CIFAR, Lake Louise, February 2010

Streams and caustics: the fine-grained structure of ACDM halos

Simon White Max-Planck-Institute for Astrophysics. "Milky Way" halo z = 1.5 $N_{200} = 750 \times 10^{6}$

Aquarius-A-1 Springel et al 2008 Well *after* CDM particles become nonrelativistic, but *before* they dominate the cosmic density, their distribution function is

$$f(x, v, t) = \rho(t) [1 + \delta(x)] N [\{v - V(x)\}/\sigma]$$

where $\rho(t)$ is the mean mass density of CDM, $\delta(x)$ is a Gaussian random field with finite variance $\ll 1$, $V(x) = \nabla \psi(x)$ where $\nabla^2 \psi(x) \propto \delta(x)$ and *N* is standard normal with $\sigma^2 \ll \langle |\mathbf{V}|^2 \rangle$

CDM occupies a thin 3-D 'sheet' within the full 6-D phase-space and its projection onto x-space is near-uniform.

 $Df/Dt = 0 \longrightarrow$ only a 3-D subspace is occupied at later times. Nonlinear evolution leads to a complex, multi-stream structure.

Evolution of CDM structure

Consequences of
$$Df/Dt = 0$$

- The 3-D phase sheet can be stretched and folded but not torn
- At least 1 sheet must pass through every point **x**
- In nonlinear objects there are typically many sheets at each **x**
- Stretching which reduces a sheet's density must also reduce its velocity dispersions to maintain f = const.
- At a caustic, at least one velocity dispersion must $\longrightarrow \infty$
- All these processes can be followed in fully general simulations by tracking the phase-sheet local to each simulation particle

The geodesic deviation equation

Particle equation of motion:
$$\dot{\mathbf{X}} = \begin{bmatrix} \mathbf{x} \\ \mathbf{\dot{v}} \end{bmatrix} = \begin{bmatrix} \mathbf{v} \\ -\nabla \phi \end{bmatrix}$$

Offset to a neighbor: $\delta \dot{\mathbf{X}} = \begin{bmatrix} \delta \mathbf{v} \\ T \cdot \delta \mathbf{x} \end{bmatrix} = \begin{bmatrix} 0 & I \\ T & 0 \end{bmatrix} \cdot \delta \mathbf{X} ; T = -$

Write $\delta X(t) = D(X_0, t) \cdot \delta X_0$, then differentiating w.r.t. time gives,

$$\dot{\mathbf{D}} = \begin{bmatrix} 0 & \mathbf{I} \\ \mathbf{T} & \mathbf{0} \end{bmatrix} \cdot \mathbf{D} \text{ with } \mathbf{D}_0 = \mathbf{I}$$

- Integrating this equation together with each particle's trajectory gives the evolution of its local phase-space distribution
- No symmetry or stationarity assumptions are required
- det(D) = 1 at all times by Liouville's theorem
- For CDM, $1/|det(D_{xx})|$ gives the decrease in local 3D space density of each particle's phase sheet. Switches sign and is infinite at caustics.

Similarity solution for spherical collapse in CDM

Bertschinger 1985

Simulation from self-similar spherical initial conditions

Geodesic deviation equation — phase-space structure local to each particle

Simulation from self-similar spherical initial conditions

Vogelsberger et al 2009

The radial orbit instability leads to a system which is strongly prolate in the inner nonlinear regions

Caustic crossing counts in a ACDM Milky Way halo

Caustic crossing counts in a ACDM Milky Way halo

Convergence of density profiles for Aquarius halos

Caustic count profiles for Aquarius halos

Stream density distribution in Aquarius halos

Stream number profiles for Aquarius halos

Stream density distribution at the Sun

Vogelsberger & White 2010

Cumulative stream density distribution for particles with 7 kpc < r < 13 kpc

Radial distribution of peak density at caustics

Vogelsberger & White 2010

Initial velocity dispersion assumes a standard WIMP with $m = 100 \text{ GeV/c}^2$

Fraction of annihilation luminosity from caustics

- Integration of the GDE can augment the ability of ΛCDM simulations to resolve fine-grained structure by 15 to 20 orders of magnitude
- Fine-grained streams and their associated caustics will have no significant effect on direct and indirect Dark Matter detection experiments
- The most massive stream at the Sun should contain roughly 0.001 of the local DM density and so might be detectable in an axion detector