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Cold Dark Matter at high redshift (e.g. z ~ 10°)

Well after CDM particles become nonrelativistic, but before
they dominate the cosmic density, their distribution function 1s

Joe, v, 1) = p(0) [1+o(x)| N [{v - V(x)}/0]

where p(7) 1s the mean mass density of CDM,
o(x) 1s a Gaussian random field with finite variance < 1,

V(x) = V(x) where V*y(x) < d(x)
and N is standard normal with 6* << {|V|?)

CDM occupies a thin 3-D 'sheet’ within the full 6-D phase-space
and 1ts projection onto x-space 1s near-uniform.

Df/ Dt =0 — only a 3-D subspace 1s occupied at later times.
Nonlinear evolution leads to a complex, multi-stream structure.



Evolution of CDM structure

‘ Consequences of Df /Dt =0 ‘

* The 3-D phase sheet can be stretched and folded but not torn
* At least 1 sheet must pass through every point x
 In nonlinear objects there are typically many sheets at each x

e Stretching which reduces a sheet's density must also reduce
its velocity dispersions to maintain f = const.

e At a caustic, at least one velocity dispersion must — » o

* All these processes can be followed in fully general simulations
by tracking the phase-sheet local to each simulation particle



The geodesic deviation equation

Particle equation of motion: X = [i] = [_%(l) ]

: 0 |
Offset to a neighbor: 0X = [T-gx] = [91, 0 ]-SX; T=-V(V¢)

Write oX(t) =D(X,t)-0X , then differentiating w.r.t. time gives,

D = [% o |D with D =1

e Integrating this equation together with each particle's trajectory gives
the evolution of its local phase-space distribution

* No symmetry or stationarity assumptions are required

e det(D) =1 at all times by Liouville's theorem

o For CDM, 1/|det(D_)| gives the decrease in local 3D space density of
each particle's phase sheet. Switches sign and 1s infinite at caustics.
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Similarity solution for spherical collapse in CDM

Bertschinger 1985
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Simulation from self-similar spherical initial conditions

Geodesic deviation equation > phase-space structure local to each particle

y Vogelsberger et al 2009




Simulation from self-similar spherical initial conditions

Vogelsberger et al 2009

The radial orbit
instability leads to a
system which 1s
strongly prolate 1n
the inner nonlinear
regions




Caustic crossing counts in a ACDM Milky Way halo

Vogelsberger & White 2010
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Caustic crossing counts in a ACDM Milky Way halo

Vogelsberger & White 2010

.. These are tidal streams not fine-grained streams
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Convergence of density profiles for Aquarius halos

Vogelsberger & White 2010
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Stream density distribution in Aquarius halos

Vogelsberger & White 2010
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Stream number profiles for Aquarius halos

Vogelsberger & White 2010
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Stream density distribution at the Sun

F(>ps)

Vogelsberger & White 2010
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Radial distribution of peak density at caustics
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Initial velocity
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standard WIMP with
m = 100 GeV/c*



intra / smooth

Fraction of annihilation luminosity from caustics
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* Integration of the GDE can augment the ability of ACDM
simulations to resolve fine-grained structure by 15 to 20
orders of magnitude

* Fine-grained streams and their associated caustics will
have no significant effect on direct and indirect Dark
Matter detection experiments

* The most massive stream at the Sun should contain
roughly 0.001 of the local DM density and so might be
detectable in an axion detector



