Dark Matters

Simon White

Max Planck Institute for Astrophysics

The Coma Galaxy Cluster

The Triangulum Nebula (M33)

The Galaxy Cluster, Abell 2218

The WMAP of the Cosmic Microwave Background

Temperatures fluctuate by \pm 200 μK around a mean of 2.73 K

What are we seeing in the CMB?

- The "cloud surface" is at redshift z = 1000, just 380,000 yr after the Big Bang, at a present-day distance of 40 billion light-years
- The sharp surface is due to recombination of the primordial plasma
- Its (very nearly uniform) temperature is about 3000 K
- The emitted radiation is black-body to high precision
- The fluctuations are due to gravito-acoustic waves propagating in the plasma/dark matter mix \longrightarrow characteristic scale $\lambda \sim c_s t_{recom}$
- Fluctuations were imprinted *much* earlier, perhaps during inflation

The WMAP of the Cosmic Microwave Background

(i) geometry; (ii) material content; (iii) the generating process

What has WMAP taught us?

- Our Universe is flat -- its geometry is that imagined by Euclid
- Only a small fraction is made of ordinary matter -- about 4% today
- About 21% of today's Universe is <u>non-baryonic</u> dark matter (neutralinos? axions? ...)
- About 75% is Dark Energy (Λ? quintessence? new gravity?? ...)
- All structure is consistent with production by quantum fluctuations of the <u>vacuum</u> during early inflation

Nearby large-scale structure

Nearby large-scale structure

Evolving the Universe in a computer

- Follow the matter in an expanding cubic region
- Start 380,000 years after the Big Bang
- Match initial conditions to the observed Microwave Background
- Calculate evolution forward to the present day

Visualizing Darkness

- The smooth becomes rough with the passing of time
- Uniformity, filamentarity, hierarchy it all depends on scale
- A short tour of the Universe

125 Mpc/h z = 0 Dark Matter

z = 0 Galaxy Light

Comparison of lensing strength measured around real galaxy clusters to that predicted by simulations of structure formation

Dark Matter around the Milky Way?

"Milky Way" halo z = 1.5 $N_{200} = 3 \times 10^{6}$ "Milky Way" halo z = 1.5 $N_{200} = 94 \times 10^{6}$ "Milky Way" halo z = 1.5 N₂₀₀ = 750 x 10⁶

ACDM galaxy halos (without galaxies!)

- Halos extend to ≥10 times the "visible" radius of galaxies and contain ≥10 times the mass in the visible regions
- Halos are not spherical but approximate triaxial ellipsoids
 -- more prolate than oblate
 -- axial ratios greater than two are common
- "Cuspy" density profiles with outwardly increasing slopes -- $d \ln \varrho / d \ln r = \gamma$ with $\gamma < -2.5$ at large r $\gamma > -1.0$ at small r
- Substantial numbers of self-bound subhalos contain ~10% of the total halo mass and have $dN/dM \sim M^{-1.8}$

Properties of subhalos

- Subhalos live primarily in the outer parts of halos
- Their radial distribution is almost independent of their mass
- The number of subhalos is proportional to the mass of the host
- The total mass fraction in subhalos converges only weakly as smaller mass objects are included —> many small objects
- In the inner halo (near the Sun) subhalos contain a very small fraction of the dark matter (<1%)

Maybe Dark Matter can be detected in a laboratory?

Local density in the inner halo compared to a smooth ellipsoidal model

- Estimate a local density ρ at each point by adaptively smoothing the particle distribution
- Fit to a smooth density model stratified on similar ellipsoids
- The chance of a random point lying in a substructure is < 10⁻⁴
- Elsewhere the scatter about the smooth model is only 4%

Velocity distribution near the Sun

- Velocity histograms for particles in small regions at R ~ 8 kpc
- No streams are visible

Energy space features – fossils of formation

The distribution of DM particle energies shows bumps which

- -- repeat from place to place
- -- are stable over Gyr timescales
- -- repeat in simulations of the same object at varying resolution
- -- are different in simulations of different objects

These are potentially observable fossils of the formation process

Predictions for direct detection experiments

- With more than 99.9% confidence the Sun lies in a region where the DM density differs from the smooth mean value by < 20%
- The local velocity distribution of DM particles is similar to a trivariate Gaussian with no measurable "lumpiness" due to individual DM streams
- The energy distribution of DM particles should contain broad features with ~20% amplitude which are the fossils of the detailed assembly history of the Milky Way's dark halo

Dark matter astronomy

Maybe the annihilation of Dark Matter will be seen by Fermi?

2.0 Log(Intensity)

A prediction for foreground y-ray emission

GALPROP, optimized

Small-scale clumping and annihilation

- Subhalos increase the Milky Way's total flux within 250 kpc by a factor of 230 as seen by a distant observer, but its flux on the sky by a factor of only 2.9 as seen from the Sun
- The luminosity from subhalos is dominated by small objects and is nearly uniform across the sky (contrast is a factor of ~1.5)
- Individual subhalos have lower S/N for detection than the main halo but detectability will depend on the structure of the foreground
- The highest S/N *known* subhalo should be the Large Magellanic Cloud, but may be confused by emission from stars

Well *after* CDM particles become nonrelativistic, but *before* they dominate the cosmic density, their distribution function is

$$f(x, v, t) = \rho(t) [1 + \delta(x)] N [\{v - V(x)\}/\sigma]$$

where $\rho(t)$ is the mean mass density of CDM, $\delta(x)$ is a Gaussian random field with finite variance $\ll 1$, $V(x) = \nabla \psi(x)$ where $\nabla^2 \psi(x) \propto \delta(x)$ and *N* is standard normal with $\sigma^2 \ll \langle |\mathbf{V}|^2 \rangle$

CDM occupies a thin 3-D 'sheet' within the full 6-D phase-space and its projection onto x-space is near-uniform.

 $Df/Dt = 0 \longrightarrow$ only a 3-D subspace is occupied at later times. Nonlinear evolution leads to a complex, multi-stream structure.

Similarity solution for spherical collapse in CDM

Evolution of CDM structure

Consequences of
$$Df/Dt = 0$$

- The 3-D phase sheet can be stretched and folded but not torn
- At least 1 sheet must pass through every point **x**
- In nonlinear objects there are typically many sheets at each **x**
- Stretching which reduces a sheet's density must also reduce its velocity dispersions to maintain f = const.
- At a caustic, at least one velocity dispersion must $\longrightarrow \infty$
- All these processes can be followed in fully general simulations by tracking the phase-sheet local to each simulation particle

Caustic crossing counts in a ACDM Milky Way halo

Caustic crossing counts in a ACDM Milky Way halo

Dark matter caustics and annihilation radiation

- Caustics are less significant in realistic three-dimensional situations than in one-dimensional similarity solutions
- Particles in the inner regions of halos (e.g. near the Sun) have typically passed through several hundred caustics
 low stream densities and weak caustics
- The annihilation luminosity from caustics is a small fraction of the total, particularly in the inner regions
- If annihilation radiation is detected from external galaxies (e.g. M31) only the outermost caustic is likely to be visible

Final remarks?

- The dark matter problem has been with us since 1933
- Non-baryonic dark matter has been the "solution" since ~1980
- The DM aspects of the current standard paradigm are supported by a wide variety of data at low redshift and by the CMB
- Nevertheless, the nature of DM can only be confirmed by detection of non-gravitational effects on Earth or in the sky

Final remarks?

- The dark matter problem has been with us since 1933
- Non-baryonic dark matter has been the "solution" since ~1980
- The DM aspects of the current standard paradigm are supported by a wide variety of data at low redshift and by the CMB
- Nevertheless, the nature of DM can only be confirmed by detection of non-gravitational effects on Earth or in the sky
- Dark energy was established in the late 1990's
- All known routes to exploring its nature are astronomical
- Understanding dark energy probably requires a good new idea.