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● Uniformity, filamentarity, hierarchy – it all depends on scale

●  The smooth becomes rough with the passing of time

● The Milky Way hums with memories of its past

Visualizing Darkness



  0.9"100 kpc/h

Small-scale structure in CDM halos

A rich galaxy cluster halo
      Springel et al 2001

A 'Milky Way' halo
   Power et al 2002



  

CDM galaxy halos (without galaxies!)

●  Halos extend to ~10 times the 'visible' radius of galaxies      
    and contain ~10 times the mass in the visible regions

●  Halos are not spherical but  approximate triaxial ellipsoids  
              -- more prolate than oblate                                           
              -- axial ratios greater than two are common

●  "Cuspy" density profiles with outwardly increasing slopes  
              -- d ln  / d ln r =  ϱ   with    <   -2.5 at large r            
                                                           >  - 1.2 at small r            
     

●  Substantial numbers of self-bound subhalos  contain            
    ~10% of the halo's mass and have  d N / d M  ~  M - 1.8          
                      

 Most substructure mass is in most massive subhalos



  

Density profiles of dark matter halos

The average dark matter 
density of a dark halo depends 
on distance from halo centre in 
a very similar way in halos of 
all masses at all times 
  -- a universal profile shape -- 
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    More massive halos and
    halos that form earlier have
  (  higher densities bigger δ)



  

A high-resolution
Milky Way halo

600 kpc

Navarro et al 2006

N
200

 ~ 3 x 107



  

Convergence tests on density profile shape
                                      Navarro et al 2006                                   
 DM profiles are converged to a few hundred parsecs
 The inner asymptotic slope must be shallower than   – 0.9 



  

Einasto fits 
better 

than NFW!

Gao et al 2007

In 1963 Einasto suggested modelling the Galactic spheroid with
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Profile shape depends on halo mass

Gao et al 2007

The Einasto shape parameter      “  depends on the dimensionless peak
”  height parameter ( , M z )



  

Published relations don't fit the measured c(M, z) 

Gao et al 2007



  

“Milky Way” halo
         z = 1.5
   N

200
 = 3 x 106



  

“Milky Way” halo
         z = 1.5
   N

200
 = 94 x 106



  

“Milky Way” halo
         z = 1.5
   N

200
 = 750 x 106



  

How well do density profiles converge?
Virgo Consortium 2007



  

How well do density profiles converge?
Virgo Consortium 2007

ρ ∝ r -1



  

How well do density profiles converge?
Virgo Consortium 2007



  

How well does substructure converge?
Virgo Consortium 2007



  

How well does substructure converge?
Virgo Consortium 2007

z = 0



  

Cold Dark Matter at high redshift (e.g.  z ~ 106)

At epochs well after CDM particles become nonrelativistic, but 
before they dominate the cosmic density, the inflationary model 
for the origin of structure predicts the distribution function:

                    f(x, v, t) = ρ(t) [1 + δ(x)] δ
D
(v  - V(x))

where ρ(t) is the mean mass density of CDM, 
          δ(x) is a Gaussian random field with finite variance ≪ 1,  
          and V(x) = ▽ψ(x) where ▽2ψ(x) ∝ δ(x)

The phase density of CDM occupies a 3-D 'sheet' within the full 
6-D phase-space and its projection onto x-space is near-uniform.

Df / Dt = 0           only a 3-D subspace is occupied at later times. 
Nonlinear evolution leads to a complex, multi-stream structure. 



  

Similarity solution for a 1-D collapse in CDM

Bertschinger 1985

comoving radius vs. 
time for a single shell 

phase space density      
          at given  time 

mass vs. radius 

radial density profile 



  

Small-scale structure of the CDM distribution

● Direct detection involves bolometers/cavities of meter          
  scale which are sensitive to particle momentum                      
        -- what is the density structure between m and kpc scales?     
        -- how many streams intersect the detector at any time? 

● Intensity of annihilation radiation depends on                       
                       ∫ ρ2(x) ‹σ v› dV                                                       
         -- what is the density distribution around individual               
             CDM particles on the annihilation interaction scale? 

Predictions for detection experiments depend on the CDM 
distribution on scales far below those accessible to simulation 

             We require a good theoretical understanding of mixing



  

Lagrangian DM density at the present day

Gao et al 2007 ● Lagrangian smoothing 
   gives density today on 
   given mass scale

● Distribution function    
   is flat over at least 6     
   orders of magnitude  

● It is very far from         
   lognormal

● No clear linear-            
   nonlinear transition 

● No clear convergence  
  as resolution improves



  

The geodesic deviation equation

Particle equation of motion:   X =    =    
      

Offset to a neighbor:   δX =      =    ⋅δX ;  T = –▽(▽)  

Write  δX(t) = D(X
0
, t)⋅δX

0
,   then differentiating w.r.t. time gives,

                           D  =     ⋅D   with D
0
 = I

                    

x v
v -▽˙ ˙
˙

δv
T⋅δx

0   I
T  0˙

˙ 0   I
T  0

● Integrating this equation together with each particle's trajectory gives 
   the evolution of its local phase-space distribution
● No symmetry or stationarity assumptions are required
● det(D) = 1 at all times by Liouville's theorem

● For CDM, 1/|det(D
xx

)| gives the decrease in local 3D space density of 

   each particle's phase sheet.  Switches sign and  is infinite at caustics. 



  

Static highly symmetric potentialsStatic highly symmetric potentials
Code DaMaFlow developed for static potentials:

● orbit + geodesic deviation integrator  (symplectic DKD/KDK Leapfrog + DOPRI853)

● modular design allows large variety of potentials to be analyzed

● precise spectral analysis on the fly (NAFF algorithm, 1/T4  accuracy) with integer 
programming to get the fundamental frequencies of motion

●  automated stream density fitting

Axisymmetric Eddington potential

Spectral analysis of orbit:

3 fundamental frequencies

density decreases like 1/t3

Caustics



  

Changing the number of frequenciesChanging the number of frequencies

Spherical logarithmic potential

Spectral analysis of orbit:

2 fundamental frequencies

density decreases like 1/t2

Number of fundamental frequencies dictates
the density decrease of the stream



  

What about non-trivial potentials?What about non-trivial potentials?
integrable systems give only rise to regular motion

non integrable (more realistic) systems:
have more complicated phase space structure, possibly with chaotic regions 

this has an impact on dark matter stream density

Try to get more insights with our new approach!

Example: 
triaxial logarithmic potential with core

regular motion
box and tube orbits; density decreasing 

like a power law in time for regular 
motion



  

Chaotic mixingChaotic mixing
chaotic motion implies a rapid stream density decrease                         rapid mixing

       density decrease is not like a power law anymore

extreme density 
decrease 

after 40 orbits!

no power law!

Compare frequency analysis results with geodesic deviation equation results

how to find chaotic regions in 
phase space?

Common method:

● Lyapunov exponents

● frequency analysis (NAFF)

● ...



  

frequency
analysis

frequency
analysis

small fraction of 
chaotic orbits

 

large fraction of  
chaotic orbits

moderate triaxiality

high
 triaxiality

density
decrease

Papaphilippou & Laskar 1998

stream density 
mostly decaying like 

a power law

stream density 
mostly decaying 

 much  faster than a 
power law

density
decrease

density
decrease

integrate 105 different orbits



  

Resonances in phase spaceResonances in phase space
motion might be resonant in

 certain portions of phase space
KAM torus not completely covered 

m11m22m33=0 stream density decreases slower

Configuration space

non
resonant

two
resonances

non resonant 
fast density decrease one resonance 

 two resonances
slow density decrease



  

Resonances: scanning phase spaceResonances: scanning phase space

~1/t

~1/t³
~1/t²

chaotic

phase space
of non-integrable
systems highly

complex

stream density has 
very different 

evolution

fitting / binning 
density decrease



  

Realistic dark matter halo potentialsRealistic dark matter halo potentials
Cosmological simulations:

● outer regions spherical

● inner regions aspherical

● principal axes well aligned over radius

● halos tend to become more prolate near center

Hayashi et al, 2007

shape of potential very relevant 
for stream dynamics

build a model for the  
potential with similar 
qualitative behaviour



  

Dark matter streams in a triaxial NFWDark matter streams in a triaxial NFW
How does the radial shape variation influence the stream density evolution?

outer orbit: similar stream behaviour

inner orbits: ~100 times lower stream density after 100 orbits

Apo:8.9r
s

Peri:6.1r
s

Peri:4.8r
s

Apo:8.7r
s

Apo:2.2r
s

Peri:0.5r
s

Apo:1.2r
s

Peri:0.4r
s



  

Chaotic mixing in a triaxial NFW?Chaotic mixing in a triaxial NFW?

~40.000 orbits 

Orbits reaching inner part 
of the halo are affected 

by the triaxiality
Chaotic 
mixing

radial

circular

ci
rc

ul
ar

it
y

constant pericentre:
~1/3 NFW scale radius



  

Fine-grained phase-space in Fine-grained phase-space in 
Cosmological Simulations?Cosmological Simulations?

Some details:

● calculate (softened) tidal field for DM particles (in tree and mesh code)

● integrate geodesic deviation equation parallel to equation of motion for DM particles 

● automatic caustic identification for every DM particle

● projection to configuration-space

Implementation in cosmological
simulation code GADGET (Springel,2005)

main advantage
 of the GDE approach

implementation in 
N-body codes 

straightforward

Accessing the fine-grained phase-space
in cosmological simulations 

for the first time



  

A particle orbit in a live HaloA particle orbit in a live Halo

caustics resolved in N-body live 
halo!

general shape and
caustic spacing/number

very similiar!

phase-space density 
conservation:10-8

spherical Hernquist
density profile



  

All DMAll DM
particlesparticles

N-body

smooth

dynamically
“young”
particles

discreteness:
some very

low densities

discreteness:
some very

low densities

discreteness:
some very

low densities

dynamically
“young”
particles



  

Number of Caustic PassagesNumber of Caustic Passages
analytic and N-body 

results nearly the same!

Very stable against 
particle number

and softening length!

Annihilation boost
factor estimates
due to caustics

should be very robust!
softening

length

resolution differs
by a factor of 32!



  

Distribution of the numberDistribution of the number
of Caustic Passagesof Caustic Passages

Number of particles
that have passed 

through a given number
of caustics after 
some given time

time

t
i
m
e



  

Summary Summary 
● cosmological simulations can help direct and indirect  detection experiments

● resolving the required scales is currently impossible with standard techniques

 Static potentials:
● chaos and resonance structure can be reproduced

● triaxial NFW halo:

Applying the  geodesic deviation equation method within N-body codes:
● stream density distributions can be reproduced

● caustics can be resolved

● number of caustics is very robust

resolve
small-scale structure

in cosmological simulations

 The GDE is a completely general and new technique 

for calculating the fine-grained phase-space structure!

● near the Sun most CDM particles should                                                   
  belong to streams with very low density

● a smooth velocity distribution


