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Two New Results

1. We find, for the first time in the Sunyaev-Zel’dovich (SZ) 
effect, a significant difference between relaxed and non-
relaxed clusters.

• Important when using the SZ effect of clusters of 
galaxies as a cosmological probe.

2. The existence of Bullet Cluster poses a challenge to the 
standard ΛCDM cosmology.

• Or, a challenge to something else. 2



Clusters and Cosmology

• Clusters offer a powerful probe of cosmology, including 
the nature of dark energy and tests of General 
Relativity on cosmological scales.

• In order for this method to work, one must know how 
the observables (e.g., temperature, X-ray 
luminosity, the Sunyaev-Zel’dovich effect) are related 
to the mass of clusters.

• Why?
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Theory gives 
the mass function, dn/dM

• The number of clusters as a function of redshift and 
mass, dn/dM, is called the mass function.

• This function depends primarily on the amplitude 
(root mean square) of matter density fluctuations, 
σ(M,z). This quantity traces the growth of structure.

• σ(M,z) is proportional to 1/(1+z) during the 
matter era.

• σ(M,z) does not depend on z during the 
cosmological-constant dominated era.
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Observables to dn/dM
• Therefore, we must compare the observed number of 

clusters to dn/dM. 

• We don’t usually measure the mass of clusters 
directly, so we must relate the observables to the 
mass.

• M–temperature; M–luminosity; M–SZ; etc

• If this mapping is incorrect, we would infer a wrong 
cosmology!

• Understanding the physics of clusters themselves is 
very important. Do we understand it? 5



Sunyaev–Zel’dovich Effect

• ΔT/Tcmb = gν y

Zel’dovich & Sunyaev (1969); Sunyaev & Zel’dovich (1972)

observer

Hot gas with the 
electron temperature of Te >> Tcmb

y = (optical depth of gas) kBTe/(mec2)
= [σT/(mec2)]∫nekBTe d(los)
= [σT/(mec2)]∫(electron pressure)d(los)

gν=–2 (ν=0);  –1.91, –1.81 and –1.56 at ν=41, 61 and 94 GHz
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WMAP Temperature Map
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Where are clusters?

z≤0.1; 0.1<z≤0.2; 0.2<z≤0.45
Radius = 5θ500

Virgo
Coma
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Coma Cluster (z=0.023)

• “Optimal V and W band” analysis can separate SZ and 
CMB. The SZ effect toward Coma is detected at 3.6σ.

61GHz
94GHz

gν=–1.81
gν=–1.56

We find that the 
CMB fluctuation in 

the direction of 
Coma is ≈ –100uK.

(This is a new result!)

ycoma(0)=(7±2)x10–5 
(68%CL)

(determined from X-ray)
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A Question

• Are we detecting the expected amount of electron 
pressure, Pe, in the SZ effect?

• Expected from X-ray observations?

• Expected from theory?
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Arnaud et al. Profile

• A fitting formula for the average electron pressure 
profile as a function of the cluster mass (M500), derived 
from 33 nearby (z<0.2) clusters.
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Arnaud et al. Profile

• A significant 
scatter exists at 
R<0.2R500, but a 
good convergence 
in the outer part.

X-ray data

sim.
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Coma Data vs Arnaud • M500=6.6x1014h–1Msun is 
estimated from the 
mass-temperature 
relation (Vikhlinin et al.)

• TX
coma

 =8.4keV.

• Arnaud et al.’s profile 
overestimates both the 
direct X-ray data and 
WMAP data by the 
same factor (0.65)!

• To reconcile them, 
Txcoma=6.5keV is 
required, but that is 
way too low.The X-ray data (XMM) are provided by A. Finoguenov.
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Well...

• That’s just one cluster. What about the other clusters?

• We measure the SZ effect of a sample of well-studied 
nearby clusters compiled by Vikhlinin et al.
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Low-SZ is seen in the WMAP

16
d: ALL of “cooling flow clusters” are relaxed clusters.
e: ALL of “non-cooling flow clusters” are non-relaxed clusters.

X-ray Data Model



Low-SZ: Signature of mergers?

17
d: ALL of “cooling flow clusters” are relaxed clusters.
e: ALL of “non-cooling flow clusters” are non-relaxed clusters.

ModelX-ray Data



SZ: Main Results
• Arnaud et al. profile systematically overestimates the 

electron pressure! (Arnaud et al. profile is ruled out at 
3.2σ).

• But, the X-ray data on the individual clusters agree well 
with the SZ measured by WMAP.

• Reason: Arnaud et al. did not distinguish between 
relaxed (CF) and non-relaxed (non-CF) clusters.

• This will be important for the proper interpretation of 
the SZ effect when doing cosmology with it. 18



Cooling Flow vs Non-CF
• In Arnaud et al., 

they reported that 
the cooling flow 
clusters have much 
steeper pressure 
profiles in the inner 
part. 

• Taking a simple 
median gave a 
biased “universal” 
profile. 19



Theoretical Models
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Arnaud et al.



“World” Power Spectrum

• The SPT measured the secondary anisotropy from 
(possibly) SZ. The power spectrum amplitude 
is ASZ=0.4–0.6 times the expectations. Why?

point source
thermal SZ

kinetic SZ
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SPT ACT
Lueker et al. Fowler et al.

point source
thermal SZ



Lower ASZ:  Two Possibilities

• [1] The number of clusters is less than expected.

• In cosmology, this is parameterized by the so-called “σ8” 
parameter.
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x [gas pressure]2

• σ8 is 0.77 (rather than 0.81):  ∑mν~0.2eV?



Lower ASZ:  Two Possibilities

• [2] Gas pressure per cluster is less than expected.

• The power spectrum is [gas pressure]2.

• ASZ=0.4–0.6 means that the gas pressure is less than 
expected by ~0.6–0.7.

• And, our measurement shows that this is what is going on!
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A Puzzle
• SZ effect: Coma’s radial profile is measured, several 

massive clusters are detected, and the statistical 
detection reaches 6.5σ. 

• Evidence for lower-than-theoretically-expected gas 
pressure.

• The X-ray data are fine: we need to revise the existing 
models of the intracluster medium.

• Distinguishing relaxed and non-relaxed clusters is 
very important! 24



Bullet Cluster: A Challenge 
to ΛCDM Cosmology

• Jounghun Lee (Seoul National) and EK, arXiv:1003.0939
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1E 0657–56
• The main-cluster mass ~ 

1015Msun

• The virial radius is~2Mpc

• The sub-cluster mass ~ 
1014Msun

• ~1:10 to 1:6 (nearly) head-
on collision. 

Main Sub

Markevitch et al. (2002); Clowe et al. (2004, 2006)
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1E 0657–56
Markevitch (2006)
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1E 0657–56
Markevitch (2006)

contact 
discontinuity
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Shock Velocity 
vs Clump Velocity

• The Mach number derived from the X-ray data at the 
shock implies a very high shock velocity (i.e., the 
velocity of the shock front) of 4700 km/s.

• This, however, does not mean that the dark matter 
clump is moving at this velocity.

• The clump can slow down significantly by gravitational 
friction, etc., relative to the shock. (Milosavljevic et al.; 
Springel & Farrar; Mastropietro & Burkert).

• The clump velocity can be ~3000 km/s. 29



A question asked by White

• In Hayashi & White (2006), they asked the following 
question: “can we find a subclump moving at ~4500km/s 
somewhere in the Millennium Simulation?”

• The answer is yes, and thus the bullet cluster does not 
seem anomalous at all.

• This conclusion was later challenged by Farra & Rosen 
(2007), but the recent finding that the subclump can 
be as slow as ~3000 km/s makes the velocity of the 
subclump consistent with ΛCDM. However... 30



1E 0657–56 is more than just 
the shock velocity!

• The stunning observational 
fact is that the gas of the 
main cluster (remember 
this thing is 1015Msun) is 
ripped off the gravitational 
potential.

• How did that happen?

Main Sub

31
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A 3D Hydrodynamical 
Simulation by Springel

• The bullet seems reproduced well, but look at the main 
cluster: the gas couldn’t escape from the main cluster.

X-ray surface brightness maps with different 
concentration parameters
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The key is the initial velocity

• In Springel’s simulation, two clusters (1:10 mass ratio) 
were given zero relative velocities at infinity.

• The bullet picks up the velocity of 2057 km/s at 3.37 
Mpc, which is about 1.5 R200 of the main cluster.

• This velocity was not sufficient!
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Need for parameter search

• In order to find the best parameters that can 
reproduce the details of the bullet cluster, Mastropietro 
& Burkert (2008) have run a number of simulations 
with different parameters.

• Mass ratios (1:6 seems better than 1:10)

• Initial velocities (2000 to 5000 km/s at 2.2 R200)

• Concentration parameters

• Note that these are non-cosmological simulations.
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~3000 km/s is required

• The initial velocity of ~3000 km/s can (barely) reproduce 
the gas distribution. ~2000 km/s cannot.

• Why? The escape velocity of the main cluster is 2000 km/s!

2000 km/s at 2.2 R200 3000 km/s at 2.2 R200
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The real question

• So, the real question that should have been asked is, 
“can we find sub clusters that are entering the main cluster 
at the initial velocity of ~3000 km/s at ~2R200?”

• To do this, we need a very large cosmological 
simulation because we need many ~1015Msun halos for 
good statistics.
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MICE Simulation
• Such a simulation is conveniently publicly available!

• MICE Simulation (Fosalba et al. 2008; Crocce et al. 
2010)

• Flat ΛCDM with Ωm=0.25, h=0.7, ns=0.95, σ8=0.8

• Box size = 3 h–1 Gpc (huge!)

• # of particles = 20483

• The particle mass = 2x1011h–1Msun.

• Perfect for our purpose because we only need to 
resolve >1014h–1Msun. Many particles per halo.
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Finding Bullet-like Systems
• Select the “bullet-like 

systems” by choosing:

• the sub halos near the main 
cluster (2<R/R200<3)

• Nearly head-on collision

• Mass ratio of Msub/Mmain<0.1, 
where Mmain>1015Msun

• We have ~1000 
systems that satisfy all 
the above conditions.

38
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2<R/R200<3
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Mass Ratio Distribution
• We will assume that the 

mass ratio of 1E0657–56 is 
1:10.

• Mastropietro & Burkert 
argue that 1:6 reproduces 
the observation better.

• Then, this system would 
be even rarer than what 
we find (which is already 
quite rare).

39
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Result: Velocity Distribution
• Just focus on the dashed 

histogram, which is the 
distribution of velocities in 
2<R/R200<3, measured from 
the simulation.

• Easy to understand: a body 
freely-falling into the 
M200=1015Msun cluster would 
pick up the velocity of 
1200–1400 km/s in 
3>R/R200>2.

402500 km/s



And...
• 3000 km/s is way, way off.

• By approximating the velocity distribution as a log-
normal distribution (which is a good fit), we find 
p(V>3000 km/s) = 3.3 x 10–11, at z=0.

• 1E0657–56 is at z=0.3.

• Using the MICE simulation output at z=0.5, we find 
p(V>3000 km/s) = 3.6 x 10–9.

• There are less fast-moving bullets at z=0 because Λ 
slows down the structure formation.
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Statement

• ΛCDM does not predict the existence of 3000 km/s 
sub-halos falling into 1015Msun clusters.
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Two Implications

1. The existence of 1E0657–56 rules out ΛCDM.

• Modified gravity? (Wyman & Khoury, 1004.2046; Moffat 
& Toth, 1005.2685)

2. We haven’t exhausted all the parameter space in the 
hydro simulations.

• Can the initial velocity of V<1800 km/s reproduce the 
observation?
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One way to think about this

• V2 = GMmain/R. So, you can get a higher velocity by 
somehow increasing G.

(i) V2=2Mmain*[Geff/rc + (GN/r–GN/rc)]

(ii)V2=2Mmain*[GN/rc + (Geff/r–Geff/rc)]

Main
M~1015Msun

Sub
Geff>GNewton Geff=GNewton

Geff=GNewton Geff>GNewton

(i)
(ii)

rc

r
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Conclusion

• The observed morphology of 1E0657–56 calls for a 
high-velocity initial condition, ~3000 km/s, at ~2R200.

• This is not possible in a ΛCDM universe.

• Either (i) we haven’t tried hard enough to find a lower 
velocity solution for 1E0657–56, or (ii) ΛCDM is ruled 
out.

• A pink elephant?
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A Pink Elephant
(a remark by Neta Bahcall)
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1E0657–56 may not be the 
only one.

• RXJ1347–1145 (Komatsu et al. 2001; Mason et al. 2009)

• The combined analysis of the SZ and X-ray gave the 
shock velocity of 3900 km/s. (Kitayama et al. 2004)

• Confirmed by Suzaku (Ota et al. 2008)

• MACS J0025.4–1222 (Bradac et al. 2008)

• These clusters may provide equally 
serious challenges to ΛCDM!

MACS J0025.4–122247



Summary
1. We have found a significant difference between relaxed 

and non-relaxed clusters.

• Important when using the SZ effect of clusters of 
galaxies as a cosmological probe.

2. The existence of Bullet Cluster poses a challenge to the 
standard ΛCDM cosmology.

• Or, a challenge to something else: how do we move 
the gas out of the gravitational potential of 1015Msun 
object? 48



Finding Halos

• The MICE simulation gives us a halo catalog, found by 
the standard Friends-of-Friends method with a linking 
length of 0.2(Lbox/# of particles)=0.3h–1Mpc.

• This “linking length of 0.2” is known to (magically) 
produce the results that closely match the virial 
theorem.
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FoF Mass
• The particles identified by 

the FoF method reflect 
the iso-density contour.

• A good way to identify 
real halos, which are not 
at all spherical.

• But, how is the total mass 
of this halo identified by 
the FoF compared to 
M200 that people normally 
use?

Lukic et al. (2008)

Blue:  particles 
identified by FoF

iso-density contour
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FoF Mass vs M200

• It depends on the number of particles per halo 
and how halos are concentrated.

104 particles per halo

103

102

104 particles per halo

103

102

Less concentrated More concentrated
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FoF Mass vs M200

• The average of N200 is ~3000 for M>0.5x1015h–1Msun 

• Mfof/M200~1.3, giving Rfof/R200~1.1. I.e., not important.

104 particles per halo

103

102

104 particles per halo

103

102

Less concentrated More concentrated
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