Cluster and group formation in ACDM

Simon White Max Planck Institute for Astrophysics

Cluster formation from Λ CDM initial conditions

Cluster environment in a Λ CDM universe

The Millennium Simulations

$$\Omega_{tot} = 1.0, \quad \Omega_{m} = 0.25, \quad \Omega_{bar} = 0.045, \quad h = 0.73, \quad \sigma_{8} = 0.9, \quad n = 1$$

Halo/subhalo trees and galaxy catalogues for several galaxy formation models are publicly available for download for >60 redshifts and also on light-cones at: http://www.mpa-garching.mpg.de/millennium

 $\mathbf{Z} = \mathbf{0}$

100 x 100 x 15(h⁻¹ Mpc)³

 $\mathbf{Z} = \mathbf{0}$

40 x 40 x 10 (h⁻¹ Mpc)³

 $\mathbf{Z} = \mathbf{0}$

15 x 15 x 6 (h⁻¹ Mpc)³

 $\mathbf{Z} = \mathbf{0}$

5 x 5 x 5(h⁻¹ Mpc)³

 $\mathbf{Z} = \mathbf{0}$

2 x 2 x 2(h⁻¹ Mpc)³

 $\mathbf{Z} = \mathbf{0}$

 $0.5 \times 0.5 \times 0.5$ (h⁻¹ Mpc)³

 $\mathbf{Z} = \mathbf{0}$

15 x 15 x 6 (h⁻¹ Mpc)³

z = 1.0

 $15 \times 15 \times 6$ (h⁻¹ Mpc)³

z = 2.1

 $15 \times 15 \times 6$ (h⁻¹ Mpc)³

z = 6.2

15 x 15 x 6 (h⁻¹ Mpc)³

Resolving subhalos in the Millennium Simulations

Boylan-Kolchin et al 2009

Galaxy formation simulations fitted to the z=0 population

Galaxy formation simulations reproduce large-scale structure

Springel, Frenk & White 2006

Galaxy formation simulations fit low-z groups and clusters

Hilbert & White (2009)

Observational data from the SDSS/maxBCG catalogue (Johnson et al 2007)

Galaxy formation simulations fit low-z groups and clusters

Hilbert & White (2009)

The simulated cluster population fits the detailed shape of the mean mass profile of groups and clusters as functions of N_{200} and L_{200}

This holds for masses $10^{13} \text{ M}_{\odot} \le \text{M}_{200} \le 10^{15} \text{ M}_{\odot}$

Note the strong central concentration of the observed and predicted mass profiles

Lensing data from SDSS/maxBCG (Sheldon et al 2007)

Using MS-II to extend galaxy formation simulations to low mass

Guo et al 2009

The stellar mass function of galaxies

With the De Lucia & Blaizot (2007) model, the MS and MS-II converge for $M_* > 10^9 M_{\odot}$

At lower masses the resolution limit of MS causes it to underpredict the stellar mass function

The result lies above SDSS/DR7 mass function of Li & White (2009) for $M_* < 10^{10} M_{\odot}$

Using MS-II to extend galaxy formation simulations to low mass

Guo et al 2009

Using MS-II to extend galaxy formation simulations to low mass

Guo et al 2009

The *same* model then fits the LF of Milky Way satellites. Reionisation is significant in suppressing the faintest systems

Considerable scatter is predicted between different halos of similar mass

Model rich cluster stellar mass function versus the field

Guo et al 2009

Stellar mass functions in massive clusters and the field are predicted to have very similar shape except for the BCGs

The ICL in model groups and clusters

Guo et al 2009

Considerable scatter in the ICL fraction relative to BCG and to the total cluster light is predicted due to variations in assembly/stripping history

Conclusions

- Galaxy formation simulations now reproduce most properties of the *population* of groups/clusters in a Λ CDM universe over the mass range $10^{12} M_{\odot} \leq M_{halo} \leq 10^{15} M_{\odot}$
- The galaxy populations of groups/clusters can be studied over the full stellar mass range $10^7 M_{\odot} \le M_* \le 10^{12} M_{\odot}$
- The simulations provide a means to study the physical origin of environment morphology relation including realistic scatter
- The stellar mass function of cluster galaxies is predicted to have the same faint end slope as the field stellar mass function
- The ICL fractions are predicted to have large scatter depending on the assembly history of individual systems