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How galaxies acquire their neutrino haloes
Bond, J. R.; Szalay, A. S.; White, S. D. M.

AA(Stanford University, Stanford, CA), AB(California, University, Berkeley,
CA), AC(California, University, Berkeley, CA)

Nature, vol. 301, Feb. 17, 1983, p. 584, 585. (Nature Homepage)

Abstract

One-dimensional simulations of the nonlinear growth of structure in a universe dominated by a
population of nonrelativistic collisionless particles such as massive neutrinos show that a subpopulation
of slowly moving particles exists within the "pancakes" that form. These particles can cluster in a low
velocity condensate around any seed perturbation which may be present. The schematic calculation of
this aggregation presented here suggests that the properties of neutrino clusters depend only weakly on
seed mass but substantially on seed separation. Their mass and velocity dispersion may be quite
comparable with the values inferred for the haloes of "dark" matter surrounding real galaxies.



COBE background radiation anisotropies and large-scale structure in the
universe

Efstathiou, G.: Bond, J. R.: White, S. D. M.

AA(Oxford, University, United Kingdom), AB(Toronto, University, Canada),
AC(Cambridge University Institute of Astronomy, United Kingdom)

Royal Astronomical Society, Monthly Notices (ISSN 0035-8711), vol. 258, no.
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Abstract

We discuss the constraints imposed on theoretical models by the COBE measurements of the
microwave background anisotropies by observations of galaxy clustering, and by the observed
streaming motions of galaxies. When normalized to match the COBE results, models with Omega = 1
and with more large-scale power than the standard cold dark matter (CDM) model predict lower
streaming motions than are observed, but agree well with the dynamics of clustering on smaller scales.
Unbiased Omega = 1 CDM models fit the COBE data and the streaming motions, but are less easily
reconciled with galaxy clustering data on either small or large scales. Spatially flat CDM models with
Omega of about 0.2 and a cosmological constant require the mass to be substantially more clustered
than the galaxies in order to be consistent with COBE and with observed streaming motions. They are
then in conflict, however, with dynamical measurements on smaller scales.
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307 papers making dlrect use of data from the MS (14-05-2010)
Most by authors unassociated with the consortium
Most based on the galaxy catalogues, particularly mock surveys




Limitations of the Millennium Simulation

e Limited volume — too small for BAO work, precision cosmology
e Limited resolution — too poor to model formation of dwarfs

* No convergence tests — are galaxy results numerically converged?
e Only one (“wrong’’) cosmology

e Users unable to test dependences on parameters/assumptions
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New galaxy formation models based on MS+MS-II

Q1 Guo et al 2010

e Implement modelling simultaneously on MS and MS-II

* Test convergence of galaxy properties near resolution limit of MS
» Extend to properties of dwarf galaxies

* Improve/extend treatments of “troublesome” astrophysics

* Adjust parameters to fit new, more precise data

 Test against clustering and redshift evolution



Things that work well



The stellar mass function of galaxies
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Luminosity functions of galaxies
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Luminosity functions of satellites
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Galaxy colour distributions
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Scaling relations
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Projected galaxy number density profiles of clusters
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Galaxy stellar mass versus maximum past halo mass
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“Successful” simulations fail to match this

1.0

0.8

M./ M,

10.5

0.6
0.4

0.2

L
| Abadi et al. (2003)

_ Governato et al. (2007)

- chnnﬂpTec% et al. (2009) @ Agertz, Teyssier,
i Moore (2010)

11.5 12.0
|09(Mhalo[ME}])

Guo et al 2010

SRE-n0lezML

Agertz et al 2010



Things that work less well



Clustering of less massive galaxies
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The cosmic star formation density history
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--- observed SFR are inconsistent with observed stellar masses ---
--- star formation peaks too early in the model ---




Colours of dwarf galaxies

B——8.2 B.a——"4

frac

SDSS

MS-11

. -

rl" " [ - [ [ [ [ - L ] n [
1,0 1.5 20 25 3.0 35 40 1.5 20 25 30 35 4.0
U—i =i

Too many passive low mass galaxies in the MS-II

--- formation 1s too fast/too early ---



legqol 'ib[” p< _jlﬂq 1 nM+_1] ) g gl 'ﬂ[“ [ ~lag,M .-_1]:'

log ol @[Mpclog, M, ]}

log,s(#[Mpclog, M, ~])

—2F

E O<z<0.2

-

1 0.2<z<04

P

Jreres

I 0.4<z<08

My

_af

F 0.6<2<0.8

i 0B<z<1D

I

i ’1’“4'1?,1-,;1_

NN

P
ARETYIV

I 1.0<z<1.3

E 1.3<z<1.6

w

I 2.0<z<25

_ 2.5<2<3.0 *g}\.h“f

3.5<z<4.0

9.0 85 100 135 1101 1l31?u 9.0 9.5 10,0105 11 u1'|'.|| 20 2.0 95 10,0105 11.0 11 L\1$'I.'.I

log, oM, [Ma])

log{MIMe])

leg gl M, [”a]:'

éEVOllltiOll of stellar
'gmass function

Lower mass galaxies
logM, <10.5

form too early




Conclusions

“Precision’” modelling of the formation and evolution of the
galaxy population 1s now possible

Viable models should address abundances and scaling relations
and clustering and evolution

The Millennium Simulation amplitude 6, = 0.9 1s too high

In current models star formation occurs foo early in low-mass
systems

Need a better understanding of star formation

I and a lower fluctuation amplitude



