The smallest dark matter halos and their

annihilation radiation




Does the Fermi excess “look like” a dark matter halo?
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A detection of DM or an upper limit on its y-ray annihilation X-section




Very small (sub)halos could be seen by annihilation

()

Springel et al 2008 Lam: Ap_p__" pZdV = Ap_p.ﬁM X Vmi ok

max

* MW’s halo annihilation flux may be dominated by that from unresolved small
subhalos but this is nearly uniform over the sky

* Flux from the Galactic centre dominates that from resolved subhalos by a large
factor, but relative detectability depends critically on noise sources

* The smallest halos may dominate the cosmic annihilation luminosity density




The N=10" Aquarius model for the MW Halo (DM only)

Springel et al 2008
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The N=10" Aquarius model for the MW Halo (DM only)
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The N=10" Aquarius model for the MW Halo (DM only)

Springel et al 2008
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The VVV
simulation

Planck cosmology

Dark matter only

Base Level

Wang, Bose et al 2020




The VVV
simulation

Planck cosmology

Dark matter only
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Wang, Bose et al 2020




The VVV
simulation
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The VVV
simulation
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The VVV
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25 pcC

The VVV
simulation

Planck cosmology
Dark matter only
Dynamic range of

30 orders of
magnitude 1n mass

Z.oom Level 8

The density of
this region 1s
only ~3% of the
cosmic mean

Wang, Bose et al 2020



The various levels of the VVV' simulation

Wang, Bose, Frenk, Gao, Jenkins, Springel & White 2020

level  Rpigh [Mpc] np e [kpc] mp [Mo]  6(Mio,2=0) (p)/Pmean Mchar [Mo] Nehar Zform  Juir
L0 738 Jif 1A 7.4 1.5x10° 1.0 16 127 0.94 0.92
L1 52 1.0x 1019 44x107! 7.4x10° 0.34 0.39 102 59  1.66 0.91
L2 8.8 54%1¢7 56%x107% 15x%10° 1.66 0.082 10° 29 191 0.93
L3 1.0 1.8x10° 8.3x107° 2.8 4.22 0.036 100 27 261 0.94
L4 0.27 2051 10x107 55x10° 6.96 0.026 103 59 444 0.94
L5 0.035 15% 107 22%107° 58107 9.36 0.024 10 30  4.68 0.94
L6 0.0066  1.7x10° 3.8x10™> 2.6x107/ i B 0.014 15 35 4.84 0.94
0.0011  2.5x10° 53x107° 8.6x1071° 15.06 0.016 i e 201  5.21 0.96
L7¢ 00011 25%10° 53%10° 8.6x10-10 15.06 0.016 10— 202 4.83 0.97
L8  0.00024 1.5x10° 14x107° 1.6x107" 17.60 0.028 [0 g 24 1.96 0.94

VVV = “yoids-in-voids-in-voids”
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At given halo mass,
concentration does not
depend on /ocal
environment density.

The range of local
environment density
does not depend
strongly on halo mass
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The contribution of halos to
the mean z = 0 luminosity
density of the Universe is
almost independent of their
mass over the mass range

10°M_< M <10°M_
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estimated by factors between
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High-resolution Auriga simulations

Grand & White 2021

Rob Grand

* Six simulations of “Milky Way” formation in ACDM
m ~5x10°M_, m ~6x10°M_

r

* Each 1s simulated twice — “full physics” and dark matter only
* Each also includes the nearby “field” environment

e For large objects, L = Jp*dV is estimated by Voronoi tesselation

- For small objects, L =1.87V* /GR from Einasto fits to V (r)

ann



How do baryons affect the DM structure of small halos?
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How do they affect the V. -R relations of (sub)halos?

X max
subhalos /VVV: Wang et al (2020) field halos /VVV
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* The DMO field halo relation matches Wang et al (2020) down to the resolution limit
* The full physics field halo relation is parallel but higher by a factor of 1.4

* Both relations are shifted down by a factor of about 2 for subhalos

- Resolution affects the subhalo relation below V_ ~ 10 km/s

a



How do baryons affect MW annihilation luminosities?

* The luminosity of the main
halo goes up by a factor of 3

* [ts half-light radius goes down
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=] I by a factor of 5
% . * The luminosity in resolved
) ! -1 satellites drops by a factor of 6
~ .
o ]_0“3 I I'so I R..Q()() . .
Y U | * Satellites are particularly
3 — Swbbaw ' suppressed in the inner regions
10-~4 memm MW Bary
= SubDMO Y :
—— MW DMO * The contrast between .the main
10“5 11 |||||| 3 111 1 4y 1 ||||| 1 Com Onent and the brl htest
ponet g
1071 10° 10 10 subhalos increases by 1.5 dex



13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0
logo(f/rad?)

“Full physics” Dark matter only

The cooling and condensation of gas into galaxies makes the main halo
emission brighter, more concentrated and rounder.

The subhalos become fainter



Extrapolating to the lowest masses — the n(V_ ) function
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* DMO »full phys. drop 1s larger for subhalos due to enhanced tidal effects

* Abundances converge down to Vmax ~ 8 km/s

* Shape of the dashed extrapolations taken from the VVV Vmax — Rmax — M
relations of Wang et al (2020) together with n(M) from Angulo et al (2012)



Extrapolating to the lowest masses — the n(L._ ) function
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e Upper number in each pair is Liwt/LMw,bar for the resolved subhalos
* The lower number extrapolates all the way down to Earth mass
* Unresolved (sub)halos increase the luminosities by factors of just 2.5 — 4.5



Extrapolating to the lowest masses — subhalo fluxes
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* Fluxes are as observed from a “Solar” position 1n units of the main halo flux
* The brightest subhalo has expected f/fmw ~ 0.0002 (f.p) or 0.003 (DMO)

* The total subhalo flux is expected to be < 0.2% of the main halo flux (f.p.)

* About half the subhalo flux 1s in numerically resolved subhalos



Conclusions

* Baryonic effects substantially enhance and concentrate the predicted
luminosity of the main MilkyWay halo in annihilation radiation

* They reduce the luminosity predicted for small halos, Vmax < 50 km/s

* The enhanced mass concentration of the MW due to baryons leads to
enhanced tidal disruption of satellites, especially in the inner halo

* The expected ratio of the flux of the brightest subhalo to that of the
main halo 1s reduced by about 1.5 dex, to ~ 0.0002.
— no subhalo will be detected before the main halo 1s confirmed?

* Previous work greatly overestimated the contribution from very small
subhalos (1.e. boost factors) by overestimating their concentrations.

* The Fermi excess could well be annihilation radiation
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