Out of the Big Bang: simulating the growth of structure in the Universe

Simon D.M. White Max Planck Institut für Astrophysik

COBE's microwave map of the entire sky

COBE's microwave map of the entire sky

COBE's microwave map of the entire sky

Structure in the COBE map

- One side of the sky is `hot', the other is `cold'
 - → the Earth's motion through the Cosmos $V_{Milky Way} = 600 \text{ km/s}$
- Radiation from hot gas and dust in our own Milky Way
- Structure in the Microwave Background itself An image of structure in the `cosmic fog bank' at a distance of 40 billion light-years when the Universe was 400,000 years old

The WMAP Satellite at Lagrange-Point L2

WMAP map of the Universe when it was only 400,000 years old

Bennett et al 2003

Initial conditions for the formation of all structure

- Our Universe is flat
- It is 13.7 ± 0.2 billion
- It is made of 70% dark energy, 26% cold dark matter and only 4% normal baryonic matter

400,000 years after the Big Bang it was nearly uniform

All structure was imprinted in the first 10^{-30} s by quantum fluctuations of the vacuum

M101

NGC 5907

NGC 4414 -- a galaxy like our own

NGC 4038/4039 -- a galactic traffic accident

Elliptical galaxies in a cluster

Gravitation lens effects: the dark matter in a cluster becomes visible

Abell 2218 z=0.17

X-ray image of the cluster Abell 3667

Structure on large scales

How to follow the evolution of the Universe on a supercomputer

- Follow the material in an expanding cube
- Start 400,000 years after the Big Bang
- Choose initial conditions to match the microwave background
- Calculate forwards to the present day

Our cosmic neighborhood at redshift z=2.4

Mathis et al 2001

Our cosmic neighborhood at redshift z = 0.8

Our cosmic neighborhood today

1 Gpc/h

62.5 Mpc/h

15.6 Mpc/h

3.9 Mpc/h

Cosmological N-body simulations have grown rapidly in size over the last three decades

"N" AS A FUNCTION OF TIME

$$N = 400 \times 10^{0.215(\text{Year} - 1975)}$$

- Computers double their speed every 18 months (Moore's law)
- N-body simulations have doubled their size every 17 months even though naïve force calculation needs N² operations
- Recently, growth has accelerated further. The Millennium Run should have become possible in 2010. It finishes in 2004 !

Computational challenges of very large cosmological simulations

- Efficient algorithms to calculate self-consistent forces between a large number of particles ($N = 10^{10}$) and over a large dynamic range ($L_{max}/L_{min} = 10^{5}$)
- Efficient and conservative (symplectic) time integration
- Efficient load-balancing across many processors on distributed memory machines (16 x 32 Regatta processors)
- Adaptive domain decomposition of simulated volume
- On-the-fly estimation of statistics requiring global data
- Efficient output and storage strategies for results (27 Tbyte)
- Globally accessible post-processing pipelines to be run remotely on serial machines · the Global Virtual Observatory

The Millennium simulation was run on the *Regatta* supercomputer of the RechenZentrum Garching

REQUIRED RESOURCES

1 TByte RAM needed

16 x ^{32-way Regatta Node} 64 GByte RAM 512 CPU total

CPU time requirement

330.000 processor hours

- 27 days on 512 CPUs/16 nodes
- 38 years in serial
- ~ 6% of annual time on total Regatta system

Our cosmic neighborhood with galaxies

VIRTUAL vs REAL UNIVERSES II

Telescopes as time machines: glimpses of the past

Our cosmic neighborhood with galaxies

Bright galaxies at redshift z=2.4

SFR>5.0

SGY SGX Present-day descendents of bright galaxies from redshift z=2.4

Our cosmic neighborhood with galaxies

To conclude.....

- In the beginning the Universe was hot, dense and almost uniform
- All structure has grown from quantum fluctuations of the vacuum
- Normal material is only 4% of the content of the Universe
- About 25% is made of as yet unidentified elementary particles
- About 70% consists of a new and as yet unidentified form of dark energy which is accelerating the expansion of the Universe.
- Galaxies, galaxy clusters and larger structures, as well as stars and planets formed from primordial gas through the effects of gravity
- Supercomputing is indispensible to compare theory with reality