

CITA seminar November 2007

Galaxy halos at (very) high resolution

Simon White & Mark Vogelsberger Max Planck Institute for Astrophysics

Visualizing Darkness

• Uniformity, filamentarity, hierarchy – it all depends on scale

• The smooth becomes rough with the passing of time

• The Milky Way hums with memories of its past

Small-scale structure in ACDM halos

A rich galaxy cluster halo Springel et al 2001

A 'Milky Way' halo Power et al 2002

ACDM galaxy halos (without galaxies!)

- Halos extend to ~10 times the 'visible' radius of galaxies and contain ~10 times the mass in the visible regions
- Halos are not spherical but approximate triaxial ellipsoids
 -- more prolate than oblate
 -- axial ratios greater than two are common
- "Cuspy" density profiles with outwardly increasing slopes -- $d \ln \rho / d \ln r = \gamma$ with $\gamma < -2.5$ at large r $\gamma > -1.2$ at small r
- Substantial numbers of self-bound subhalos contain ~10% of the halo's mass and have $dN/dM \sim M^{-1.8}$

Most substructure mass is in most massive subhalos

Density profiles of dark matter halos

The average dark matter density of a dark halo depends on distance from halo centre in a very similar way in halos of all masses at all times -- a universal profile shape --

$$\rho(r)/\rho_{crit} \approx \delta r_s / r(1 + r/r_s)^2$$

More massive halos and halos that form earlier have higher densities (bigger δ)

A high-resolution Milky Way halo

Navarro et al 2006

$$N_{200} \sim 3 \times 10^7$$

Convergence tests on density profile shape

Navarro et al 2006

DM profiles are converged to a few hundred parsecs The inner asymptotic slope must be shallower than -0.9

In 1963 Einasto suggested modelling the Galactic spheroid with

$$\ln \left[\varrho(\mathbf{r}) / \varrho_{-2} \right] = -2/\alpha \left[(\mathbf{r} / \mathbf{r}_{-2})^{\alpha} - 1 \right] \longrightarrow \text{ shape parameter, } \alpha$$

Profile shape depends on halo mass

The Einasto shape parameter α depends on the dimensionless "peak height" parameter $\nu(M, z)$

Published relations don't fit the measured c(M, z)

Gao et al 2007

"Milky Way" halo z = 1.5 $N_{200} = 3 \times 10^{6}$ "Milky Way" halo z = 1.5 $N_{200} = 94 \times 10^{6}$ "Milky Way" halo z = 1.5 $N_{200} = 750 \times 10^{6}$

How well do density profiles converge?

Virgo Consortium 2007

How well do density profiles converge?

Virgo Consortium 2007

How well do density profiles converge?

Virgo Consortium 2007

How well does substructure converge?

Virgo Consortium 2007

How well does substructure converge?

Virgo Consortium 2007

At epochs well *after* CDM particles become nonrelativistic, but *before* they dominate the cosmic density, the inflationary model for the origin of structure predicts the distribution function:

$$f(\mathbf{x}, \mathbf{v}, t) = \rho(t) \left[1 + \delta(\mathbf{x})\right] \delta_{D}(\mathbf{v} - \mathbf{V}(\mathbf{x}))$$

where $\rho(t)$ is the mean mass density of CDM, $\delta(x)$ is a Gaussian random field with finite variance $\ll 1$, and $V(x) = \nabla \psi(x)$ where $\nabla^2 \psi(x) \propto \delta(x)$

The phase density of CDM occupies a 3-D 'sheet' within the full 6-D phase-space and its projection onto **x**-space is near-uniform.

Df/Dt = 0 \longrightarrow only a 3-D subspace is occupied at later times. Nonlinear evolution leads to a complex, multi-stream structure.

Similarity solution for a 1-D collapse in CDM

Bertschinger 1985

Small-scale structure of the CDM distribution

- Direct detection involves bolometers/cavities of meter scale which are sensitive to particle momentum
 - -- what is the density structure between m and kpc scales?
 - -- how many streams intersect the detector at any time?
- Intensity of annihilation radiation depends on

 ∫ ρ²(x) ⟨σ v⟩ dV
 what is the density distribution around individual CDM particles on the annihilation interaction scale?

Predictions for detection experiments depend on the CDM distribution on scales <u>far</u> below those accessible to simulation

-> We require a good theoretical understanding of mixing

Lagrangian DM density at the present day

Gao et al 2007

• Lagrangian smoothing

The geodesic deviation equation

Particle equation of motion: $\dot{\mathbf{X}} = \begin{bmatrix} \dot{\mathbf{X}} \\ \dot{\mathbf{V}} \end{bmatrix} = \begin{bmatrix} \mathbf{V} \\ -\nabla\phi \end{bmatrix}$

Offset to a neighbor: $\delta \dot{\mathbf{X}} = \begin{bmatrix} \delta \mathbf{v} \\ \mathbf{T} \cdot \delta \mathbf{x} \end{bmatrix} = \begin{bmatrix} 0 & \mathbf{I} \\ \mathbf{T} & \mathbf{0} \end{bmatrix} \cdot \delta \mathbf{X} ; \mathbf{T} = -\nabla(\nabla \phi)$

Write $\delta X(t) = D(X_0, t) \cdot \delta X_0$, then differentiating w.r.t. time gives,

$$\dot{\mathbf{D}} = \begin{bmatrix} 0 & \mathbf{I} \\ \mathbf{T} & \mathbf{0} \end{bmatrix} \cdot \mathbf{D} \text{ with } \mathbf{D}_0 = \mathbf{I}$$

- Integrating this equation together with each particle's trajectory gives the evolution of its local phase-space distribution
- No symmetry or stationarity assumptions are required
- det(D) = 1 at all times by Liouville's theorem
- For CDM, $1/|det(D_{xx})|$ gives the decrease in local 3D space density of each particle's phase sheet. Switches sign and is infinite at caustics.

Static highly symmetric potentials

Code *DaMaFlow* developed for static potentials:

- orbit + geodesic deviation integrator (symplectic DKD/KDK Leapfrog + DOPRI853)
- modular design allows large variety of potentials to be analyzed
- precise spectral analysis on the fly (NAFF algorithm, $1/T^4\,$ accuracy) with integer programming to get the fundamental frequencies of motion

Changing the number of frequencies

Spherical logarithmic potential

$$\Phi(r,\theta) = v_{\rm h}^2 \log \left(r^2 + d^2\right)$$

What about non-trivial potentials?

integrable systems give only rise to regular motion

non integrable (more realistic) systems:

have more complicated phase space structure, possibly with chaotic regions

this has an impact on dark matter stream density

Try to get more insights with our new approach!

Example: triaxial logarithmic potential with core

 $H = \frac{1}{2} \left(X^2 + Y^2 + Z^2 \right) + \ln \left(x^2 + \frac{y^2}{a_c^2} + \frac{z^2}{a_c^2} + R_c^2 \right)$

regular motion box and tube orbits; density decreasing like a <u>power law</u> in time for regular motion

Chaotic mixing

Compare frequency analysis results with geodesic deviation equation results

Resonances in phase space

Resonances: scanning phase space

Realistic dark matter halo potentials

Cosmological simulations:

Hayashi et al, 2007

- outer regions *spherical*
- inner regions aspherical
- principal axes well aligned over radius
- halos tend to become more prolate near center

Dark matter streams in a triaxial NFW

How does the radial shape variation influence the stream density evolution?

outer orbit: similar stream behaviour

Chaotic mixing in a triaxial NFW?

Fine-grained phase-space in Cosmological Simulations?

main advantage of the GDE approach

implementation in N-body codes straightforward

Accessing the fine-grained phase-space in cosmological simulations for the first time

Some details:

- calculate (softened) tidal field for DM particles (in tree and mesh code)
- integrate geodesic deviation equation parallel to equation of motion for DM particles
- automatic caustic identification for every DM particle
- projection to configuration-space

Implementation in cosmological simulation code GADGET (Springel,2005)

A particle orbit in a live Halo

Number of Caustic Passages

Distribution of the number of Caustic Passages

- cosmological simulations can help direct and indirect detection experiments
- resolving the required scales is currently **impossible** with **standard techniques**

The GDE is a completely general and new technique for calculating the fine-grained phase-space structure!

Static potentials:

- chaos and resonance structure can be reproduced
- triaxial NFW halo: • near the Sun most CDM particles should belong to streams with very low density
 - a **smooth** velocity distribution

Applying the geodesic deviation equation method within N-body codes:

- stream density distributions can be reproduced
- caustics can be resolved
- number of caustics is very robust

resolve small-scale structure in cosmological simulations