CIFAR, Quebec, May 2014

Galaxy properties and the cosmic web

Simon White Max Planck Institute for Astrophysics

Galaxy properties are known to depend....

...on the *density* of their local environment **or alternatively** ...on the *mass* of their "halo" and their location within it

However....

- * What is the relevant scale to estimate environment density?
- * Are there dependences on other aspects of the cosmic web, for example, whether they live in a halo/filament/sheet/void?
- * Do properties depend *only* on the mass/assembly history of their own halo, or are there larger scale dependences?

Companions of central galaxies with a high sSFR tend to have a higher sSFR than those of centrals of the *same* mass with a low sSFR, even at distances greater than $10 R_{halo}$ -- "two-halo conformity"

Halos of a given mass ($\sim 10^{12} M_{\odot}$) which formed earlier than average tend to have companions which also formed earlier than average.

Formation histories of distinct halos are spatially correlated

The Morphology of the Cosmic Web...

... can be defined using a tidal tensor derived from the galaxy distribution

Use signs to define morphological elements:

"clump"	$\lambda_3 > 0$
"filament"	$\lambda_2^{}>0$, $\lambda_3^{}<0$
"sheet"	$\lambda_1^{}>0$, $\lambda_2^{}<0$
"void"	$\lambda_1 < 0$

2

or use continuous variables:

$$1 + \delta = 1 + \lambda_1 + \lambda_2 + \lambda_3$$
 $e = \frac{\lambda_1}{3 + \lambda_2}$

$$\frac{1-\lambda_3}{3+\delta}, \qquad p = \frac{\lambda_1 + \lambda_3 - 2\lambda_2}{3+\delta}$$

* The density distributions of e-value defined structures overlap strongly

* Most galaxies lie in "clumps" and filaments

* Defining $e = \frac{\lambda_1 - \lambda_3}{3 + \delta}$ leads to a weak correlation of e with $1 + \delta$

For $R_{\text{smooth}} = 1 \text{ Mpc}/h$, galaxies get redder with increasing e at fixed $1 + \delta$

For $R_{\text{smooth}} = 3 \text{ Mpc}/h$, galaxies get bluer with increasing e at fixed $1 + \delta$

For $R_{smooth} = 2 \text{ Mpc}/h$, galaxies get bluer with increasing e at large $1 + \delta$, galaxies get redder with increasing e at small $1 + \delta$

For adaptive smoothing based on distance to 3^{ra} nearest neighbour, galaxy colour is *independent* of e at fixed $1 + \delta$. This smoothing also *maximizes* the correlation between colour and $1 + \delta$

For fixed smoothing, the contours of constant colour are the same shape as the contours of mean optimal adaptively smoothed density $1 + \delta_0$ (black lines).

trends seen previously are due to sub-optimal smoothing

Environment dependences in the M_{*} - D_n4000 plane

* Typical 1 + δ_0 values for galaxies depend on *both* M_{*} and D_n4000

* At fixed M_{*} and $1 + \delta_0$ there is no additional D_n4000 dependence on e

Environment dependences in the D_n4000 - C plane

* Typical 1 + δ_0 values for galaxies depend on M_{*} but not on concentration C

* Concentration C = R_{90}/R_{50} at fixed M_{*} is independent of both 1 + δ_0 and e

Conclusions?

 "Galactic conformity" extends beyond individual halos The central galaxies of neighboring halos tend to have similar sSFR even at R ~ 3Mpc and after controlling for M_{*}

large-scale processes modulate galaxy formation?

- The assembly histories of neighboring halos are correlated The growth of halos depends on larger scale environment even at fixed final halo mass
 a possible origin for conformity effects?
- For optimal smoothing, galaxy properties vary with local density only There is no additional dependence on the <u>morphology</u> of structure
- For other smoothings, the density dependence is weakened and (non-physical) dependences on morphology are induced
- SFR/gas content depend strongly on density, structure only weakly