Scales in the cosmic clustering of dark and baryonic matter

Simon White Max Planck Institute for Astrophysics

CMB map from the full *Planck* mission

The six parameters of the base ΛCDM model

Planck Collab'n 2015

Parameter	TT+lowP 68 % limits	TT,TE,EE+lowP 68 % limits	TT,TE,EE+lowP+lensing+ext 68 % limits
$\Omega_{\rm b}h^2$	0.02222 ± 0.00023	0.02225 ± 0.00016	0.02230 ± 0.00014
$\Omega_{\rm c}h^2$	0.1197 ± 0.0022	0.1198 ± 0.0015	0.1188 ± 0.0010
100 <i>θ</i> _{MC}	1.04085 ± 0.00047	1.04077 ± 0.00032	1.04093 ± 0.00030
τ	0.078 ± 0.019	0.079 ± 0.017	0.066 ± 0.012
$\ln(10^{10}A_{\rm s})$	3.089 ± 0.036	3.094 ± 0.034	3.064 ± 0.023
<i>n</i> _s	0.9655 ± 0.0062	0.9645 ± 0.0049	0.9667 ± 0.0040

The Equipartition Scale

The size of the cosmological horizon at the redshift of matter-radiation equality sets the scale of the bend in the matter power spectrum.

$$\lambda_{eq} \propto k_{eq}^{-1} \propto (\Omega_m h^2)^{-1}$$

Nature 348, 705 - 707 (27 December 1990); doi:10.1038/348705a0

The cosmological constant and cold dark matter

G. EFSTATHIOU, W. J. SUTHERLAND & S. J. MADDOX

Department of Physics, University of Oxford, Oxford 0X1 3RH, UK

The equipartition scale as motivator for ΛCDM

THE cold dark matter (CDM) model¹⁻⁴ for the formation and distribution of galaxies in a universe with exactly the critical density is theoretically appealing and has proved to be durable, but recent work⁵⁻⁸ suggests that there is more cosmological structure on very large scales ($> 10 h^{-1}$ Mpc, where *h* is the Hubble constant H_0 in units of 100 km s⁻¹ Mpc⁻¹) than simple versions of the CDM theory predict. We argue here that the successes of the CDM theory can be retained and the new observations accommodated in a spatially flat cosmology in which as much as 80% of the critical density is provided by a positive cosmological constant, which is dynamically equivalent to endowing the vacuum with a non-zero energy density.

The BAO scale in the Planck CMB map

The dark matter free-streaming scale

Free-streaming of DM particles while still relativistic erases small-scale structure in the ICs

$$\lambda_{\rm fs} \propto c t_{\rm non.rel.} (1 + z_{\rm non-rel.})$$

with

$$1 + z_{\text{non-rel.}} = m_x c^2 / k T_{\text{cmb}}$$

Together with $n m_x \propto \Omega_m h^2$, this ties the density of dark matter to a characteristic, massdependent spatial scale

The exclusion of massive neutrinos as <u>the</u> dark matter

The exclusion of massive neutrinos as <u>the</u> dark matter

Ly α forest spectra and small-scale initial structure

Viel, Becker, Bolton & Haehnelt 2013

Transmitted quasar flux in hydrodynamic simulations of the intergalactic medium in Λ CDM and WDM models.

High-frequency power is missing in the WDM case

Lyman α forest spectra for WDM relative to CDM

Viel, Becker, Bolton & Haehnelt 2013

High-resolution Keck and Magellan spectra match Λ CDM up to z = 5.4

This places a 2σ lower limit on the mass of a thermal relic m > 3.3 keV

 $m_{_{\rm WDM}} > 3.3 \text{ keV}$

This lower limit is too large for WDM to have a big effect on dwarf galaxy structure

Dark matter effects on galaxy formation?

Lovell et al 2013.

"Milky Way" halos in CDM and WDM. Note, the Ly α forest 2σ lower limit gives a limiting halo mass 3 times <u>smaller</u> than assumed here. The IC's are ~ACDM on essentially all scales relevant to galaxies

The characteristic scale of dark matter halos

The average dark matter density of a dark halo depends similarly on distance from halo centre in halos of all masses at all times in all cosmologies

-- a universal profile shape --

 $\rho(r)/\rho_{crit} \approx \delta r_s / r(1 + r/r_s)^2$

More massive halos have lower characteristic densities, reflecting a lower cosmic mean density at the time of formation

The characteristic scale of dark matter halos

A high-resolution Milky Way halo

Navarro et al 2006

$$N_{200} \sim 3 \times 10^7$$

Comparison of lensing strength measured around real galaxy clusters to that predicted by simulations of structure formation

The nonlinear scale in the overall mass distribution

When cosmic structure is characterised using P(k) or $\xi(r)$, small scales are dominated by the internal structure of halos and large scales by the spatial distribution of halos

The transition is quite gentle in such 2-point statistics

A sharp characteristic scale for galaxies Most stars are in galaxies similar in mass to the Milky Way

A sharp characteristic scale for galaxies

Most stars are in galaxies similar in mass to the Milky Way Dark matter is *much* more broadly distributed across halos

A sharp characteristic scale for galaxies

Most stars are in galaxies similar in mass to the Milky Way Dark matter is *much* more broadly distributed across halos

Galaxy to halo mass ratio varies strongly with mass

A sharp characteristic scale for galaxies

Most stars are in galaxies similar in mass to the Milky Way Dark matter is *much* more broadly distributed across halos

→ Halo to galaxy mass ratio varies *strongly* with mass

Star formation efficiency is reduced at both low *and* high halo mass

z = 0 Galaxy Light

In the present universe, the autocorrelation of stellar mass is very close to a power law over <u>three</u> <u>orders of magnitude</u> in spatial scale

In the present universe, the autocorrelation of stellar mass is very close to a power law over <u>three</u> <u>orders of magnitude</u> in spatial scale

The predicted function for dark matter is <u>far</u> from a power law over this same range of scales

In the present universe, the autocorrelation of stellar mass is very close to a power law over <u>three</u> <u>orders of magnitude</u> in spatial scale

The predicted function for dark matter is <u>far</u> from a power law over this same range of scales

Simulations predict the power law for stellar mass <u>only</u> at z = 0

Apparently it's a coincidence!

The origin of the galaxy scale

Rees & Ostriker 1977 Silk 1977 Binney 1977

When gas clouds of galactic mass collapse:

(i) shocks are radiative and collapse unimpeded, when $t_{cool} < t_{dyn}$ (ii) shocks are non-radiative and collapse arrested, when $t_{cool} > t_{dyn}$ where quantities are estimated at virial equilibrium

Galaxies form in case (i) since fragmentation is possible

Primordial cooling curve \longrightarrow characteristic mass $\sim 10^{12} M_{\odot}$

Towards a "modern" theory

Adding : (i) dark matter, (ii) hierarchical clustering, (iii) feedback -- cooling always rapid for small masses and early times

- -- only biggest galaxies sit in cooling flows
- -- feedback à la Larson (1974) needed to suppress small galaxies

A good model:
$$\Omega_{\rm m} = 0.20$$
, $\Omega_{\rm gas} / \Omega_{\rm DM} = 0.20$, $\alpha = 1/3$ (n = -1)

Towards a "modern" theory

Adding : (i) dark matter, (ii) hierarchical clustering, (iii) feedback -- cooling always rapid for small masses and early times

- -- only biggest galaxies sit in cooling flows
- -- feedback à la Larson (1974) needed to suppress small galaxies

A good model:
$$\Omega_{\rm m} = 0.20$$
, $\Omega_{\rm gas} / \Omega_{\rm DM} = 0.20$, $\alpha = 1/3$ (n = -1)

Changing the assumed timescale for reincorporation of wind ejecta

$$t_{return} = const. / H(z) V_{halo} \rightarrow t_{return} = const. / M_{halo}$$

allows a good fit to data at all redshifts for the same # of parameters

Henriques et al 2015, Planck cosmology

Changing the assumed timescale for reincorporation of wind ejecta

$$t_{return} = const. / H(z) V_{halo} \longrightarrow t_{return} = const. / M_{halo}$$

allows a good fit to data at all redshifts for the same # of parameters

Clustering predictions of the new simulations

Clustering predictions of the new simulations

Conclusions

- Characteristic physical scales are less evident in the distribution of galaxies than of dark matter or the CMB, but are still measurable
- The apparently "fractal" distribution of galaxies at low redshift is a coincidence
- No scale characterising the *nature* of dark matter (or dark energy) has so far been seen
- The sharp characteristic mass scale of galaxies reflects baryonic physics acting within the hierarchically aggregating mass distribution