit on its y-ray annihilation X-section




Predictions for the Milky Way simulated in ACDM |

max

Springel et al 2008 Lalm: Ap.p._[ pde = Ap.p.r)M x Vm:{ /T

e MW’s halo annihilation flux may be dominated by that from unresolved small
subhalos but this 1s nearly uniform over the sky

* Flux from the Galactic centre dominates that from resolved subhalos by a large
factor, but relative detectability depends critically on noise sources

* The smallest halos may dominate the cosmic annihilation luminosity density




The N=10" Aquarius model for the MW Halo (DM only)

Springel et al 2008
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The N=10" Aquarius model for the MW Halo (DM only)
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The VVV
simulation
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The VVV
simulation

Planck cosmology

Dark matter only

Z.oom Level 2

Wang, Bose et al 2020
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The VVV
simulation

Planck cosmology

Dark matter only

Z.oom Level 3

Wang, Bose et al 2020
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The VVV
simulation

Planck cosmology

Dark matter only

Z.oom Level 4

2 5 kpC Wang, Bose et al 2020
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The VVV
simulation

i Planck cosmology

Dark matter only

Z.oom Level 5

5 kpc Wang, Bose ct al 2020
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The VVV
simulation

Planck cosmology

Dark matter only
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The VVV
simulation

Planck cosmology
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Z.oom Level 7

Wang, Bose et al 2020




25 pcC

The VVV
simulation

Planck cosmology
Dark matter only
Dynamic range of

30 orders of
magnitude 1n mass

Z.oom Level 8

The density of
this region 1s
only ~3% of the
cOsSmiIC mean

Wang, Bose et al 2020



The various levels of the VVV' simulation

Wang, Bose, Frenk, Gao, Jenkins, Springel & White 2020

level Ruigh [Mpc] np e [kpc] mp [Mo]  6(Mii,z=0) (p)/Pmean  Mchar Mo] Nehar Zform  fvir
L0 738 1.0 x 1019 7.4 1.5 % 10° 1.0 1014 127 0.94 0.92
L1 52 1.0x 101 44x1071  74x10° 0.34 0.39 1012 59  1.66 0.91
L2 8.8 54x%x10° 56x1072  1.5x10° 1.66 0.082 10° 29 191 0.93
L3 1.0 1.8x10° 83x107° 2.8 4.22 0.036 10° 27  2.61 0.94
L4 0.27 20x10° 1.0x107° 55x1073 6.96 0.026 103 59 444 0.94
L5 0.035 1.5%10° 22x107% 5.8x107° 9.36 0.024 10 30  4.68 0.94
L6 0.0066 1.7x10° 3.8x107° 2.6x1077 12.12 0.014 107! 35 4.84 0.94
L7 0.0011 25%x10° 53x107% 8.6x 107 15.06 0.016 10~ 201  5.21 0.96
L7c  0.0011  25x10° 53x107° 8.6x10710 15.06 0.016 104 202 4.83 0.97
L8  0.00024 1.5x10° 1.4x107% 1.6x 107! 17.60 0.028 107° 24 1.96 0.94

VVV = “voids-in-voids-mn-voids”
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p / p fit,Einasto p/ p fit, NFW

Density profile shapes

5 4 Over 19 orders of magnitude
............ NFW M| /| 1nhalo mass and 4 orders of
| magnitude in density, the

-3.0 mean density profiles of halos
are fit by NFW to within 20%
—3.5 and by Einasto (with o = 0.16)
1.1 to within 7%
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g o L7 1 mass relation

Concentrations at small
mass are lower than all
previous extrapolations
by up to factors of tens

C Einasto

A turndown at 10° Earth
masses 1s due to the
free-streaming limit.

The scatter depends only
1 weakly on halo mass.

Diemer & Joyce 2019
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At given halo mass,
concentration does not
depend on /ocal
environment density.

The range of local
environment density
does not depend
strongly on halo mass

Wang, Bose et al 2020
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The contribution of halos to
the mean z = 0 luminosity
density of the Universe 1s
almost independent of their
mass over the mass range

10°M <M  <10”M
® halo ®

It 1s lower than previously
estimated by factors between
3 and 1000

This still neglects the
substructure contribution to
halo luminosity

Wang, Bose et al 2020



High-resolution Auriga simulations
Grand & White 2021, 2022

* Six simulations of “Milky Way” formation in ACDM
m ~5x10°M , m ~6x10°M_

I

* Each is simulated twice — “full physics™ and dark matter only
* Each also includes the nearby “field” environment

e For large objects, L = Jp*dV is estimated by Voronoi tesselation

» For small objects, L =1.87V* /G'R from Einasto fits to V (r)

ann ax



How do baryons affect the DM structure of small halos?

0.3

0.2

0.1

0.0

—0.1

—0.2

]-Ogl(} (Rmax, bary /Rmax, dmo )

—-0.3

» Individual small field halos have slightly larger R and slightly smaller V_
in the full physics simulation — L drops by almost a factor of 2
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How do they affect the V. — R relations of (sub)halos?

ma X

subhalos /VVV: Wang et al (2020)
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* The DMO field halo relation matches Wang et al (2020) down to the resolution limit
* The full physics field halo relation is parallel but higher by a factor of 1.4

* Both relations are shifted down by a factor of about 2 for subhalos

- Resolution affects the subhalo relation below V_ ~ 10 km/s

a



How do baryons affect MW annihilation luminosities?

* The luminosity of the main
halo goes up by a factor of 3

* [ts half-light radius goes down

2
=] I by a factor of 5
% . * The luminosity in resolved
) ! -1 satellites drops by a factor of 6
~ .
o ]_0“3 I I'so I R..Q()() . .
Y U | * Satellites are particularly
3 — Swbbaw ' suppressed in the inner regions
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10“5 11 |||||| 3 111 1 4y 1 ||||| 1 Com Onent and the brl htest
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“Full physics” Dark matter only

The cooling and condensation of gas into galaxies makes the main halo
emission brighter, more concentrated and rounder.

The subhalos become fainter



Extrapolating to the lowest masses — the n(V_ ) function

subhalos field halos
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* DMO »full phys. drop 1s larger for subhalos due to enhanced tidal effects

* Abundances converge down to Vmax ~ 8 km/s

* Shape of the dashed extrapolations taken from the VVV Vmax — Rmax — M
relations of Wang et al (2020) together with n(M) from Angulo et al (2012)



Extrapolating to the lowest masses — the n(L._ ) function
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e Upper number in each pair is Liwt/LMw,bar for the resolved subhalos
* The lower number extrapolates all the way down to Earth mass
* Unresolved (sub)halos increase the luminosities by factors of just 2.5 — 4.5



Extrapolating to the lowest masses — subhalo fluxes
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* Fluxes are as observed from a “Solar” position in units of the main halo flux
* The brightest subhalo has expected f/fmw ~ 0.0002 (f.p) or 0.003 (DMO)

* The total subhalo flux is expected to be < 0.2% of the main halo flux (f.p.)

* About half the subhalo flux 1s in numerically resolved subhalos



SB

Fit of Auriga annihilation profiles to the Fermi-LAT GCE
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* Shape of the SB profile fits the Fermi GCE only in the “full physics™ case

. (O'V)c2

m X

< 1.17 x 10'® MeV cm?/s/g?, for energy in 1 — 10 GeV photons



Conclusions

* Baryonic effects substantially enhance and concentrate the predicted
luminosity of the main MilkyWay halo in annihilation radiation

* They reduce the luminosity predicted for small halos, Vmax < 50 km/s

* The enhanced mass concentration of the MW due to baryons leads to
enhanced tidal disruption of satellites, especially in the inner halo

* The expected ratio of the flux of the brightest subhalo to that of the
main halo 1s reduced by about 1.5 dex, to ~ 0.0002.
— no subhalo will be detected before the main halo 1s confirmed?

* Previous work greatly overestimated the contribution from very small
(sub)halos (1.€. boost factors) by overestimating their concentrations.

* The Fermi excess could well be annihilation radiation
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