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Finding Inflation: Breakthroughs 
in 2012 and 2013

• Discovery of broken scale invariance, ns<1, with more than 5σ 

• WMAP+ACT+SPT+BAO [December 2012] 

• WMAP+Planck [March 2013] 

• Remarkable degree of Gaussianity of primordial fluctuations 

• Non-Gaussianity limited to <0.2% by WMAP and <0.04% by 
Planck [for the local form] 

• These are important milestones: strong evidence for the 
quantum origin of structures in the universe [Slava’s talk]



WMAP(temp+pol)+ACT+SPT+BAO+H0
WMAP(pol) + Planck + BAO 

Courtesy of David Larson

A power-law scalar initial  
power spectrum is assumed



Breakthrough* in 2014
• Discovery of the primordial* B-modes with more 

than 5σ by BICEP2 

• Detection of nearly scale-invariant tensor 
perturbations proves inflation 

• This requires precise characterisation of the B-
mode power spectrum. How are we going to 
achieve this?

*yet to be confirmed



If BICEP2’s discovery of the primordial 
B-modes is confirmed, what is next?

• Prove inflation by characterising the B-mode power 
spectrum precisely. Specifically: 

• We will find the existence of the predicted “reionisation 
bump” at l<10 

• We will determine the tensor tilt, nt, to the precision of a 
few x 10–2 

• [The exact scale invariance is nt=0] 

• Added bonus: we may be able to measure the number of 
neutrino species from the B-mode power spectrum!



A comment on the tension 
between r~0.2 and WMAP/Planck

r=0.2
r=1.2



Lowering TT at low multipoles
• Adding a scale-dependent [running] scalar spectral 

index improves χ2 by 

• Δχ2=–6.5 [one more free parameter] 

• Adding isocurvature perturbations totally anti-
correlated with adiabatic perturbations improves χ2 by 

• Δχ2=–4.2 [one more free parameter] 

• Both can lower the temperature power spectrum at low 
multipoles. But, do the data require such modifications? 

Bayesian Evidence



Bayesian Evidence

• Bayesian evidence penalises models which have: 

• Too many free parameters 

• Free parameters which have too much freedom 
[i.e., models are not predictive]

likelihood prior
Evidence =

Z
dN✓ L(data|~✓)P (~✓)



Log[Evidence Ratio]

• ln(Evidence Ratio)=0 to 1 -> no evidence 

• ln(Evidence Ratio)=1 to 3 -> moderate evidence 

• ln(Evidence Ratio)=3 to 5 -> strong evidence 

• ln(Evidence Ratio)>5 -> decisive evidence

• Take two models, and compute the Bayesian 
evidences 

• Take the ratio of the evidences, and compute natural 
logarithm 

• Is there evidence that one model is preferred over 
another?



Running Index

• Prior: ρs=[–0.1,0.1] 

• 95% posterior: 
ρs=[–4.4,–0.12]x10–2 

• Log[Evidence Ratio 
wrt LCDM+r] = 2.55 

• Moderately in favour 

Giannantonio & Komatsu, in prep.

k3P (k) / kns�1+ 1
2⇢s ln(k/k0)



[Anti] Correlated Isocurvature Perturbation

• Prior: α=[0,1] 

• 95% posterior: 
α=[0,1.4]x10–2 

• Log[Evidence Ratio 
wrt LCDM+r] = –2.1 

• Moderately against 

Giannantonio & Komatsu, in prep.



Effect of Relativistic Neutrinos on  
the B-mode power spectrum

• Gravitational waves are often thought to obey a 
wave equation in vacuum, simply redshirting away 
like this:  

• However, gravitational waves suffer from damping 
due to anisotropic stress of neutrinos:

⇤hij = 0

⇤hij = �16⇡G

a2
�T (⌫)

ij

This results in damping of hij, and the effect is 
proportional to the energy density of relativistic 
neutrinos, hence Neff [Weinberg 2004]
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Signal-to-noise Estimates
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• With the full lensing B-mode [i.e., no de-lensing] 

!

• With 90% de-lensing

We can use this measurement to constrain 
the number of effective neutrino species 
[Zhao, Zhang & Xia 2009]



Tensor Tilt, nt
• Unlike the scalar tilt, it is not easy to determine the 

tensor tilt because the lensing B-mode power 
spectrum reduces the number of usable modes for 
measuring the primordial B-mode power spectrum 

• In the best case scenario without de-lensing, the 
uncertainty on nt is Err[nt]~0.03 for r=0.1, which is 
too large to test the single-field consistency relation, 
nt = –r/8 ~ –0.01(r/0.1) 

• De-lensing is crucial!



Lensing limits our ability to 
determine the tensor tilt

If noise is <5uK arcmin, !
lowering noise further !

does not help



Without de-lensing [r=0.1]
Most optimistic forecast [full sky, white noise, no foreground]



90% de-lensing [r=0.1]
Most optimistic forecast [full sky, white noise, no foreground]



Why reionisation bump?
• Measuring the reionisation bump at l<10 would not 

improve the precision of the tensor tilt very much 

• However, it is an important qualitative test of the 
prediction of inflation 

• The measurement of the reionisation bump is a 
challenging task due to Galactic foreground. How bad 
can it be?



How many components?

• CMB: Tν ~ ν0 

• Synchrotron: Tν ~ ν–3 

• Dust: Tν ~ ν2 

• Therefore, we need at least 3 frequencies to 
separate them



• At 100 GHz, the total foreground emission is a couple of 
orders of magnitude bigger in power at l<10

Planck Sky Model v1.6.2



Gauss will help us
• The power spectrum captures only a fraction of 

information 

• CMB is very close to Gaussian, while foreground is 
highly non-Gaussian 

• CMB scientist’s best friend is this equation:

�2 lnL = ([data]i � [stu↵]i)
t(C�1)ij([data]j � [stu↵]j)

2-point function of  
CMB plus noise



WMAP’s Simple Approach

• Use the 23 GHz map as a tracer of synchrotron 

• Fit the 23 GHz map to a map at another frequency with a single 
amplitude αS, and subtract 

• After correcting for the “CMB bias”, this method removes 
synchrotron completely, provided that: 

• Spectral index [Tν~νβ; β~–0.3 for synchrotron] does not vary 
across the sky 

• Residual foreground emission increases as the index variation 
increases



Limitation of the Simplest 
Approach

• Synchrotron index does vary a lot across the sky
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Going with the simplest
• While the synchrotron and dust indices do vary 

across the sky, let us go ahead with the simplest 
approach 

• Obvious improvements are possible: 

• Fit multiple coefficients to different locations in 
the sky 

• Use more frequencies to constrain indices 
simultaneously 



Methodology



O(N3)

• Since we cannot invert the covariance matrix when 
the number of pixels is too large, we focus on low-
resolution Q and U maps with 3072 pixels per map 
[Nside=16; 3.7-degree pixel]



We target the reionisation bump



Two Masks and Choice of 
Regions for Synch. Index

Method I Method II



Results
• It works well! 

• Method I: the bias is 
δr=2x10–3 

• Method II: the bias is 
δr=0.6x10–3 

• [This analysis needs to 
be re-done with the dust 
spectral index from 
Planck]

Katayama & Komatsu, ApJ, 737, 78 (2011)
[3 frequency bands: 60, 100, 240 GHz]



Toward precision 
measurement of B-modes

• r~10–3 seems totally possible, even in the presence 
of synchrotron and dust emissions 

• What experiment can we design to achieve this 
measurement?



LiteBIRD
• Next-generation polarisation-sensitive microwave 

experiment. Target launch date: early 2020 

• Led by Prof. Masashi Hazumi (KEK); a 
collaboration of ~70 scientists in Japan, USA, 
Canada, and Germany 

• Singular goal: measurement of the primordial B-
mode power spectrum with Err[r]=0.001!

• 6 frequency bands between 50 and 320 GHz



LiteBIRD Lite (Light) Satellite for the Studies of B-mode Polarization and 
Inflation from Cosmic Background Radiation Detection

■ 100mK focal plane w/ multi-chroic 
superconducting detector array 

■ 6 bands b/w 50 and 320 GHz

■  Candidate for JAXA’s future missions on “fundamental physics”  
■  Goal: Search for primordial gravitational waves to the lower bound of well-motivated 

inflationary models 
■  Full success: δr < 0.001 (δr is the total uncertainties on tensor-to-scalar ratio, which 

is a fundamental cosmology parameter related to the power of primordial 
gravitational waves)

■Continuously-rotating HWP 
w/ 30 cm diameter 

■ 60 cm primary mirror w/ 
Cross-Dragone 
configuration (4K)

JT/ST + ADR w/ 
heritages of X-ray missions

Major specifications

■Orbit: L2 (Twilight LEO ~600km as an option) 
■Weight: ~1300kg 
■ Power: ~2000W 
■Observing time: > 2 years 
■ Spin rate: ~0.1rpm
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LiteBIRD focal plane design
UC Berkeley  
TES  option

tri-chroic（140/195/280GHz）

tri-chroic（60/78/100GHz）

Tbath = 100mK

Stre
hl ra

tio>0.8

POLARBEAR 
focal plane as 
proof of principle

2022 TES 
bolometers

Band centers can  
be distributed to  
increase the  
effective number  
of bands

More space to place <60GHz detectors

2µKarcmin 
(w/ 2 effective years)



LiteBIRD proposal milestones
• 2012 October - 2014 March  

Feasibility studies & cost estimation with MELCO and NEC 
!

• 2013 April - 2014 April 
Review and recommendation from Science Council of Japan 

!
• late 2014  

White Paper (will be published in Progress of Theoretical and 
Experimental Physics (PTEP) 

!
• 2014 June - December  

Proposal and Mission Definition Review (MDR)  
!

• 2015 ~  
Phase A 



Conclusion
• Important milestones for inflation have been achieved: ns<1 with 5σ; 

remarkable Gaussianity 

• The next goal: unambiguous measurement of the primordial B-mode 
polarisation power spectrum 

• A note on the WMAP/Planck–BICEP2 tension: anti-correlated 
isocurvature does not help 

• Err[nt]~0.01 possible only with substantial de-lensing 

• Neutrino damping observable if r~0.1 and de-lensing 

• Foreground cleaning with the simplest internal template method is 
promising, limiting the bias in r to <10–3 

• LiteBIRD proposal: a B-mode CMB polarisation satellite in early 
2020


