Two Interesting Results on Clusters of Galaxies

Eiichiro Komatsu (Texas Cosmology Center, Univ. of Texas at Austin) Yukawa International Seminar, YITP, June 22, 2010

1

Two New Results

- I. We find, for the first time in the Sunyaev-Zel'dovich (SZ) effect, a significant difference between relaxed and nonrelaxed clusters.
 - Important when using the SZ effect of clusters of galaxies as a cosmological probe.
- 2. The existence of Bullet Cluster poses a challenge to the standard ΛCDM cosmology.
 - Or, a challenge to something else.

Clusters and Cosmology

- Clusters offer a powerful probe of cosmology, including the nature of dark energy and tests of General Relativity on cosmological scales.
- In order for this method to work, one must know how the observables (e.g., temperature, X-ray luminosity, the Sunyaev-Zel'dovich effect) are related to the mass of clusters.
- Why?

Theory gives the mass function, dn/dM

- The number of clusters as a function of redshift and mass, dn/dM, is called the mass function.
 - This function depends primarily on the amplitude (root mean square) of matter density fluctuations, σ(M,z). This quantity traces the growth of structure.
 - σ(M,z) is proportional to 1/(1+z) during the matter era.
 - σ(M,z) does not depend on z during the cosmological-constant dominated era.

Observables to dn/dM

- Therefore, we must compare the observed number of clusters to dn/dM.
 - We don't usually measure the mass of clusters directly, so we must relate the observables to the mass.
 - M-temperature; M-luminosity; M-SZ; etc
 - If this mapping is incorrect, we would infer a wrong cosmology!
- Understanding the physics of clusters themselves is very important. Do we understand it?

5

Zel'dovich & Sunyaev (1969); Sunyaev & Zel'dovich (1972) Sunyaev–Zel'dovich Effect

Hot gas with the electron temperature of $T_e >> T_{cmb}$

> y = (optical depth of gas) $k_B T_e/(m_e c^2)$ $= [\sigma_T/(m_ec^2)] \int n_e k_B T_e d(los)$

 $g_{v} = -2 (v=0); -1.91, -1.81 \text{ and } -1.56 \text{ at } v=41, 61 \text{ and } 94 \text{ GHz}$

observer • $\Delta T/T_{cmb} = g_v y$ = $[\sigma_T/(m_ec^2)] \int (electron pressure) d(los)$

WMAP Temperature Map

-200

7

Where are clusters? Coma Virgo

$z \le 0.1; 0.1 \le z \le 0.2; 0.2 \le z \le 0.45$ Radius = $5\theta_{500}$

We find that the CMB fluctuation in the direction of Coma is $\approx -100 \mu K$. (This is a new result!)

 $y_{coma}(0) = (7\pm 2) \times 10^{-5}$ (68%CL)

A Question

- Are we detecting the **expected** amount of electron pressure, P_e , in the SZ effect?
 - Expected from X-ray observations?
 - Expected from theory?

Arnaud et al. Profile

 A fitting formula for the average electron pressure profile as a function of the cluster mass (M_{500}), derived from 33 nearby (z<0.2) clusters.

Arnaud et al. Profile

A significant scatter exists at R<0.2R₅₀₀, but a good convergence in the outer part.

The X-ray data (XMM) are provided by A. Finoguenov.

13

way too low.

Well...

- That's just one cluster. What about the other clusters?
 - We measure the SZ effect of a sample of well-studied nearby clusters compiled by Vikhlinin et al.

Coma (non-cooling flow) $M_{500} = 6.7 \times 10^{14} h^{-1} M_{sun}$ A2029 (cooling flow) Komatsu $M_{500} = 6.2 \times 10^{14} h^{-1} M_{sun}$ A754 (non-cooling flow) $M_{500} = 6.1 \times 10^{14} h^{-1} M_{sun}$ **O**t <u>a</u>l. A3667 (non-cooling flow) 2010) $M_{500} = 5.3 \times 10^{14} h^{-1} M_{sun}$ A85 (cooling flow) $M_{500} = 4.3 \times 10^{14} h^{-1} M_{sun}$ ZwCl1215 (cooling flow) $M_{500} = 4.1 \times 10^{14} h^{-1} M_{sun}$ 0.2 0.4 0.6 0.8 1.2 1.4 1.0 θ/θ_{500}

15

-yeal

 \square

as

D

lent

Low-SZ is seen in the WMAP

Mass Range ^a	# of clusters	X-ray Data	Model
$6 \le M_{500} < 9$	5	0.90 ± 0.16	0.73 ± 0.13
$4 \le M_{500} < 6$	6	0.73 ± 0.21	0.60 ± 0.17
$2 \le M_{500} < 4$	9	0.71 ± 0.31	0.53 ± 0.25
$1 \le M_{500} < 2$	9	-0.15 ± 0.55	-0.12 ± 0.47
$4 \le M_{500} < 9$	11	0.84 ± 0.13	0.68 ± 0.10
$1 \le M_{500} < 4$	18	0.50 ± 0.27	0.39 ± 0.22
$4 \le M_{500} < 9$			
cooling flow ^d	5	1.06 ± 0.18	0.89 ± 0.15
non-cooling flow ^e	6	0.61 ± 0.18	0.48 ± 0.15
$2 \le M_{500} < 9$	20	0.82 ± 0.12	0.660 ± 0.095
$1 \le M_{500} < 9$	29	0.78 ± 0.12	0.629 ± 0.094

^a In units of $10^{14} h^{-1} M_{\odot}$. Coma is not included. d:ALL of "cooling flow clusters" are relaxed clusters. e:ALL of "non-cooling flow clusters" are non-relaxed clusters. ¹⁶

Low-SZ: Signature of mergers?

Mass Range ^a	# of clusters
$6 \le M_{500} < 9$	5
$4 \le M_{500} < 6$	6
$2 \le M_{500} < 4$	9
$1 \le M_{500} < 2$	9
$4 \le M_{500} < 9$	11
$1 \le M_{500} < 4$	18
$4 \le M_{500} \le 9$	
cooling flow ^d	5
non-cooling flow ^e	6
$2 \le M_{500} < 9$	20
$1 \le M_{500} < 9$	29

^a In units of $10^{14} h^{-1} M_{\odot}$. Coma is not included. d:ALL of "cooling flow clusters" are relaxed clusters. e:ALL of "non-cooling flow clusters" are non-relaxed clusters. ¹⁷

SZ: Main Results

- Arnaud et al. profile systematically overestimates the electron pressure! (Arnaud et al. profile is ruled out at **3.2**σ).
- But, the X-ray data on the *individual* clusters agree well with the SZ measured by WMAP.
- Reason: Arnaud et al. did not distinguish between relaxed (CF) and non-relaxed (non-CF) clusters.
 - This will be important for the proper interpretation of the SZ effect when doing cosmology with it. 18

• In Arnaud et al., they reported that the cooling flow clusters have much steeper pressure profiles in the inner part.

• Taking a simple median gave a biased "universal" profile. 19

"World" Power Spectrum

 The SPT measured the secondary anisotropy from (possibly) SZ. The power spectrum amplitude is Asz=0.4-0.6 times the expectations. Why?

Lower Asz: **Two** Possibilities

$$C_l = g_{\nu}^2 \int_0^{z_{\text{max}}} dz \frac{dV}{dz} \int_{M_{\text{min}}}^{M_{\text{max}}}$$

[1] The number of clusters is less than expected. • In cosmology, this is parameterized by the so-called " σ_8 "

parameter.

$$\frac{l(l+1)C_l}{2\pi} \simeq 330 \,\mu \mathrm{K}^2 \,\sigma_8^7 \,\left(\frac{\Omega}{0.4}\right)$$

• σ_8 is 0.77 (rather than 0.81): $\sum m_v \sim 0.2 eV$?

 $\frac{dn(M,z)}{dM} |\tilde{y}_l(M,z)|^2$

 $\left(\frac{\Omega_{\rm b}h}{0.035}\right)^2 \times [gas \ pressure]^2$

Lower Asz: **Two** Possibilities

$$C_l = g_{\nu}^2 \int_0^{z_{\max}} dz \frac{dV}{dz} \int_{M_{\min}}^{M_{\max}} dM \frac{dn(M,z)}{dM} |\tilde{y}_l(M,z)|^2$$

• [2] Gas pressure per cluster is less than expected.

- The power spectrum is [gas pressure]².
- A_{SZ}=0.4–0.6 means that the gas pressure is less than expected by $\sim 0.6-0.7$.
- And, our measurement shows that this is what is going on!

A Puzzle

- SZ effect: Coma's radial profile is measured, several massive clusters are detected, and the statistical detection reaches 6.5σ .
 - Evidence for lower-than-theoretically-expected gas pressure.
 - The X-ray data are fine: we need to revise the existing models of the intracluster medium.
 - Distinguishing relaxed and non-relaxed clusters is very important!

Bullet Cluster: A Challenge to ACDM Cosmology

Jounghun Lee (Seoul National) and EK, arXiv:1003.0939

Markevitch et al. (2002); Clowe et al. (2004, 2006) IE 0657–56

- The main-cluster mass ~
 I0¹⁵M_{sun}
 - The virial radius is~2Mpc
- The sub-cluster mass ~
 10¹⁴M_{sun}
- ~I:I0 to I:6 (nearly) headon collision.

I = 0657 - 56

Pre-shock South 10-4 Te~lokeV 10-5

500 kpc

shock front $(T_e \sim 30 \pm 5 \text{keV})$

I = 0657 - 56

Pre-shock Source 10-4 Te~IOkeV 10-5 500 kpc

500 kpc

contact discontinuity

Shock Velocity vs Clump Velocity

- The Mach number derived from the X-ray data at the shock implies a very high shock velocity (i.e., the velocity of the shock front) of 4700 km/s.
 - This, however, does not mean that the dark matter clump is moving at this velocity.
 - The clump can slow down significantly by gravitational friction, etc., relative to the shock. (Milosavljevic et al.; Springel & Farrar; Mastropietro & Burkert).
 - The clump velocity can be ~3000 km/s.

A question asked by White

- In Hayashi & White (2006), they asked the following question: "can we find a subclump moving at ~4500km/s somewhere in the Millennium Simulation?"
- The answer is yes, and thus the bullet cluster does not seem anomalous at all.
 - This conclusion was later challenged by Farra & Rosen (2007), but the recent finding that the subclump can be as slow as ~3000 km/s makes the velocity of the subclump consistent with ΛCDM. However... 30

IE 0657–56 is more than just the shock velocity!

- The stunning observational fact is that the gas of the main cluster (remember this thing is 10¹⁵M_{sun}) is ripped off the gravitational potential.
- How did that happen?

A 3D Hydrodynamical Simulation by Springel

X-ray surface brightness maps with different concentration parameters

• The bullet seems reproduced well, but look at the main cluster: the gas couldn't escape from the main cluster.

32

The key is the initial velocity

- In Springel's simulation, two clusters (1:10 mass ratio) were given zero relative velocities at infinity.
- The bullet picks up the velocity of 2057 km/s at 3.37 Mpc, which is about 1.5 R₂₀₀ of the main cluster.
- This velocity was not sufficient!

Need for parameter search

- In order to find the best parameters that can reproduce the details of the bullet cluster, Mastropietro & Burkert (2008) have run a number of simulations with different parameters.
 - Mass ratios (1:6 seems better than 1:10)
 - Initial velocities (2000 to 5000 km/s at 2.2 R₂₀₀)
 - Concentration parameters
- Note that these are non-cosmological simulations.

~3000 km/s is required

- 2000 km/s at 2.2 R₂₀₀ 3000 km/s at 2.2 R₂₀₀ • The initial velocity of ~3000 km/s can (barely) reproduce the gas distribution. ~2000 km/s cannot.
 - Why? The escape velocity of the main cluster is 2000 km/s! ³⁵

The real question

- So, the real question that should have been asked is, "can we find sub clusters that are entering the main cluster at the initial velocity of ~3000 km/s at ~2R₂₀₀?"
- To do this, we need a very large cosmological simulation because we need many ~10¹⁵M_{sun} halos for good statistics.

MICE Simulation

- Such a simulation is conveniently publicly available!
- MICE Simulation (Fosalba et al. 2008; Crocce et al. 2010)
 - Flat Λ CDM with Ω_m =0.25, h=0.7, n_s=0.95, σ_8 =0.8 • Box size = $3 h^{-1}$ Gpc (huge!)

 - # of particles = 2048^3
 - The particle mass = $2 \times 10^{11} h^{-1} M_{sun}$.
 - Perfect for our purpose because we only need to resolve >10¹⁴ $h^{-1}M_{sun}$. Many particles per halo. 37

Finding Bullet-like Systems

- Select the "bullet-like systems" by choosing:
- the sub halos near the main cluster (2<R/R₂₀₀<3)
- Nearly head-on collision
- Mass ratio of $M_{sub}/M_{main} < 0.1$, where $M_{main} > 10^{15}M_{sun}$
- We have ~1000 systems that satisfy all the above conditions.

Mass Ratio Distribution

- We will assume that the mass ratio of IE0657–56 is I:10.
 - Mastropietro & Burkert argue that 1:6 reproduces the observation better.
 - Then, this system would be even rarer than what we find (which is already quite rare).

Result: Velocity Distribution

- Just focus on the dashed
 histogram, which is the
 distribution of velocities in
 2<R/R₂₀₀<3, measured from
 the simulation.
- Easy to understand: a body freely-falling into the M₂₀₀=10¹⁵M_{sun} cluster would pick up the velocity of 1200–1400 km/s in 3>R/R₂₀₀>2.

And...

- 3000 km/s is way, way off.
 - By approximating the velocity distribution as a lognormal distribution (which is a good fit), we find $p(V>3000 \text{ km/s}) = 3.3 \times 10^{-11}$, at z=0.
- IE0657-56 is at z=0.3.
 - Using the MICE simulation output at z=0.5, we find $p(V>3000 \text{ km/s}) = 3.6 \times 10^{-9}$.
- There are less fast-moving bullets at z=0 because Λ slows down the structure formation.

Statement

ΛCDM does not predict the existence of 3000 km/s sub-halos falling into 10¹⁵M_{sun} clusters.

Two Implications

- I. The existence of IE0657–56 rules out ΛCDM .
 - Modified gravity? (Wyman & Khoury, 1004.2046; Moffat & Toth, 1005.2685)
- 2. We haven't exhausted all the parameter space in the hydro simulations.
 - Can the initial velocity of V<1800 km/s reproduce the observation?

• $V^2 = GM_{main}/R$. So, you can get a higher velocity by somehow increasing G.

(i) $V^2 = 2M_{main} * [G_{eff}/r_c + (G_N/r_G_N/r_c)]$ (ii) $V^2 = 2M_{main} * [G_N/r_c + (G_{eff}/r_G_{eff}/r_c)]$

Conclusion

- The observed morphology of IE0657–56 calls for a high-velocity initial condition, ~3000 km/s, at ~2R₂₀₀.
- This is not possible in a ACDM universe.
- Either (i) we haven't tried hard enough to find a lower velocity solution for 1E0657–56, or (ii) ΛCDM is ruled out.

• A pink elephant?

A Pink Elephant (a remark by Neta Bahcall)

46

IE0657–56 may not be the only one.

- RXJ1347–1145 (Komatsu et al. 2001; Mason et al. 2009)
 - The combined analysis of the SZ and X-ray gave the shock velocity of 3900 km/s. (Kitayama et al. 2004)
 - Confirmed by Suzaku (Ota et al. 2008)
- MACS J0025.4–1222 (Bradac et al. 2008)
 - These clusters may provide equally serious challenges to $\Lambda CDM!$

47

Summary

- I. We have found a significant difference between relaxed and non-relaxed clusters.
 - Important when using the SZ effect of clusters of galaxies as a cosmological probe.
- 2. The existence of Bullet Cluster poses a challenge to the standard ΛCDM cosmology.
 - Or, a challenge to something else: how do we move the gas out of the gravitational potential of 10¹⁵M_{sun} object?

Finding Halos

- The MICE simulation gives us a halo catalog, found by the standard Friends-of-Friends method with a linking length of $0.2(L_{box}/\# \text{ of particles})=0.3h^{-1}Mpc$.
- This "linking length of 0.2" is known to (magically) produce the results that closely match the virial theorem.

FoF Mass

Lukic et al. (2008)

- The particles identified by the FoF method reflect the iso-density contour.
- A good way to identify real halos, which are not at all spherical.
- But, how is the total mass of this halo identified by the FoF compared to M_{200} that people normally use?

FoF Mass vs M₂₀₀

• It depends on the number of particles per halo and how halos are concentrated. 51

FoF Mass vs M₂₀₀

• $M_{fof}/M_{200} \sim 1.3$, giving $R_{fof}/R_{200} \sim 1.1$. I.e., not important. 52