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Galaxy formation is a solved problem!

Galaxies form through the cooling and condensation of gas
at the centres of massive halos which themselves form by
gravitational amplification of initially small fluctuations 1n a
pre-existing and dominant dark matter component.
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The Eagle Simulations Aumeret al 2014

1 AND ASSEMBLY OF GALAXIES AND T

'The Hubble Sequence realised in cosmological simulations . ﬁ’& @ SimUIaﬁng
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Recent cosmological (magneto)hydrodynamical simulations reproduce many
aspects of the observed internal structure of galaxies....
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Dark energy theorists, inflationary cosmologists and v physicists
want to constrain P(k) and the expansion and linear growth histories.
Needs accurate clustering predictions on medium and large scales.

Dark matter theorists want to understand early and small-scale
structures and the inner parts of (small) galaxies.

High-z observers are particularly interested in the onset of galaxy and
SMBH formation and their link to reionisation.

IGM and CGM observers are interested in how radiative and hydro-
dynamic feedback inputs energy/heavy elements into the environment.

Galactic astrophysicists study the origin and evolution of galactic
diversity and of structures within galaxies (disks, bulges, bars, warps...).

Galactic archaeologists focus on the detailed assembly history of
nearby galaxies, particularly our own Milky Way.



Simulating large-
scale structure
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~15 parameters “tuned” in
the semianalytic model for
galaxy formation. None

Springel, Frenk & associated with clustering.

White 2006
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Calibrating galaxy formation models
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Clustering and galaxy formation
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' Clustering of red and blue
galaxies as a function of
stellar mass 1n modern
large-scale simulations
compared to SDSS

Both semianalytic and
hydro simulations fit data
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log(n(>x)/cMpc—3)

High-z galaxy formation in 2015 simulations
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JWST spectroscopy and photometry of a young galaxy

Jones et al 2023
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| Globular cluster formation in a z=6 galaxy

F115W+F150W+F200W  F277W+F356W+F444W Vanzella et al 2022
1b
- -
2 Six young clusters marginally resolved
. L

Masses and radii of massive GC’s

Ages of a few million years

Dynamical ages greater than unity

ID  Stellar Mass Age E(B-V) Resr 11 3 Mass Lot
[10° Mg)] Myr] [pc] [mas] (10> Mg pe™?)

(1) 4) (5) (6) (7) (8) (9) (10)
1b 71408 300, 00000 1.4f02 15 314.1F73TS 0 311.3H180 >66
2h 3.9702 1019 0107002 6.371L [30] 8.3131 37133 >30
3b* 11751 4736 0257020 6.175%5 [29] 1.9%5% 2.7+16.3 >30)
4b* 10.1%515° 172 05015 2487626 117]  0.2194 15721 >30
5b* 3.1755%2 (s 0407025 4.971%5 23] 6.615%° 11.8754¢ >30

6b 3.313:2 4+2 0.151995 85721 [40] 2.0+22 4.1+56 >30



Baryon fraction in galaxies since z =6

Time since Big Bang [Gyr]
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* Fraction of baryons 1n galaxies has grown from ~2% (z = 6) to ~5% (z = 0)
* Galaxies are mostly cold gasatz>1; M*/Mism~ 1% atz=6
* Cold ISM gas 1s mostly HI, strongly so at z<1 and z > 3.

* Molecular gas tracks stars at z > 3



Conclusions?

* Galaxy formation is understood in considerable detail in the ACDM
paradigm, and has been for some time.

* Nevertheless, the process 1s sufficiently complex that many quantitative
aspects of interest cannot be reliably computed a priori.

* As aresult, suggested “tensions” between observation and the standard
paradigm are generally not robust to uncertainties in astrophysics.

* The great majority of the mass in galaxies at high z 1s in the cold ISM
and 1s 1n the form of HI. Currently, 1t 1s not observed directly.
-~ » cross-correlate HI line-intensity maps at high z with other surveys?

* JWST is now able to see directly the formation of globular clusters and
to measure Z for the star-forming gas in galaxies at z> 6 .
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