The ESO Distant Cluster Survey
EDisCS

Simon D.M. White
Max Planck Institut für Astrophysik
WMAP Map of the Cosmic Microwave Background

Bennett et al 2003
- $>10^5$ near-independent 5σ temperature measurements
- Gaussian map: PS fit by a CDM model with parameters consistent with other data
- Extrapolation fits the Ly-\(\alpha\) forest power spectrum
 Confirms standard model to scales well below those of clusters and bright galaxies
Evolution of the galaxy population in a Coma-like cluster

- Formation of the galaxies tracked within evolving (sub)halos
- Luminosity and stellar mass are uncertain
- Position and velocity are followed well

Springel et al 2001
Formation histories of cluster ellipticals

- Cluster mass is $7 \times 10^{14} M_\odot/h$
- 104 member ellipticals with $M_B < -18$
- Stars form early
- Most ellipticals assembled early
- Many ellipticals accreted late

Springel et al 2003
Science Goals for EDisCS

- Obtain a uniform photometric and spectroscopic database for a large and representative sample of galaxy clusters covering the last half of the Hubble time.

- Characterise the sizes, luminosities, morphologies, internal kinematics, star formation and stellar populations of cluster galaxies.

- Compare cluster samples at $z=0.8$, 0.5 and 0.1 (SDSS) to establish trends as a function of redshift and cluster properties.

- Compare with high-resolution simulations of galaxy and galaxy cluster formation in a ΛCDM universe to determine the role of various physical processes (e.g. harassment, stripping, strangulation, cannibalism, merging, induced star-formation, SN/AGN feedback) in establishing the properties of galaxies.
EDisCS Participants

Co-I Team on Proposal 166.A-0162

A. Aragon (Nottingham, UK) G. Kauffmann (MPA, D)
R. Bender (Munich, D) Y. Mellier (IAP, F)
P. Best (ROE, UK) R. Pello (Toulouse, F)
M. Bremer (Bristol, UK) B. Poggianti (Padova, I)
S. Charlot (IAP, F) H. Rottgering (Leiden, NL)
D. Clowe (Bonn, D) P. Schneider (Bonn, D)
J. Dalcanton (Seattle, US) S. White (MPA, D) P.I.
B. Fort (IAP, F) D. Zaritsky (Tucson, US)
P. Jablonka (Meudon, F)

Additional participants

M. Dantel (Meudon, F) S. Poirier (Meudon, F)
G. De Lucia (MPA, D) G. Rudnick (MPA, D)
V. Desai (Seattle, USA) R. Saglia (Munich, D)
C. Halliday (Padova, I) L. Simard (DAO, Canada)
B. Milvang-Jensen (MPE, D)
The EDisCS Strategy

- Select 15 bright candidates with $z_{\text{est}} \sim 0.5$ and 15 with $z_{\text{est}} \sim 0.8$ from the Las Campanas Distant Cluster Survey (130 deg2)
- Image each field in 2 bands for 20min with FORS2 (3 FORS nights)
- Select 10+10 best cluster fields for deep imaging:
 - VRIJK at $z \sim 0.8$, BVIK at $z \sim 0.5$ (11 FORS + 20 SOFI nights)
- 30min exposure of one FORS2 mask of each field to confirm reality of cluster (1.5 FORS nights)
- 3 or 4 FORS2 masks of each confirmed field at longer exposure to get spectra of representative systems to $I=23$ (20.5 FORS nights)
- Get HST/ACS imaging of 10 most distant fields (80 orbits)
- Get WFI 3-colour imaging of all 20 fields to study large-scale environment of clusters (84 hours of WFI imaging)

LP Allocation: 36 nights on FORS2 + 20 nights on NTT/SOFI
EDisCS Status

● Deep optical imaging is complete for all 20 cluster fields
 -- data are fully reduced, calibrated and combined
 -- photometry and image quality excellent (seeing 0.5 to 0.8 arcsec)
 -- preliminary weak lensing and morphology analysis complete

● Deep NIR imaging almost complete (one final night required)
 -- data through summer 2002 fully reduced, calibrated and combined with the optical (about 60% of total)

● Nineteen nights of FORS2 spectroscopy successfully completed
 -- data through summer 2002 fully reduced (about 38% of total)
 -- data quality good -- fully consistent with expected performance
 -- three nights still required to complete programme (14% of total)

● HST/ACS data currently being taken, first frames now reduced

● About 60% of WFI data taken and already reduced

● Large suite of high resolution simulations completed
High redshift but no detected lensing

\[\sigma_{\text{clus}} = 453 \pm 41 \text{ km/s} \]

from measured redshifts
High redshift with strong lensing

\[\sigma_{\text{clus}} = 1034 \pm 46 \]

from measured redshifts
Interm. redshift with strong lensing

\[\sigma_{\text{clus}} = 1160 \pm 139 \]

from measured redshifts
Interm. redshift with weak lensing

Insufficient spectra for a robust σ_{clus}
Using Photo-z’s to reject foreground

- We use two independent photo-z codes, Hyper-z and Rudnick's thesis code.
- Each code is optimised using our 2002 spectra.
- For each code and each galaxy, we calculate the probability its redshift is in \(z_{clus} \pm 0.1 \).
- If either code gives \(P < 0.25 \) then we reject.
- This rejects half of the confirmed field while it keeps 90% of members.

Pello, Rudnick, De Lucia
Field-corrected cluster luminosity functions are well fit by the shape of the 2dF cluster LF both at \(z = 0.5 \) and \(z = 0.75 \).

Their characteristic \(L_\star \) are brighter at rest B by more than a magnitude.

This brightening is larger than expected from the aging of stars as inferred from fundamental plane studies (\(-0.57 \) at \(z = 0.5 \) and \(-0.86 \) at \(z = 0.75 \)).
Field corrected C-M diagrams for typical clusters

'Morphologies' are B/T values derived from the 2D image fitting code GIM2D

Clusters show a wide range of richness

Strength of red sequence and of blue 'B-O' population is variable

Many disky galaxies on the red sequence
HST/ACS F814W image of cl1037-1243 at z=0.58, Dalcanton, Desai
Cluster images: observation vs simulation

- Photo-z rejection used on real data
- Only galaxies with $I < 25$ used either in real or in simulated clusters
- Galaxy formation assumptions in simulations are as in Springel et al (2001)
Cluster Density Profiles

$0.7 < z < 0.8, \quad I < 24$

- Galaxies rejected by the photo-z's are not concentrated to cluster centre
- Photo-z rejection gives enhances contrast by a factor of about 5
- Mean cluster profile is detected out to 1.5 Mpc
- Blue galaxies are much less concentrated to the cluster centre than red ones
EDisCS Spectra

Halliday, Poggianti

- FORS2 spectra are of very high quality
- Redshifts can be measured to $I \sim 23$
- Line indices can be measured to $I \sim 22.5$
- Velocity dispersions can be measured accurately to $I \sim 21.5$
Fraction of emission line galaxies in FORS2 field correlates strongly with cluster velocity dispersion.
Velocity dispersion measurements

Saglia

Velocity dispersions with 15% uncertainty at $I \sim 21.5$
Milvang-Jensen
Characteristic sizes and rotation speeds for disk systems from combined HST/VLT data
Possible to I \sim 22

Emission line kinematics

FOR2

$V_{\text{rot}} \sin i = 270.8^{+8.0}_{-12.7}$ km s$^{-1}$
$r_d = 0.84^{+0.08}_{-0.06}$
If our final 3 spectroscopic nights are as successful as the previous 19, we expect our final EDisCS spectroscopic sample to contain:

<table>
<thead>
<tr>
<th></th>
<th>Intermediate z fields</th>
<th>High z fields</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectra</td>
<td>1000</td>
<td>1300</td>
<td>2300</td>
</tr>
<tr>
<td>Redshifts</td>
<td>900</td>
<td>1200</td>
<td>2100</td>
</tr>
<tr>
<td>Cluster members</td>
<td>400</td>
<td>420</td>
<td>820</td>
</tr>
<tr>
<td>Accurate line indices</td>
<td>100 (+ 150 field)</td>
<td>150 (+ 250 field)</td>
<td>650</td>
</tr>
<tr>
<td>velocity dispersions</td>
<td>75 (+ 70 field)</td>
<td>110 (+ 70 field)</td>
<td>325</td>
</tr>
<tr>
<td>rotation curves</td>
<td>60 (+ 100 field)</td>
<td>80 (+ 130 field)</td>
<td>370</td>
</tr>
</tbody>
</table>

Accurate line indices for fainter galaxies will be obtained by stacking spectra for similar systems.
Comments on Large Programmes

- EDisCS is only possible as a Large Programme and at ESO
 -- availability of full instrument suite (FORS2, SOFI, WFI)
 -- commitment to full time needed (incl. weather replacement)
 -- availability of service mode
 -- flexibility of scheduling
 -- high quality and reliability of typical nights at Paranal

- ESOs commitment to complete Large Programmes in a timely fashion helps to get time from other facilities
 -- EDisCS was the only large cluster programme to get time in the first round of HST/ACS allocations

- Large Programmes provide an opportunity to federate and develop European expertise in specific areas. This requires the internal atmosphere to be open and inclusive, rather than competitive