Beijing, July 2010

The KIAA Lectures

Formation of the Milky Way and other galaxies in the ACDM cosmogony

Simon White

Max Planck Institute for Astrophysics

Lecture Plan

- I Introduction to the standard model of cosmogony --- ingredients, observational support, possible problems
- II Halos structure growth, PS and EPS theory, applications
- III Halos assembly histories, profiles, core problems
- **IV** Halos shapes, substructure, satellites, DM detection
- **V** Abundance matching, MW halo mass + formation efficiency
- **VI** Gas cooling and condensation (hot and cold), disk formation
- **VII** Simulations techniques, what can and can't be done

The pillars of the standard cosmogony

I The expansion of the Universe -- non-static, indeed, accelerating! --- Dark Energy?

II The uniform abundance of light elements-- a Hot Big Bang with low baryon density

III The Cosmic Microwave Background (CMB)

- -- uniformity large-scale isotropy/homogeneity
- -- Planckian spectrum a hot, dense early Universe
- -- anisotropies initial conditions for structure formation

IV Large-scale structure – low-redshift quasilinear structure

V Gravitational lensing – properties of present-day DM halos

VI Ly α forest – small-scale structure at z=3

Star map of the whole sky

The Milky Way

COBE's near-infrared map of the whole sky

Spiral galaxies like our own

NGC 891

NGC 4414

Galaxy map of the whole sky

Two Micron All Sky Survey Image Mosaic: Infrared Processing and Analysis Center/Caltech & University of Massachusetts

Large-scale structure in today's Universe

Large-scale structure in today's Universe

The Hubble ultradeep field

A 300 hour exposure with the HST

The assembly history of galaxies like our own can be <u>observed</u> in such images

An accelerating Universe

State of the observations 2003

- Distant supernovae appear less bright than expected
- Today the cosmic expansion is accelerating *not* slowing down
- The dominant contribution to the cosmic mass/energy budget must have *negative* pressure

 $R/R = -4\pi/3 G (\rho + 3 p)$

Dark Energy, Quintessence, a Cosmological Constant?

The ESSENCE Survey Wood-Vasey et al 2007

- The SN data require an accelerated expansion today
- With large-scale structure data, they imply a flat Universe with DE
- The DE appears to behave "like" a cosmological constant, $w \approx -1$
- The implied parameters agree with those obtained independently from the cosmic microwave background

"Explanations" for Dark Energy

- A cosmological constant (i.e. another constant of gravity)
- Dynamical Dark Energy, e.g. quintessence
- A result of "leakage" from higher dimensions
- A reflection of the need to extend/modify General Relativity
- A consequence of the nonlinear behaviour of GR
- The result of systematics in the SN data

Element formation in the Early Universe

- During the very first 3 minutes the Universe "cools" to 10⁹ C
- The nuclei of a few light elements are formed Hydrogen (¹H, ²H) Helium (³He, ⁴He) Lithium (⁷Li)
- All the other elements formed later through nuclear reactions in stars and stellar explosions
- The atoms in our bodies were made in stars

The COBE satellite (1989 - 1993)

- Two instruments made maps of the whole sky in microwaves and in infrared radiation
- One instrument took a precise spectrum of the sky in microwaves

2006 Physics Nobel Prize

Spectrum of the microwave background

- Spectrum matches a Planckian black-body to better than 1 in 10⁻⁴
- The early universe was hot, smooth and in thermal equilibrium
- No significant energy input later than ~1 month after the Big Bang

COBE's temperature map of the entire sky

The large-scale Universe is isotropic!

COBE's temperature map of the entire sky

COBE's temperature map of the entire sky

Structure in the COBE map

• One side of the sky is `hot', the other is`cold' the Earth's motion through the Cosmos $V_{Milky Way} = 600 \text{ km/s}$

 Radiation from hot gas and dust in our own Milky Way

• Structure in the Microwave Background itself

Structure in the Microwave Background

- The structure lies in cosmic 'clouds', $\sim 4 \ 10^{10}$ l-yrs away
- It reflects weak "sound" waves, $A \sim 10^{-4}$, in the clouds
- At the time the Universe was only 400,000 years old, and was 1,000 times smaller and 1,000 times hotter than today

The pattern of structure reflects

- A: The global geometry and topology of the Universe
- **B**: The constituents and thermal evolution of the Universe
- C: The process which generated the structure

Observed fluctuations are gravitationally modified sound waves of amplitude $\sim 10^{-5}$ propagating in the photon-baron-DM fluid in the last scattering surface at $z \sim 1000$ t $\sim 370,000$ yr

This (linear) sound wave field can be characterised by its Power Spectrum, the mean square amplitude of waves as a function of comoving spatial wavenumber $k \sim 2\pi / \lambda$

The corresponding CMB temperature fluctuation field can be characterised by its power spectrum as a function of $l \sim 2\pi / \theta$

Physical effects on the CMB power spectrum

Geometry: The global geometry links physical lengths at z=1000 to angular scales on the sky → the *l*-positions of the peaks
Temperature fluctuations in the gas at z=1000 due to compression/ rarefaction in sound waves
Motions in the gas at z=1000 due to the sound waves
Gravitational redshifts at z~1000 and at low z (Sachs-Wolfe effect)

Variation of power spectrum with changing angular size distance to the last scattering surface. The change at low l is due to the low redshift integrated Sachs-Wolfe effect as the universe becomes curvature or Λ dominated.

Variation of power spectrum with mass density for fixed baryon and photon density and a flat universe without Λ

Variation of the power spectrum with the baryon density. The effect at high *l* is due to diffusive damping of the short-wavelength sound waves (Silk damping).

The WMAP Satellite at Lagrange-Point L2

The WMAP of the whole CMB sky

Putting it all together: consistency and complementarity

Komatsu et al 2008

What have we learned from WMAP?

- Our Universe is flat -- its geometry is that imagined by Euclid
- Only a small fraction of it is made of ordinary matter -- about 4.5%
 there is a lot of dark, nonbaryonic matter (about 23%) (which can be "seen" through gravitational lensing)
- Most of it must be a new kind of dark energy (perhaps a cosmological constant) as also inferred from the apparently accelerating expansion
- All structure in the Universe originated as quantum zero-point fluctuations of the *vacuum*, perhaps 10^{-30} s after the Big Bang!

Everything has formed from nothing

Gravitational lensing by a galaxy cluster

Abell 2218 z=0.17

Mean galaxy halo density profiles from SDSS lensing

Points are mean projected excess surface densities of halos of red and blue SDSS galaxies in different bins of absolute magnitude. Lines are a standard ACDM model Mandelbaum et al 2006

Large-scale structure from weak lensing

Power spectrum of the Ly α forest in QSO spectra

Confirms ACDM model down to scales which make *dwarf* galaxies

Points are the SDSS measures, lines are a standard Λ CDM model

Baryon wiggles in the galaxy distribution

Eisenstein et al 2005

Galaxy correlation function from the SDSS luminous red galaxy survey.

<z> ~ 0.3

Confirms feature seen in the CMB

 $d_z(z=1)$

 $d_{A}(z=0.3)$

Evolving the Universe in a computer

- Follow the matter in an expanding cubic region
- Start 400,000 years after the Big Bang
- Match initial conditions to the observed Microwave Background
- Calculate evolution forward to the present day

Views of the dark matter in a Virtual Universe

• The growth of dark matter structures in a thin slice

- A zoom from the whole visible Universe into a galaxy cluster
- A flight through the dark matter distribution
- The assembly of the Milky Way's halo

Milky Way formation and the ACDM cosmogony

- The structure predicted by the standard model is confirmed...
 ...down to MW scale in the initial conditions (CMB)
 ...down to MW halo scale at z=0 (LSS + lensing)
 ...down to dwarf galaxy scale at z=2 4 (Ly α forest)
- The evolution of structure in the dominant DM component can be simulated with few uncertainties
- The population of MW-like galaxies can be *observed* over the period corresponding to assembly and to formation of stars

→ Old ELS and SZ pictures are obsolete and unhelpful!

(unrelated to the formation of the main MW components [disk+bulge] and with no significant explanatory power for the stellar halo)

Outstanding issues for the ACDM cosmogony

- The nature of Dark Energy
- The nature of Dark Matter
- The low DM content of galaxy cores (cusp problem)
- The low abundance of dwarf galaxies (luminosity function and satellite problems)

Lecture Plan

- I Introduction to the standard model of cosmogony --- ingredients, observational support, possible problems
- II Halos structure growth, PS and EPS theory, applications
- III Halos assembly histories, profiles, core problems
- **IV** Halos shapes, substructure, satellites, DM detection
- **V** Abundance matching, MW halo mass + formation efficiency
- **VI** Gas cooling and condensation (hot and cold), disk formation
- **VII** Simulations techniques, what can and can't be done

Dark matter halos are the basic units of nonlinear structure

- Is all dark matter part of some halo?
- Was this always the case?
- How do halos grow? accretion? merging?
- How are they distributed?
- What is their internal structure?
 - -- density profile
 - -- shape
 - -- subhalo population mass/radial distributions, evolution
 -- caustics
- How do these properties affect DM detection experiments?
- How do they affect/are they affected by the baryonic matter
- What is the relation beween galaxies and their halos?

A rich galaxy cluster halo Springel et al 2001

A 'Milky Way' halo Power et al 2002

A simple model for structure formation

In linear theory in a dust universe $\delta(\mathbf{x}, z) = D(z) \, \delta_{o}(\mathbf{x}) = (2\pi)^{-3/2} \, D(z) \int d^{3}k \, \delta_{k} \exp(-i \mathbf{k} \cdot \mathbf{x})$ where we define D(0) = 1

Consider the smoothed density field $\delta_{s}(\mathbf{x}, z; \mathbf{k}_{c}) = (2\pi)^{-3/2} D(z) \int_{|\mathbf{k}| < \mathbf{k}_{c}} d^{3}\mathbf{k} \, \delta_{\mathbf{k}} \exp(-i \, \mathbf{k} \cdot \mathbf{x})$ and define $\langle \delta_{s}(\mathbf{x}, z; \mathbf{k}_{c})^{2} \rangle_{\mathbf{x}} = D^{2}(z) \, \sigma_{o}^{2}(\mathbf{k}_{c}), \quad \mathbf{M}_{s} = 6\pi^{2} \rho_{o} \mathbf{k}_{c}^{-3}$

As k_c grows from 0 to ∞ , the smoothing mass decreases from ∞ to 0, and $\delta_s(\mathbf{x}, z; k_c)$ executes a random walk

For a <u>gaussian</u> linear overdensity field $\Delta \delta_{s} = \delta_{s}(\mathbf{x}, z; \mathbf{k}_{c} + \Delta \mathbf{k}_{c}) - \delta_{s}(\mathbf{x}, z; \mathbf{k}_{c})$ is <u>independent</u> of δ_{s} and has variance $D^{2} \Delta \sigma_{o}^{2}$ ----- A Markov random walk -----

The "Press & Schechter" Ansatz

A uniform spherical "top hat" perturbation virialises when its extrapolated linear overdensity is $\delta_c \approx 1.69$

Assume that at redshift z, the mass element initially at x is part of a virialised object with the largest mass M for which $\delta_s(\mathbf{x}, z; \mathbf{k}_c(\mathbf{M})) \ge \delta_c$

This is the Markov walk's <u>first upcrossing</u> of the <u>barrier</u> $\delta_s = \delta_c$

The fraction of all points with first upcrossing below k_c is then the fraction of cosmic mass in objects with mass above $M_s(k_c)$

$$\rightarrow n(M, z) dM = \frac{-\rho_o}{\sqrt{(2\pi)M^2}} \frac{\delta_c}{D\sigma_o} \frac{d \ln \sigma_o^2}{d \ln M} \exp \left(-\frac{1}{2} \left(\frac{\delta_c}{D\sigma_o}\right)^2\right)^2$$

If the density field is smoothed using a sharp filter in kspace, then each step in the random walk is independent of all earlier steps

A Markov process

The walks shown at positions **A** and **B** are equally probable

At an early time τ_1 A is part of a quite massive halo

B is part of a very low mass halo or no halo at all

A bit later, time τ_3 A's halo has grown further by accretion

B's halo has merged again and is now more massive than **A**'s halo

Still later, e.g. τ_4 A and **B** are part of halos which follow identical merging/accretion histories On scale **X** they are embedded in a high

density region. On larger scale Y in a low density region

Consequences of the Markov nature of EPS walks

- The assembly history of a halo is <u>independent</u> of its future
- The assembly history of a halo is <u>independent</u> of its environment
- The internal structure of a halo is <u>independent</u> of its environment
- The mass distribution of progenitors of a halo of given M and z is obtained simply by changing the origin to $\sigma_0^2(M)$ and $\delta_c/D(z)$
- The resulting formulae can be used to obtain descendant distributions and merger rates
- A similar argument gives formulae for the clustering bias of halos

Does it work point by point?

Boylan-Kolchin et al 2009

Mo & White 2002

- Abundance of rich cluster halos drops rapidly with z
- Abundance of Milky Way mass halos drops by less than a factor of 10 to z=5
- $10^{9}M_{\odot}$ halos are almost as common at z=10 as at z=0

Mo & White 2002 3 2 0 $\rm Log \; n/(h^{-1}Mpc)^{-3}$ -2 -812Log T) 5 101520 0 \mathbf{Z}

- Temperature increases with both mass and redshift $T \propto M^{2/3} (1 + z)$
- Halos with virial temperature T = 10⁷ K are as abundant at z = 2 as at z=0
- Halos with virial temperature T = 10⁶ K are as abundant at z = 8 as at z=0
- Halos of mass >10^{7.5}M_o have
 T > 10⁴ K at z=20 and so can cool by H line emission

Mo & White 2002 2 0 $\rm Log \; n/(h^{-1}Mpc)^{-3}$ 0047 (20) 6 2 0.01 0.001 18-4 6 1E-6 -8F Δ 1ETB 5 151020 0 \mathbf{Z}

- Half of all mass is in halos more massive than 10¹⁰M_o
 at z=0, but only 10% at z=5, 1% at z=9 and 10⁻⁶ at z=20
- •1% of all mass is in halos more massive than $10^{15}M_{\odot}$ at z=0
- •40% of all mass at z=0 is in halos which cannot confine photoionised gas
- •1% of all mass at z=15 is in halos hot enough to cool by H line emission

Mo & White 2002

- Halos with the abundance of L_{*} galaxies at z=0 are equally strongly clustered at all z < 20
- Halos of given mass or virial temperature are more clustered at *higher* z

Mo & White 2002

- The remnants (stars and heavy elements) from all star-forming systems at z>6 are today more clustered than L_{*} galaxies
- The remnants of objects which at any z > 2 had an abundance similar to that of present-day L_{*} galaxies are today more clustered than L_{*} galaxies

Lecture Plan

- I Introduction to the standard model of cosmogony --- ingredients, observational support, possible problems
- II Halos structure growth, PS and EPS theory, applications
- III Halos assembly histories, profiles, core problems
- **IV** Halos shapes, substructure, satellites, DM detection
- **V** Abundance matching, MW halo mass + formation efficiency
- **VI** Gas cooling and condensation (hot and cold), disk formation
- **VII** Simulations techniques, what can and can't be done

Millennium Simulation cosmology: $\Omega_m = 0.25, \ \Omega_{\Lambda} = 0.75, \ n=1, \ \sigma_8 = 0.9$

Millennium Simulation cosmology: $\Omega_m = 0.25, \ \Omega_A = 0.75, n=1, \sigma_8 = 0.9$

 $\Omega_{\rm m} = 0.25, \ \Omega_{\Lambda} = 0.75, \ n=1, \ \sigma_8 = 0.9$

If these Markov random walks are scaled so the maximum variance is 720 and the vertical axis is multiplied by $\sqrt{720}$, then they represent <u>complete</u> halo assembly histories for random CDM particles.

An ensemble of walks thus represents the probability distribution of assembly histories

Millennium Simulation cosmology: $\Omega_{m} = 0.25, \ \Omega_{\Lambda} = 0.75, \ n=1, \ \sigma_{8} = 0.9$

Millennium Simulation cosmology: $\Omega_m = 0.25, \ \Omega_A = 0.75, \ n=1, \ \sigma_8 = 0.9$

Millennium Simulation cosmology: $\Omega_m = 0.25, \ \Omega_A = 0.75, n=1, \sigma_8 = 0.9$

Millennium Simulation cosmology: $\Omega_{\rm m} = 0.25, \ \Omega_{\Lambda} = 0.75, \ n=1, \ \sigma_8 = 0.9$

Millennium Simulation cosmology: $\Omega_{m} = 0.25, \ \Omega_{\Lambda} = 0.75, \ n=1, \ \sigma_{8} = 0.9$

Millennium Simulation cosmology: $\Omega_m = 0.25, \ \Omega_{\Lambda} = 0.75, \ n=1, \ \sigma_8 = 0.9$

Angulo & White 2010

0.5 $\begin{array}{l} M = 10^{12} h^{-1} M_{o} \\ M_{i} > 10^{-10} h^{-1} M_{o} \end{array}$ $1.33 M_1 < M_2 < 4 M_1$ The typical mass element in $1.33 M_i < M_f < 2 M_i$ 2 M.<M.<4 M. a "Milky Way" halo goes 0.4 through ~3 "major mergers" where the two halos are 0.3 within a factor of 3 in mass The majority of these occur 0.2 when the element is part of the larger halo 0.1 0.0 -2 10 0 8 Number of major mergers
EPS halo assembly: conclusions

- The typical first halo is much more massive than the free streaming mass
- First halos typically collapse quite late $z \sim 13$
- Halo growth occurs mainly by accretion of much smaller halos
- There are rather few "generations" of accretion/merger events
- Major mergers are not a major part of the growth of many halos

The dark matter structure of A CDM halos

A rich galaxy cluster halo Springel et al 2001

A 'Milky Way' halo Power et al 2002

ACDM galaxy halos (without galaxies!)

- Halos extend to ~10 times the 'visible' radius of galaxies and contain ~10 times the mass in the visible regions
- Halos are not spherical but approximate triaxial ellipsoids
 -- more prolate than oblate
 -- axial ratios greater than two are common
- "Cuspy" density profiles with outwardly increasing slopes -- $d \ln \rho / d \ln r = \gamma$ with $\gamma < -2.5$ at large r $\gamma > -1.2$ at small r
- Substantial numbers of self-bound subhalos contain ~10% of the halo's mass and have $dN/dM \sim M^{-1.8}$

Most substructure mass is in most massive subhalos

Density profiles of dark matter halos

The average dark matter density of a dark halo depends on distance from halo centre in a very similar way in halos of all masses at all times -- a universal profile shape --

$$\rho(r)/\rho_{crit} \approx \delta r_s/r(1 + r/r_s)^2$$

Less massive halos and halos that form earlier have higher densities (bigger δ)

Concentration $c = r_{200} / r_s$ is an alternative density measure Beware variety of definitions!

NFW profiles may not be pretty....

...but they work surprisingly well

"Milky Way" halo z = 1.5 $N_{200} = 3 \times 10^{6}$ "Milky Way" halo z = 1.5 $N_{200} = 94 \times 10^{6}$ "Milky Way" halo z = 1.5 N₂₀₀ = 750 x 10⁶

How well do density profiles converge?

Aquarius Project: Springel et al 2008

Mass and length resolution vary by factors of 2000 and 35

Convergence excellent to radii well below that of the Sun's orbit

Real DM profile will be modified by growth of the visible Galaxy

How well do density profiles converge?

Aquarius Project: Springel et al 2008

Mass and length resolution vary by factors of 2000 and 35

Convergence excellent to radii well below that of the Sun's orbit

Real DM profile will be modified by growth of the visible Galaxy

Concentration scatter and trend with M and z

Gao et al 2008

Concentration trends with M, z and cosmology

Zhao et al 2008

The concentration of halos depends on mass, Ω_m and redshift Related to cosmic expansion between formation and observation times

The Aquarius halos

Springel et al 2008

The Einasto profile fits the inner cusps

Navarro et al 2009

The Einasto profile fits the inner cusps

Navarro et al 2009

The Einasto profile fits the inner cusps

Navarro et al 2009

Einasto's (1965) profile: $\ln \rho(r) / \rho_{-2} = -2 / \alpha [(r / r_{-2})^{\alpha} - 1]$

The Einasto α varies with mass

Gao et al 2008

Results for stacked halos in the Millennium Simulation

Einasto's (1965) profile: $\ln \rho(r) / \rho_{-2} = -2 / \alpha [(r / r_{-2})^{\alpha} - 1]$

A lensing test of the DM paradigm?

Hayashi & White 2008

Gravitational lensing allows *measurement* of these mean profiles The characteristic shape is a direct test of the DM paradigm

Velocity dispersion profiles

Navarro et al 2009

Velocity dispersion and anisotropy peak at intermediate radii

Navarro et al 2009

Results are well converged

Velocity dispersion and anisotropy peak at intermediate radii Profiles vary significantly between halos

Pseudo-phase-space density profiles

Navarro et al 2009

Shape variations in the density and velocity dispersion profiles compensate to make $\rho(r) / \sigma(r)^3$ an almost universal power law

Halo profiles: conclusions

- The NFW formula fits spherically averaged profiles of most objects to within 10% out to at least 2 r_s
- The characteristic density (or concentration) varies with mass, redshift and cosmology
- The Einasto formula fits better its additional shape parameter varies systematically with mass
- There is no indication of *any* "asymptotic inner power law"
- The scatter among halos is larger than the Einasto-NFW difference
- Mean profiles change shape dramatically at large radius ($\delta < 10$)
- Velocity dispersion profiles show considerable variation
- Variations in $\rho(r)$ and $\sigma(r)$ compensate to give power law ρ/σ^3

Halo profiles: observational issues

ΛCDM halos agree well with the observed structure of Galaxy halos (10 to 200 kpc: lensing, satellite motions) Cluster halos (30 to 2000 kpc: lensing, X-ray data on gas)

They appear to disagree with data in the inner parts of galaxies Milky Way $M_{200} = 1(2) \times 10^{12} M_{\odot} \rightarrow M(R_{\odot}) = 3.3(4.5) \times 10^{10} M_{\odot}$ to compare with $M_*(R_{\odot}) = 5 \times 10^{10} M_{\odot}$ LSB/dwarf galaxies Rotation curves rise slower than expected The "Cusp Problem"

Baryonic physics complicates this comparison Adiabatic compression increase may central DM densities Sudden expulsion of gas may decrease central DM densities both are quite uncertain

High quality rotation curves for nearby dwarfs: I

High quality rotation curves for nearby dwarfs: II

NGC3109

Inner rotation curves of low SB galaxies

Kuzio de Naray et al 2006

M 33

Lecture Plan

- I Introduction to the standard model of cosmogony --- ingredients, observational support, possible problems
- II Halos structure growth, PS and EPS theory, applications
- III Halos assembly histories, profiles, core problems
- **IV** Halos shapes, substructure, satellites, DM detection
- **V** Abundance matching, MW halo mass + formation efficiency
- **VI** Gas cooling and condensation (hot and cold), disk formation
- **VII** Simulations techniques, what can and can't be done

Shapes of halo equidensity surfaces

Jing & Suto 2002

Shapes become systematically less spherical with decreasing radius

There is a lot of scatter between halos

Principal axes may change direction

Shapes of halo equidensity surfaces

Jing & Suto 2002

Shapes become systematically less spherical with increasing mass

A simple scaling leaves a "universal" result for the axis ratio distributions

How well does substructure converge?

Springel et al 2008

Differential number count of subhalos with r < 400 kpc

Convergence is excellent

Slope is slightly shallower than $-2 \longrightarrow$ most subhalo mass is in the biggest objects

How well does substructure converge?

Aquarius Project: Springel et al 2008

Convergence in the size and maximum circular velocity for individual subhalos cross-matched between simulation pairs.

Biggest simulation gives convergent results for

 $V_{max} > 1.5 \text{ km/s}$ $r_{max} > 165 \text{ pc}$

<u>Much</u> smaller than the halos inferred for even the faintest dwarf galaxies

How uniform are subhalo populations?

Subhalos have subhalos have subhalos...

Springel et al 2008

Substructure: conclusions

- Substructure is primarily in the outermost parts of halos
- The radial distribution of subhalos is almost mass-independent
- Subhalo populations scale (almost) with the mass of the host
- The subhalo mass distribution converges only weakly at small m
- Subhalos contain a small fraction of the mass in the inner halo

A Milky Way satellite problem?

of small subhalos in Λ CDM halos \gg # of MW satellites

Maybe most of them just didn't make stars?

Subhalos with stars must be less massive than many without stars?

Maybe Dark Matter can be detected in a laboratory

Maybe the annihilation of Dark Matter will be seen by Fermi?

2.0 Log(Intensity)

Small-scale structure and DM detection

- Direct detection involves bolometers/cavities of meter scale which are sensitive to particle momentum
 - -- what is the density structure between m and kpc scales?
 - -- how many streams intersect the detector at any time?
- Indirect detection involves annihilation radiation

 L ∝ ∫ ρ²(x) ⟨σ ν⟩ dV
 -- what is the density distribution around individual CDM particles on the annihilation interaction scale?

Predictions for detection experiments depend on the CDM distribution on scales <u>far</u> below those accessible to simulation

We require a good theoretical understanding of mixing and small-scale structure

Predicted distribution of y-rays from the MW

GALPROP, optimized

This is much brighter than the expected signal from DM annihilation

Lecture Plan

- I Introduction to the standard model of cosmogony --- ingredients, observational support, possible problems
- II Halos structure growth, PS and EPS theory, applications
- III Halos assembly histories, profiles, core problems
- **IV** Halos shapes, substructure, satellites, DM detection
- **V** Abundance matching, MW halo mass + formation efficiency
- **VI** Gas cooling and condensation (hot and cold), disk formation
- **VII** Simulations techniques, what can and can't be done

Most stars are in galaxies with similar stellar mass to the Milky Way

Most stars are in galaxies with similar stellar mass to the Milky Way Dark matter (and baryons) are *much* more broadly distributed across halo mass in the WMAP5 cosmology

The problem with matching dwarfs in ΛCDM

A formation efficiency which matches abundance of "Milky Ways" overproduces the number of "Fornax's" by a factor of 30!

A counting argument relating halo and galaxy masses

The SDSS/DR7 data give a precise measurement of the abundance of galaxies as a function of stellar mass threshold, $n(>M_*)$

The Millennium and MS-II simulations allow all halos/subhalos massive enough to host z=0 galaxies to be identified

Define $M_{h,max}$ as the maximum mass *ever* attained by a halo/subhalo

The simulations then give the halo/subhalo abundance, $n(> M_{h,max})$

Ansatz: Assume the stellar mass of a galaxy to be a monotonically increasing function of the maximum mass ever attained by its halo

We can then derive $M_*(M_{h,max})$ by setting $n(>M_*) = n(>M_{h,max})$

- The stellar mass of the central galaxy increases rapidly with halo mass at small halo mass, but slowly at large halo mass
- The characteristic halo mass at the bend is 5 x 10^{11} M_c

- The maximum halo mass fraction in central galaxy stars is 3.5%
- This is attained for halos similar in mass to the Milky Way's halo
- The fraction drops very rapidly to higher and lower masses

The (maximum) halo masses inferred as a function of stellar mass agree well with those inferred from galaxy-galaxy lensing
For M_{*} = 6 x 10¹⁰ M_o the Milky Way should have M_h = 2 x 10¹² M_o
For M_h = 1.0 x 10¹² M_o it should have M_{*} = 3.5 x 10¹⁰ M_o

• The inferred relation between stellar mass and halo maximum circular velocity is consistent with the M_{*} "Tully-Fisher" relation

- Galaxy formation efficiency is: $\epsilon = M_* / (\Omega_b M_{h,max} / \Omega_m)$
- This *maximises* at about 20%
- It is much lower than in all current galaxy formation simulations
- In the Milky Way about $2 \ge 10^{11} M_{\odot}$ of baryons are "missing"

Milky Way mass from local escape velocity

• Estimate based on 16 RAVE+ 17 archival stars with V > 300 km/s 498 km/s $< V_{ESC} < 608$ km/s

 \longrightarrow 9 x 10¹¹ M_o < M_{NFW} < 2.5 x 10¹² M_o

- (90% confidence)
- Sensitive to assumptions about shape and cut-off of high-velocity tail, as well as about shape (NFW, isothermal...) of the potential.

Milky Way mass from distant tracer velocities

- Dispersions based on 2401 BHB stars from SDSS with |z| > 4 kpc
- Fit to CDM simulations of galaxy formation, adjusted using Jeans equations for differences in halo tracer profile and in V_{circ}
- Good fits to NFW+disk for halo masses (at 68% confidence) $8 \ge 10^{11} M_{\odot} < M_{NFW} < 1.6 \ge 10^{12} M_{\odot}$

Sensitive to anisotropy assumption

Milky Way mass from distant tracer velocities

- Velocity dispersion from 240 halos stars + glob.clusters + satellites
- Jeans equations <u>assuming</u> $\rho \propto r^{-3.5}$
- Tangentially biased velocities at large *r* needed to match fall in σ 6 x 10¹¹ M_o < M_{NFW} < 2.0 x 10¹² M_o (at 68% confidence)

Milky Way mass from distant tracer velocities

- Velocity dispersion from 240 halos stars + glob.clusters + satellites
- Jeans equations <u>assuming</u> a cut-off in tracer density at $r \sim 200$ kc
- Radially anisotropic models now fit and there is *no* strong constraint on $M_{_{NFW}}$ from the data

Timing Argument masses in the Local Group

The Kahn & Woltjer timing argument estimates the mass of the Local Group from the age of the Universe and the separation and relative radial velocity of the MW and M31

Calibrating using the Millennium Simulation gives (at 90% conf.) $1.9 \ge 10^{12} M_{\odot} \le M_{LG} \le 1.0 \ge 10^{13} M_{\odot}$

A similar argument using Leo I gives $M_{MW} \sim 2.4 \times 10^{12} M_{\odot}$ with $M_{MW} > 8 \times 10^{11} M_{\odot}$ at 95% conf.

Lecture Plan

- I Introduction to the standard model of cosmogony --- ingredients, observational support, possible problems
- II Halos structure growth, PS and EPS theory, applications
- III Halos assembly histories, profiles, core problems
- **IV** Halos shapes, substructure, satellites, DM detection
- **V** Abundance matching, MW halo mass + formation efficiency
- **VI** Gas cooling and condensation (hot and cold), disk formation
- **VII** Simulations techniques, what can and can't be done

Physics for Galaxy Formation Modelling

Gas Cooling and Condensation

Sensitive to metal content, phase structure, UV background... Star Formation

No *a priori* understanding -- efficiency? IMF?

Stellar Feedback

SF regulation, metal enrichment, galactic winds

Stellar Aging

Population synthesis — luminosities, colours, spectra, (dust?) AGN physics

Black hole formation, feeding, AGN phenomenology, feedback Environment interactions

Galaxy mergers, tidal effects, ram pressure effects

Cooling curve for metalfree, optically thin gas in collisional ionisation equ.

Luminosity/unit volume is $\mathcal{L} = n_{a}^{2} \Lambda(T)$

No cooling occurs below 10^4 K unless H_{γ} can form

Addition of heavy elements increases cooling in the range 10^{5} K to 10^{7} K

• Optically thin cooling time $t_{cool} \propto n_e T / \mathcal{L} \propto T / n_e \Lambda(T)$

c.f. gravitational collapse time $t_{dyn} \propto (G \rho)^{-1/2} \propto n_e^{-1/2}$

Radiative processes in galaxy formation

Rees & Ostriker 1977 Silk 1977 Binney 1977

• When gas clouds of galactic mass collapse:

(i) shocks are radiative and collapse unimpeded, when $t_{cool} < t_{dyn}$ (ii) shocks are non-radiative and collapse arrested, when $t_{cool} > t_{dyn}$ where quantities are estimated at virial equilibrium

- Galaxies form in case (i) since fragmentation is possible
- Primordial cooling curve \longrightarrow characteristic mass $10^{12} M_{\odot}$

Towards a "modern" theory

Adding : (i) dark matter, (ii) hierarchical clustering, (iii) feedback
 -- cooling always rapid for small masses and early times
 -- only biggest galaxies sit in cooling flows

-- feedback à la Larson (1974) needed to suppress small galaxies

• A good model:
$$\Omega_m = 0.20$$
, $\Omega_{gas} / \Omega_{DM} = 0.20$, $\alpha = 1/3$ (n = -1)

Towards a "modern" theory

Adding : (i) dark matter, (ii) hierarchical clustering, (iii) feedback
 -- cooling always rapid for small masses and early times
 -- only biggest galaxies sit in cooling flows

-- feedback à la Larson (1974) needed to suppress small galaxies

• A good model:
$$\Omega_m = 0.20$$
, $\Omega_{gas} / \Omega_{DM} = 0.20$, $\alpha = 1/3$ (n = -1)

Spherical similarity solutions for infall

• Infall of DM + $\gamma = 5/3$ gas onto a point mass in an EdS universe -- accretion shock at ~1/3 of turn-round radius

- -- gas almost static inside shock
- -- pre-shock gas has density about 4 times the cosmic mean -- $kT(r) / \mu \sim GM(r) / r = V_c^2$; $R \sim V_c t$, $M \sim V_c^3 t / G$

Spherical similarity solutions for cooling

Putting it together in a sCDM universe

and for V_{circ} < 250 km/s at z=3 when efficient mixing is assumed

Adding the baryons: hydrodynamics

- After recombination the baryons are in the form of a diffuse, near-uniform mixture of neutral H and He no stars, no heavier elements, no magnetic fields (?)
- Need to solve hydrodynamics equations for the gas in addition to N-body equations for the DM
- $\partial \rho / \partial t + \nabla .(\rho \mathbf{u}) = 0$ Mass conservation $\partial (\rho \mathbf{u}) / \partial t + \mathbf{u} . \nabla (\rho \mathbf{u}) + \nabla p + \rho \nabla \Phi = 0$ Momentum cons. + Energy conservation
- Main solution techniques
 - -- discretise on a regular fixed mesh (Eulerian hydro)
 - -- discretise on a variable, adaptive mesh (AMR)
 - -- discretise using a finite set of fluid elements

(Smoothed Particle Hydrodynamics: SPH)

Hydrodynamics and cluster formation

- Structure formation produces shocks which transform the K.E. of fluid motions into heat
- Bremsstrahlung and line emission from cluster gas is observable in X-rays $S = \int dl \rho^2 \Lambda(T)$
- Cluster "shadows" are observable against the CMB through the Sunyaev-Zeldovich effect $\Delta T \propto \int dl p$
- Hierarchical growth of structure produces the phenomenology observed in images of clusters Abell 3667
 - --asymmetries and sublumps
 - --shocks
 - --cold fronts
 - --cold cores

Gas cooling and galaxy formation

- Bremsstrahlung and line emission cause shocked gas to radiate away its internal energy
- Gas settles into the centre of DM potential wells and starts to form the stellar populations of galaxies
- Gas cooling times are $t_{cool} \propto T / \rho \Lambda(T)$ while objects at time t have typical density $\rho \propto t^{-2}$ so $t_{cool} / t \propto t T / \Lambda(T)$

rapid cooling in lower mass objects and at early times
efficient galaxy formation with no hot gas.
i.e., as in Rees & Ostriker (1977) and White & Rees (1978)

and subsequently included in all semianalytic models

This is now often referred to as the "new paradigm" of cold flows!

Feedback/galactic wind issues

- Can supernova feedback drive galactic winds?
- Can these reproduce the masselement abundance relation?
- Can they enrich intergalactic gas with heavy elements?
- Can these enhance formation of disks over bulges?
- What about feedback from Active Galactic Nuclei?

Feedback/galactic wind issues

- Can supernova feedback drive
- Can these reproduce the masselement abundance relation?
- Can they enrich intergalactic gas with heavy elements?
- Can these enhance formation of disks over bulges?
- What about feedback from Active Galactic Nuclei?

 $\dot{M}_{wind} \propto \dot{E}_{SN} / \propto \dot{M}_{v} / 1$

esc

Feedback/galactic wind issues

- Can supernova feedback drive
- Can these reproduce the masselement abundance relation?
- Can they enrich intergalactic gas with heavy elements?
- Can these enhance formation of disks over bulges?
- What about feedback from Active Galactic Nuclei?

Including the formation and evolution of stars

- Stars form where gas is dense, cold and self-gravititating
- Star formation is *not* resolved in galaxy formation simulations a simple *sub-grid* prescription is needed, for example $\dot{\rho}_* = \alpha \ \rho_{gas} \ t_{dyn}$
- Aging of stars affects their brightness and colour
- Supernovae, explosions of massive stars put energy and heavy elements into surrounding gas *feedback, chemical enrichment*
- Feedback processes are also not resolved and must also be implemented with phenomenological recipes
- Implementation details *strongly* affect galaxy formation models

Simulating the formation of individual galaxies

- Systems which have a *major merger* after most of their stars have formed end up looking like **Elliptical galaxies**
- Systems which have no major merger at late times end up having a substantial disk and looking like **Spiral galaxies** Disks grow inside-out and late,
- It seems very hard to make spiral galaxies with small bulges

- It's also hard to match the low formation efficiencies required by abundance matching....
- •. .. or to get get enough heavy elements out of galaxies

Problems with feedback recipes?

z = 0 galaxy light from a semianalytic model

Where are the first (lowest Z) stars now?

Hi-res simulation of the formation of a "Milky Way" and its satellites

"First stars" have little correlation with "lowest Z" stars.

Most "old stars are in the bulge

Most lo-Z stars are in satellites (60%) or their debris (30%)

White & Springel 1999

The first stars were metal-poor

but

Today's most metal-poor stars are not the oldest stars -- rather they formed in the smallest systems

While metal-poor stars are in all objects, metal-rich stars are only in massive objects

→ It is the <u>mean metallicity</u> of the MW halo which betrays its progenitors, not the low-Z tail

Aquarius stellar halos

Structure formation simulations with gas

- Formation of a cluster, DM+ nonradiative gas (Springel)
- Formation of a spiral, "all" physics (Steinmetz)
- Formation of a spiral, "all" physics (Governato)
- Spiral merger with black holes (Springel/Di Matteo)