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            The spherical top hat

A spherically symmetric 
perturbation evolves like a 
separate universe

Overdense regions
collapse in finite time..

..when their extrapolated 
linear overdensity is 1.69 
(almost) independent of Ω 

lin, coll

Until the moment of collapse, the nonlinear density, 
ρ / ρ, of a spherical over- or underdensity is 
approximately a cosmology-independent function 
of its extrapolated linear overdensity 

White 2021



  

Variance of density fluctuations as a function of scale

log M / M⊙

Smoothing the ΛCDM linear density field with a sharp k-space cutoff, ks,  gives 
an extrapolated field at time t, 

so the smoothed density has pdf

with corresponding mass/length scales

log L / Mpc 
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Nonlinear scale
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As ks    , σs      , Ms
    , Ls    and δs(x; ks) 

executes a Markov random walk

Angulo & White 2010
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1-D excursion set model for structure formation
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Variance of smoothed linear overdensity field

mass, smoothing scale
rms fluctuation

Threshold crossing sets the 
halo mass of the element 

Smoothed overdensity on 
larger scale sets environ- 
ment density on that scale

Markov random walk

This model determines the 
statistics of halo properties 
directly from the (gaussian) 
initial density field.

White 1993



  

The density distribution of uncollapsed regions

For such a random walk the δs distribution of mass elements yet to cross the barrier 
by scale ks is

so the distribution of δs/σs has the single parameter δc/σs, and integration over δs  
gives the fraction of all mass which is not part of any halo more massive than Ms 

White 2021

δc = 1.686



  

The nonlinear density of uncollapsed regions

The spherical top hat model allows 
f(δs) to be converted to f(1+δf = ρ/ρ), 
giving the  z=0 density distribution of 
regions of Lagrangian scale Ls(σs) 

Using P(k) for ΛCDM, this allows, for 
example, the calculation of the distribution of 
mean density in regions of scale  Ls(σe) 
surrounding halos of mass Ms(σh)

For low-mass halos, these densities are ≪ ρ
White 2021

White 2021



  

Limitations of the spherical excursion set model

● Both theory (e.g. the Zeldovich approximation) and simulation 
show the early evolution of mass elements to be highly anisotropic

● Collapse typically occurs first to a sheet and then into filaments and 
then finally halos

● The threshold for halo formation thus depends on local anisotropy 
as well as on linear overdensity

● A nonspherical model is needed to link the nonlinear density of 
uncollapsed regions to their linearly extrapolated overdensity

● Regions which have not collapsed into a halo may nevertheless 
already have collapsed into a pancake and so no longer be diffuse

A triaxial generalisation of the top hat model



  

Excursion set mass functions

Sandvik et al 2007

Press-Schechter

Sheth-Mo-Tormen

△ 1-D (spherical) random walks

○ 6-D (ellipsoidal) random walks

1-D excursion set theory leads to the Press-Schechter (1974) mass function

SMT (2001) show (approximate) ellipsoidal collapse fits simulations better

SMLW (2007) reproduce this with 6-D random walks + ellipsoidal collapse 



  

            The ellipsoidal top hat
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            The ellipsoidal top hat
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            The ellipsoidal top hat
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            The ellipsoidal top hat
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an ellipsoidal top hat stays 
uniform and ellipsoidal as it 
evolves. The axis ratios become 
more extreme as it collapses

White 1993

White & Silk 1979

Assuming that the exterior density remains uniform (true to linear order)



  

Ellipsoidal dynamics of peaks

Bond & Myers (1996) approximate the dynamics of a peak in a gaussian random 
field by an homogeneous ellipsoid in an external tidal field by using equations, 

Converting to a consistent notation

Homogeneous and isotropic universe (Friedmann 1922)

Ellipsoidal top hat (White & Silk 1979)

Peak collapse (Bond & Myers 1996)
T

ext,i
 are e-values of the external tidal 

field and align with the ellipsoid (??)



  

Geodesic Deviation Equation – ellipsoidal collapse

    

,

Equations of motion of 
a particle trajectory

Geodesic deviation equation 
for neighboring trajectories

where

In linear theory D
ij 
, P

ij
 and T

ij
 all share the same unchanging principal axes.

As long as this remains true, their e-values satisfy the “ellipsoidal” equations

Anisotropy evolution is driven purely 
by the external tide – there is no local 
ellipsoidal contribution.

We need a model for the external tide  
  – linear theory à la Bond+Myers96?

Stücker et al 2017



  

Simulation tests of GDE ellipsoidal collapse

Stücker et al 2017

Model density vs GDE simulation 
results for 1000 random 
“uncollapsed” particles in a high-
resolution WDM simulation

Blue points assume linear theory 
(Zeldovich approx.) dynamics

Green points assume GDE model 
with linear T

ext
 evolution.

Red points assume tidal evolution 
weakens for nonlinear densities

      T
ext

 = T
ext,lin

 /(1 + σ)

rms (extrapolated) linear overdensity



  

Simulation tests of GDE ellipsoidal collapse
Stücker et al 2017

Densities of uncollapsed particles plotted in Lagrangian (initial position) space

  Grey regions are collapsed in 1D so are part of sheets, filaments or halos

GDE N-body simulation        GDE ellipsoidal collapse         Zeldovich approximation



  

Simulation tests of GDE ellipsoidal collapse
Stücker et al 2017

The cosmic volume fraction occupied by mass elements as a function of density

Collapsed elements have infinite density/zero volume in Zeldovich and GDE cases

Zeldovich

GDE ellipsoidal

N-body



  

Collapse thresholds for the GDE ellipsoidal model

The equations with fading tidal field 
require λ1, the largest e-value of the 
tidal tensor to be positive for 
collapse, but the linear overdensity 
can be negative!

A collapse threshold cannot  refer to 
linearly extrapolated overdensity.

White 2021

Eventual collapse in 1-D is predicted for 
85% of elements selected from a gaussian 
random field, hence for 70% of underdense 
regions.

Nearly spherical evolution is the exception



  

Densities of uncollapsed mass elements 

White 2021

1 + δf from ellipsoidal collapse  for e-values chosen from Doroshkevich (1970)
Analytic predictions from the spherical model and a fit corrected by σs and by 
the shape of the tidal tensor (e = T1/T3)



  

Current state of play

The GDE casts doubt on the model normally used to describe 
ellipsoidal collapse in excursion set theories of structure formation

An ellipsoidal model derived from the GDE predicts that many 
initially underdense regions will undergo tidally driven collapse

As a result collapse barriers cannot be expressed as a thresholds for 
the linearly extrapolated overdensity, only for the linearly 
extrapolated value of λ1

This may effect the mass function predictions based on ellipsoidal 
collapse (e.g. Sheth-Mo-Tormen) but this depends on the validity of 
models for collapse of sheets to filaments to halos

●

●

●
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Current state of play

The GDE casts doubt on the model normally used to describe 
ellipsoidal collapse in excursion set theories of structure formation

An ellipsoidal model derived from the GDE predicts that many 
initially underdense regions will undergo tidally driven collapse

As a result collapse barriers cannot be expressed as a thresholds for 
the linearly extrapolated overdensity, only for the linearly 
extrapolated value of λ1

This may effect the mass function predictions based on ellipsoidal 
collapse (e.g. Sheth-Mo-Tormen) but this depends on the validity of 
models for collapse of sheets to filaments to halos

This project is not finished so these results may change!
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