

The Aquarius Project: Cold Dark Matter under a Numerical Microscope

Volker Springel, Simon White & the Virgo Consortium Max Planck Institute for Astrophysics

z = 0 Galaxy Light

Visualizing Darkness

• Uniformity, filamentarity, hierarchy – it all depends on scale

• The smooth becomes rough with the passing of time

• The Milky Way hums with memories of its past

Scientific issues for Aquarius

Central structure of the Milky Way's halo
 -- Dark Matter annihilation radiation

Abundance and structure of substructures

 Relation to observed dwarf satellite galaxies
 Annihilation radiation from dwarfs

Assembly history of the Milky Way
 -- Origin of various stellar components of the Milky Way

Numerical issues for Aquarius

- Very large dynamic range required

 -10⁶ in linear scale, mass density
 -10³ in time-scale
 > 10¹² in mass
- Distribution of load for parallel execution

 Final system has a single centre of concentration
 no simple decomposition into equivalent spatial domains

Need to store system state at frequent interval
 -- 40 Tbyte of stored data for later post-processing

Moore's Law for Cosmological N-body Simulations

Springel et al 2005

- Computers double their speed every 18 months
- A naive N-body force
- calculation needs N² op's op's op's size every 16.5 months Simulations double their
- Progress has been roughly equally due to hardware and to improved algorithms

THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE

GENOME EDITING Rewriting the rules for gene therapy

BCL-2 INHIBITORS Potent new antitumour compounds

HUMAN BEHAVIOUR Oxytocin — the 'trust hormone'

SURPRISING DINOSAURS A sauropod, by a short neck INSIDE: UP-TO-THE-MINUTE REVIEWS ON AUTOIMMUNITY

natureinsight

EVOLUTION OF THE UNVERSE

Supercomputer simulation of the growth of 20 million galaxies

Name	N _{tot}	$N_{\rm FoF}$	Mass resolution	Spatial resolution	Ncpu
$C02-400^{3}$	19.170.765	5.546.052	$2.49 \times 10^{5} h^{-1} \mathrm{M}_{\odot}$	250 <i>h</i> ⁻¹ рс	64
C02-800 ³	168.320.279	44.049.741	$1.67 imes10^5h^{-1}\mathrm{M}_\odot$	88 <i>h</i> ⁻¹ pc	256
C02-1200 ³	606.866.170	157.239.052	$1.00 \times 10^4 h^{-1} \mathrm{M}_{\odot}$	48 <i>h</i> ⁻¹ pc	256
C02-2400 ³	4.397.586.154	${\sim}1.258.000.000$	$1.25\times 10^3 {\it h}^{-1} M_\odot$	$15 h^{-1} { m pc}$	1024

C02-2400³ will require 4,000,000 processor-hours on HLRB-2 and produce 40 Tbytes of stored output

"Milky Way" halo z = 1.5 $N_{200} = 3 \times 10^{6}$ "Milky Way" halo z = 1.5 $N_{200} = 94 \times 10^{6}$ "Milky Way" halo z = 1.5 $N_{200} = 750 \times 10^{6}$

How well do density profiles converge?

Virgo Consortium 2007

How well do density profiles converge?

Virgo Consortium 2007

How well does substructure converge?

Virgo Consortium 2007

How well does substructure converge?

Virgo Consortium 2007

The GADGET-3 production code

- A further development by Volker Springel of the publicly released GADGET-2 code
- ANSI-C and MPI-1.1, using FFTW and GSL
- Input output in native format or HDF5
- Porting to HLRB-2 simple (except for 2 compiler bugs)
- PM—oct-tree Poisson solver
- Flexible and variable individual leap-frog time-stepping
- Domain decomposition based on Peano-Hilbert curve

GADGET-2 cpu 0 cpu 1 cpu 2 cpu 3 GADGET-3

Tree algorithm

The Aquarius Game Plan

- A resolution study using the HLRB-2 halo
- Five more halos studied to resolution 1/8 of the HLRB-2 halo
- Analysis of DM structure and modelling of MW formation by international science groups within the Virgo Consortium (D, UK, NL, USA, J)