The Millennium Simulation and its use for interpreting LSS

Simon White MPI for Astrophysics

Moore's Law for Cosmological N-body Simulations

Springel et al 2005

- Computers double their speed every 18 months
- A naive N-body force
- calculation needs N² op's op's Simulations double their size every 16.5 months Simulations double their
- Progress has been roughly equally due to hardware and to improved algorithms

Moore's Law for Cosmological N-body Simulations

Springel et al 2005

Horizon Simulation

- Computers double their speed every 18 months
- A naive N-body force
- calculation needs N² op's op's Simulations double their size every 16.5 months Simulations double their
- Progress has been roughly equally due to hardware and to improved algorithms

Galaxy autocorrelation function

Springel et al 2005

For such a large simulation the purely statistical error bars are negligible on ξ even for galaxies

Large-scale structure at high redshift

Springel, Frenk & White 2006

Large-scale structure in the galaxy distribution evolves very little with redshift

It is as strong at z=8.5 as at z=0

Evolution of mass and galaxy correlations

Springel, Frenk & White 2006

Questions for the Millennium

- How well do the models fit high-z structure?
- **Does WMAP1 → 3 change observed LSS?**
- Which galaxies hold the baryons at high-z?
- What do observed high-z galaxies become?
- How do galaxies grow?
- **Can we measure merging rates?**

How well do the models fit high-z structure?

Comparison with COSMOS survey w(θ)

McCracken et al 2007

Redshift distributions for single galaxies and pairs to B_{AB} **= 26**

Meneux et al 2007

 $\langle z \rangle \sim 0.6$

Coil et al 2007

Does WMAP1 -> 3 change observed LSS?

WMAP1 vs WMAP3 luminosity functions

Wang et al 2007

WMAP1 vs WMAP3 galaxy correlations

Wang et al 2007

z = 0

WMAP1 vs WMAP3 cosmic SFH

Wang et al 2007

WMAP1 vs WMAP3 galaxy mass functions

Wang et al 2007

WMAP1 vs WMAP3 high-z galaxy correlations

Wang et al 2007

WMAP1 vs WMAP3 high-z galaxy correlations

Wang et al 2007

Which galaxies hold the baryons at high-z?

What do observed high-z galaxies become?

Colour-stellar mass plot for z=2 star-forming galaxies (SFR > 5 M_o/yr) and their descendants

Colour-stellar mass plot for z=2 star-forming galaxies (SFR > 5 M_o/yr) and their descendants

Colour-stellar mass plot for z=2 star-forming galaxies (SFR > 5 M_o/yr) and their descendants

Stellar mass histograms for z=2 star-forming galaxies (SFR > 5 M /yr) and their descendants

Stellar mass histograms for z=2 star-forming galaxies (SFR > 5 M_o/yr) and their descendants

Stellar mass histograms for z=2 star-forming galaxies (SFR > 5 M_o/yr) and their descendants

Bulge-to-total histograms for z=2 star-forming galaxies (SFR > 5 M /yr) and their descendants

Bulge-to-total histograms for z=2 star-forming galaxies (SFR > 5 M /yr) and their descendants

Bulge-to-total histograms for z=2 star-forming galaxies (SFR > 5 M /yr) and their descendants

Autocorrelation functions for z=2 star-forming galaxies (SFR > 5 M_o/yr) and their descendants

How do galaxies grow?

DIMENSIONLESS
GROWTH RATES
IN STELLAR MASS
Guo & White 2007
$$R = \langle t_{Hubb} \Delta M / M \Delta t \rangle$$

where $\Delta M/M$ is the

where $\Delta M/M$ is the stellar mass fraction added over the last ~0.2Gyr through Major Mergers All Mergers Star Formation

DIMENSIONLESS
GROWTH RATES
IN STELLAR MASS
Guo & White 2007
$$R = \langle t_{Hubb} \Delta M / M \Delta t \rangle$$
where $\Delta M/M$ is the
stellar mass fraction
added over the last

V S added over the last $\sim 0.2 Gyr$ through Major Mergers All Mergers **Star Formation**

mass growth rate

GROWTH RATES IN STELLAR MASS Guo & White 2007 $R = \langle t_{Hubb} \Delta M / M \Delta t \rangle$

DIMENSIONLESS

where ∆M/M is the stellar mass fraction added over the last ~0.2Gyr through Major Mergers All Mergers Star Formation

DIMENSIONLESS
GROWTH RATES
IN STELLAR MASS
Guo & White 2007
$$R = \langle t_{Hubb} \Delta M / M \Delta t \rangle$$

where $\Delta M/M$ is the

where $\Delta M/M$ is the stellar mass fraction added over the last ~0.2Gyr through Major Mergers All Mergers Star Formation

Can we measure merging rates?

Small-scale correlations in the MS versus SDSS

Kitzbichler & White 2008

Major merger rate in the Millennium Simulation

- galaxy merger rate
- halo merger rate
 - halo accretion rate

Kitzbichler & White 2008

Major merger probability as function of mass and redshift

Kitzbichler & White 2008

Timescale for converting close pair counts into merger rates

 $\Gamma_{\text{merge}} = (\text{Abundance of projected close pairs}) / (\text{Merger rate of such pairs}) \\ \propto r_p M^{-0.3} (8 + z)$ Kitzbichler & White 2008

How to estimate merger rates from pair counts

- 1 Count close pairs ($r_p < 50 \text{ or } 30 \text{ kpc}$) with well defined criteria on magnitude difference, stellar mass, etc.
- 2 Make completeness and background corrections to estimate abundance of pairs of chosen type at known z
- 3 Divide close pair abundance by the merger timescale to get merger rate (per unit volume) of the chosen pair type e.g. for pairs of ~10¹⁰ M_o galaxies at $z \sim 1$ with $r_p \leq 30$ kpc/h (physical) and $\Delta v < 300$ km/s $T_{merge} = 2.0$ Gyr/h

Happy Birthday, Marc!