Characteristic masses in the galaxy population

- The mass at the "knee" of the luminosity/stellar mass function
- The mass at the maximum of the stellar mass/halo mass relation
- The mass above which most galaxies are quenched
- The mass above which all galaxies have central supermassive BH

- Why are all these masses (approximately) the same?
- Why do they evolve so little with redshift?

Henriques et al 2018

N-body codes can simulate the evolution of the abundance, internal structure and clustering of dark halos at high precision

Galaxies correspond to self-bound *subhalos* within halos, rather than to the halos themselves

The information relevant to galaxy formation is encoded in *sub*halo merger trees

Most stars are in galaxies similar in mass to the Milky Way Dark matter is *much* more broadly distributed across halos

Halo to galaxy mass ratio varies strongly with mass

Star formation efficiency is reduced at both low *and* high halo mass

 $(\Omega_{b} / \Omega_{m}) M_{halo} = M_{hot} + M_{cold} + M_{ejecta} + M_{star} + M_{BH}$

Table S1. Results from the MCMC parameter estimation. The best-fitting values of parameters and their "2- σ " confidence limits are compared with the values published in Henriques et al. (2013) and Guo et al. (2013).

	Guo13	Henriques13	New Best Fit	2σ lower	2σ upper	Units
$ \begin{array}{l} \alpha_{\rm SF} \; ({\rm SF \; eff - eq. \; S14}) \\ M_{\rm crit,0} \; ({\rm Gas \; mass \; threshold - eq. \; S15}) \\ \alpha_{\rm SF, burst} \; ({\rm SF \; burst \; eff - eq. \; S33}) \\ \beta_{\rm SF, burst} \; ({\rm SF \; burst \; slope - eq. \; S33}) \end{array} $	$\begin{array}{c} 0.011 \\ 0.38 \\ 0.56 \\ 0.70 \end{array}$	0.055 0.38 0.56 0.70	$0.025 \\ 0.24 \\ 0.60 \\ 1.9$	$0.021 \\ 0.20 \\ 0.52 \\ 1.7$	$0.029 \\ 0.27 \\ 0.73 \\ 2.0$	$10^{10}\mathrm{M}_{\odot}$
$k_{ m AGN}$ (Radio feedback eff - eq. S24) $f_{ m BH}$ (BH growth eff - eq. S23) $V_{ m BH}$ (Quasar growth scale - eq. S23)	new eq 0.03 280	new eq 0.015 280	$5.3 imes 10^{-3} \\ 0.041 \\ 750$	$4.6 imes 10^{-3} \\ 0.035 \\ 670$	$6.5 imes 10^{-3}$ 0.048 880	${ m M}_{\odot}{ m yr}^{-1}$ ${ m kms}^{-1}$
ϵ (Mass-loading eff - eq. S19) V_{reheat} (Mass-loading scale - eq. S19) β_1 (Mass-loading slope - eq. S19) η (SN ejection eff - eq. S17) V_{eject} (SN ejection scale - eq. S17) β_2 (SN ejection slope - eq. S17)	4.0 80 3.2 0.18 90 3.2	$2.1 \\ 405 \\ 0.92 \\ 0.65 \\ 336 \\ 0.46$	2.6 480 0.72 0.62 100 0.80	$ 1.9 \\ 390 \\ 0.60 \\ 0.53 \\ 90 \\ 0.71 $	2.6 540 0.82 0.68 120 0.95	$\mathrm{km}\mathrm{s}^{-1}$ $\mathrm{km}\mathrm{s}^{-1}$
γ (Ejecta reincorporation - eq. S22)	new eq	$1.8 imes 10^{10}$	$3.0 imes 10^{10}$	$2.6 imes10^{10}$	$3.6 imes 10^{10}$	yr
$M_{ m r.p.}$ (Ram-pressure threshold) $R_{ m merger}$ (Major-merger threshold) $lpha_{ m friction}$ (Dynamical friction - eq. S32)	0.0 0.30 2.0	0.0 0.30 2.0	1.2×10^4 0.1 2.5	$\begin{array}{c} 1.1\times10^{4}\\ 2.1\end{array}$	$\begin{array}{c} 1.6\times10^{4}\\ 2.8\end{array}$	$10^{10}\mathrm{M}_{\odot}$
y (Metal yield)	0.03	0.047	0.046	0.038	0.053	

Effects of feedback on the stellar mass function

Central galaxy stellar mass – halo mass relation

Stellas mass function evolution with/w.o feedback

Repartition of mass between baryonic components

The evolution of the mass repartition in halos of differing present-day mass

Balance between "AGN" heating and hot halo cooling

(a) AGN-feedback-only

(b) Henriques et al. (2015)

Mergers – *in situ*/accreted stellar fractions at z = 0

Evolution of a typical rich cluster BCG

