CMB Polarization: Toward an **Observational** Proof of Cosmic Inflation

Eiichiro Komatsu (Max-Planck-Institut für Astrophysik) Colloquium, Yukawa Institute for Theoretical Physics March 26, 2014

Has inflation happened?

• Yes, if the B-mode polarization detected by BICEP2 originates from primordial gravitational waves

Inflation, defined

- Necessary and sufficient condition for inflation = sustained accelerating expansion in the early universe
- Expansion rate: H = (da/dt)/a
- Accelerating expansion: $(d^2a/dt^2)/a = dH/dt + H^2 > 0$
- Implying: $-(dH/dt)/H^2 < 1$

• Therefore, we prove inflation by showing $-(dH/dt)/H^2 < 1$

How to show $-(dH/dt)/H^2 < 1$

- Detection of nearly scale-invariant gravitational waves!
 - Gravitational waves (GW) are continuously created during inflation, with the amplitude proportional to H
 - Inflation then stretches the wavelength of GW to large scales
- GW created earlier = GW seen on large scales
- Variation of the amplitudes of GW over length scales
 = Variation of H during inflation over time

The Key Predictions of Inflation

Fluctuations we observe today originated from quantum fluctuations generated during inflation

Nii tensor mode

scalar

mode

There should also be ultra-long-wavelength gravitational waves originated from quantum (or classical) fluctuations generated during inflation

We are measuring distortions in space

- A distance between two points in space • dl² = $a^2(t)e^{2\zeta(x,t)}[e^h]_{ij}dx^i dx^j$
 - $= a^{2}(t)[1+2\zeta(x,t)+...][$
- $\zeta(x,t)$: "curvature perturbation" (scalar mode) h_{ii}(x,t): "gravitational waves" (tensor mode)
 - Area-conserving anisotropic stretching of space: det[e^h]=1

$$[\delta_{ij}+h_{ij}(x,t)+...]dx^{i}dx^{j}$$

We are measuring distortions in space

- A distance between two points in space
 - dl² = $a^2(t)e^{2\zeta(x,t)}[e^h]_{ij}dx^i dx^j$
 - $= a^{2}(t)[1+2\zeta(x,t)+...][\delta_{ij}+h_{ij}(x,t)+...]dx^{i}dx^{j}$
- $\zeta(x,t)>0$: more (isotropic) stretching of space
 - More redshift -> colder photons
 - The Sachs-Wolfe formula gives $dT/T = -\zeta/5$

We are measuring distortions in space

- A distance between two points in space
 - dl² = $a^2(t)e^{2\zeta(x,t)}[e^h]_{ij}dx^i dx^j$
 - $= a^{2}(t)[1+2\zeta(x,t)+...][\delta_{ij}+h_{ij}(x,t)+...]dx^{i}dx^{j}$

• h_{ii}(x,t): anisotropic stretching of space

Gravitational waves are coming toward you...What do you do?

Gravitational waves stretch space, causing particles to move.

Two Polarization States of GW

This is great - this will automatically generate quadrupolar anisotropy around electrons!

From GW to temperature anisotropy

Electron

Scalar Mode

- Inflation predicts "nearly scale-invariant spectrum"
 - which means, for $P_{\zeta}(k) = \langle \zeta_k |^2 \rangle \sim k^{ns-4}$, n_s is close to unity
- Inflation predicts "nearly Gaussian fluctuations"
 - which means, for $f_{NL} \sim \langle \zeta_{k1} \zeta_{k2} \zeta_{k3} \rangle / [P_{\zeta}(k_1) P_{\zeta}(k_2) + cyc.]$, f_{NL} is much less than unity*

*for single-field canonical models

Scalar Mode: Current Status

- $n_s < I$ is discovered at last (i.e., by more than $5\sigma!$)
 - WMAP9+ACT+SPT+BAO: n_s=0.958±0.008 (68%CL)
 - Beautifully confirmed by Planck+WMAP9 polarization: $n_s=0.960\pm0.007$ (68%CL)
- Remarkably tight limit on $f_{NL}^{local} = 2.7 \pm 5.8$ (68%CL) by Planck
 - A massive (a factor of 3.4) improvement from WMAP9

Single-field, canonical inflation models agree with all the data: $I-n_s \approx f_{NL} \approx O[slow roll parameters] = O(10^{-2})$

Yet

• Neither $n_s < 1$ nor $f_{NL} < 1$ proves that inflation happened!

 We need to detect long-wavelength, scale-invariant primordial gravitational waves to definitively prove inflation observationally

Τοο

• CMB Polarization!

16

CMB Polarization

• CMB is (very weakly) polarized 17

"Stokes Parameters"

E←

Q<0; U=0

Stokes Q

Stokes U

19

East

Stokes Q

Stokes U

20

Stokes Q

Stokes U

Stokes Q

Stokes U

22

Stokes Q

Stokes U

Stokes Q

Stokes U

How many components?

I.CMB: $T_v \sim v^0$ **2.Synchrotron** (electrons going around magnetic fields): $T_{\nu} \sim \nu^{-3}$

3.Dust (heated dust emitting thermal emission): $T_v \sim v^2$

You need at least THREE frequencies to separate them!

Physics of CMB Polarization

Wayne Hu

 CMB Polarization is created by a local temperature quadrupole anisotropy.

Principle

• Polarization direction is parallel to "hot."

Stacking Analysis

 Stack polarization images around temperature hot and cold spots.

 Outside of the Galaxy mask (not shown), there are **II536** hot spots and 11752 cold spots.

Radial and Tangential Polarization Patterns around Temp. Spots

- All hot and cold spots are stacked
- "Compression phase" at θ=1.2 deg and "slow-down phase" at θ=0.6 deg are predicted to be there and we observe them!
- The 7-year overall significance level: 8σ

Sachs-Wolfe: $\Delta T/T = \Phi/3$ Stuff flowing in

Velocity gradient The left electron sees colder photons along the plane wave

Compression increases temperature Stuff flowing in

Pressure gradient slows down the flow

Velocity gradient

Planck Collaboration I (2013) Planck Data!

- Gravitational potential can generate the Emode polarization, but not B-modes.
- Gravitational waves can generate both Eand B-modes!

Two Polarization States of GW

This is great - this will automatically generate quadrupolar anisotropy around electrons!

From GW to CMB Polarization

Electron

From GW to CMB Polarization

From GW to CMB Polarization

Gravitational waves can produce **both** E- and B-mode polarization

Polarization Power Spectrum

degree scales, before March 17

No detection of B-mode polarization at

"Tensor-to-scalar Ratio," r

$\mathbf{r} = [Power in Gravitational Waves]$ / [Power in Curvature Perturbation] $= <h_{ij,k0}h^{ij,k0*} > / < |\zeta_{k0}|^2 > at k_0 = 0.002 Mpc^{-1}$

Inflation predicts r <~ I

Then...

• 10:45 (Eastern Standard Time), March 17, 2014

What is BICEP2?

- A small [26 cm] refractive telescope at South Pole
- 512 bolometers working at 150 GHz
- Observed 380 square degrees for three years [2010-2012]
- Previous: BICEP1 at 100 and 150 GHz [2006-2008]
- On-going: Keck Array = 5 x BICEP2 at 150 GHz [2011-2013] and additional detectors at 100 and 220 GHz [2014-]

dust

Color range 0 to 4µK

How does BICEP2 measure polarization?

 Taking the difference between two detectors (A&B), measuring two orthogonal polarization states

Horizontal slots -> A detector

Vertical slots -> B detector

These slots are co-located, so they look at approximately 47 same positions in the sky

Implication of the measured tensor-to-scalar ratio

 The measured r is directly connected to the potential energy of a field driving inflation.

• r = 0.2 implies 2x10¹⁶ GeV

- Grand Unification Scale! Inflation is a phenomenon of the high[est] energy physics
- r = 0.2 also implies that a field driving inflation moved by ~ 5 x Planck Mass. A challenge to model building

Is the signal cosmological?

- Worries:
 - Is it from Galactic foreground emission, e.g., dust?
 - Is it from imperfections in the experiment, e.g., detector mismatches?

Eiichiro Komatsu March 14 near Munich

If detection of the primordial B-modes were to be reported on Monday, I would like see:

[1] Detection (>3 sigma each) in more than one frequency, like 100 GHz and 150 GHz giving the same answers to within the error bars.

[2] Detection (could be a couple of sigmas each) in a few multipole bins, i.e., not in just one big multipole bin.

Then I will believe it!

 \sim

Eiichiro Komatsu March 14 near Munich

If detection of the primordial B-modes were to be reported on Monday, I would like see:

tection (>3 sigma each) in more than one frequency, like 100 GHz and Hz giving the same answers to within the error bars.

tection (could be a couple of sigmas each) in a few multipole bins, i.e., just one big multipole bin.

Then I will believe it!

 \sim

No 100 GHz x 100 GHz [yet]

- Using the I00xI50 GHz cross, they are able to "reject" representative spectra of synchrotron and dust at ~ 2 sigma level.
- In other words, it is only ~2 sigma level that they can claim the cosmological origin of the signal.

So, at this point

- I must conclude that:
 - "There is no strong evidence that the detected B modes" are not cosmological. However, there is no strong evidence that the detected B modes are cosmological, either."

Likelihood

auto subtracted cross subtracted base result

Current foreground models can bring r down from 0.2 to 0.1

> 0.5 0.4 0.6

Instrumental Effects

- BICEP2 measures polarization by taking the outputs of two detectors
- If the properties of these detectors are different, the temperature-to-polarization leakage occurs
 - Two detectors seeing different locations in the sky
 - Two detectors receiving slightly different frequencies
 - Two detectors calibrated with a slight mis-calibration

57

Two detectors having different beams in the sky

Worries raised at FB so far

Worries raised at FB so far

"Reconciling" T and B

- The Planck temperature data suggest r<0.11 [95%CL], assuming a power-law scalar power spectrum and adiabatic perturbations
- The BICEP2 data suggest r~0.1-0.2
 - The lower r values not a problem
 - The higher r values would require a modification to the model:
 - Scale-dependent power-law scalar perturbation spectrum
 - A new perturbation source [anti]correlated with adiabatic perturbations, e.g., isocurvature
 - A cut-off of the scalar power at the largest scale -> a probe of the beginning of inflation?

Next Step

- It is absolutely necessary to confirm BICEP2's claim at different frequencies
- Penzias & Wilson discovered the CMB at 7.3 cm, but the subsequent confirmation by Roll & Wilkinson at 3.2 cm played a crucial role in confirming a black-body spectrum of the signal
- We need this confirmation

If confirmed, then what's next?

• We must measure the "reionization bump" at I<10

- We then wish to determine the tensor tilt, n_t , to the precision of O(0.01)
 - The exact scale invariance is $n_t = 0$

• Even in the science channel (100GHz), foreground is a couple of orders of magnitude bigger in power at I<~10

Dust Synchrotron 100 1000 Multipole, I

Gauss will help you

- Don't be scared too much: the power spectrum captures only a fraction of information.
- Yes, CMB is very close to a Gaussian distribution. But, foreground is highly non-Gaussian.
- CMB scientist's best friend is this equation:

$-2\ln L = ([data]_i - [stuff]_i)^T (C^{-1})_{ij} ([data]_j - [stuff]_j)$

where " C_{ii} " describes the two-point correlation of CMB and noise

WMAP's Simple Approach $[data] = [Q', U'](v) = \frac{[Q, U](v) - \alpha_S(v)[Q, U](v) = 23 \text{ GHz})}{1 - \alpha_S(v)}$

- Use the 23 GHz map as a tracer of synchrotron.
- Fit the 23 GHz map to a map at another frequency (with a single amplitude α_s), and subtract.
- After correcting for "CMB bias," this method removes foreground completely, provided that:
 - Spectral index (" β " of $T_v \sim v^\beta$; e.g., $\beta \sim -3$ for synchrotron) does not vary across the sky.

Limitation of the simplest approach

• The index β <u>does</u> vary at lot for synchrotron!

• We don't really know what β does for dust (just yet)

Nevertheless...

• Let's try and see how far we can go with the simplest approach. The biggest limitation of this method is a position-dependent index.

- And, obvious improvements are possible anyway:
 - Fit multiple coefficients to different locations in the sky
 - Use more frequencies to constrain the index

We describe the data (=CMB+noise+PSMv1.6.2) by

- Amplitude of the B-mode polarization: r [this is what we want to measure at the level of r~10⁻³]
- Amplitude of the E-mode polarization from gravitational potential: **s** [which we wish to marginalize over]
- Amplitude of synchrotron: *C*_{Synch} [which we wish to marginalize over]

Methodology: we simply maximize the following likelihood function estimating r, s, and α_i :

$$\mathcal{L}(r, s, \alpha_i) \propto \frac{\exp\left[-\frac{1}{2}\boldsymbol{x}'(\alpha_i)^T \boldsymbol{C}^{-1}(r, s, \alpha_i) \boldsymbol{x}'(\alpha_i)\right]}{\sqrt{|\boldsymbol{C}(r, s, \alpha_i)|}}, \quad (9)$$

where

$$x' = \frac{[Q, U](v) - \sum_{i} \alpha_{i}}{1 - \sum_{i} \alpha_{i}}$$

is a template-cleaned map. This is a generalization of Equation (6) for a multi-component case. In this paper, *i* takes on "S" and "D" for synchrotron and dust, respectively, unless noted otherwise. For definiteness, we shall choose

$$v = 10$$

 $v_{\rm S}^{\rm template} = 60$
 $v_{\rm D}^{\rm template} = 24$

 $\frac{1}{2} \frac{(v)[Q, U](v_i^{\text{template}})}{\sum_i \alpha_i(v)}$ (10)

- 0 GHz,
-) GHz,
- 0 GHz.

We target the low-l bump

• This is a semi-realistic configuration for a future satellite mission targeting the B-modes from inflation.

Two Masks and Choice of **Regions for Synch Index**

"Method I"

"Method II" 72
Katayama & Komatsu, ApJ, 737, 78 (2011) **Results (3 frequency bands: 60, 100, 240 GHz)**

$r_{recoverd}$ from Cleaning

- It works quite well!
- For dust-only case (for which the index does not vary much): we observe *no bias* in the Bmode amplitude, as expected.
- For Method I (synch+dust), the bias is $\Delta r = 2 \times 10^{-3}$
- For Method II (synch+dust), the bias is $\Delta r=0.6 \times 10^{-3}$

Lensing limits our ability to measure the tensor tilt

noise= 2 μ Karcmin (30' beam) 1000

 Unless we "de-lens" maps, lowering noise to < 5uK arcmin does not help.

We need de-lensing!

LiteBIRD

- Next-generation polarization-sensitive microwave experiment. Target launch date: ~2020
- Led by Prof. Masashi Hazumi (KEK); a collaboration of ~70 scientists in Japan, USA, Canada, and Germany
- We aim at measuring r with the precision of Err[r]~0.001
- We need to study how well we can measure n_t

LiteBIRD

- Candidate for JAXA's future missions on "fundamental physics"
- Goal: Search for primordial gravitational waves to the lower bound of wellmotivated inflationary models
- **Full success:** $\delta r < 0.001$ (δr is the total uncertainties on tensor-to-scalar ratio, which is a fundamental cosmology parameter related to the power of primordial gravitational waves)
 - Continuously-rotating HWP w/ 30 cm diameter
 - 60 cm primary mirror w/ **Cross- Dragone** configuration (4K)

Major specifications

- Orbit: L2 (Twilight LEO ~600km as an option)
- Weight: ~1300kg
- Power: ~2000W
- Observing time: > 2 years
- Spin rate: ~0.1rpm

JT/ST + ADR w/ heritages of X-ray missions

Lite (Light) Satellite for the Studies of B-mode Polarization and Inflation from Cosmic Background Radiation Detection

6 bands b/w 50 and 320 GHz

78

LiteBIRD working group

✤ 68 members (as of Nov. 21, 2013)

KEK Y. Chinone K. Hattori M. Hazumi (PI) M. Hasegawa Y. Hori N. Kimura T. Matsumura H. Morii R. Nagata S. Oguri N. Sato T. Suzuki O. Tajima T. Tomaru H. Yamaguchi M. Yoshida	JAXA H. Fuke I. Kawano H. Matsuhara K. Mitsuda T. Nishibori A. Noda S. Sakai Y. Sato K. Shinozaki H. Sugita Y. Takei T. Wada N. Yamasaki T. Yoshida K. Yotsumoto	UC Berkeley W. Holzapfel A. Lee (US PI) P. Richards A. Suzuki MCGill U. M. Dobbs LBNL J. Borrill Tsukuba U. M. Nagai	Kav N. K H. N H. N Yok K. M S. N K. N K. N K. N M. K H. C
<mark>SOKENDAI</mark> Y. Akiba Y. Inoue H. Ishitsuka H. Watanabe	Okayama U. H. Ishino A. Kibayashi Y. Kibe	X-ray astro (JAXA) Infrared astro (JAXA)	physic nome
<u>Osaka U.</u> S. Takakura	S. Takada	JAXA engineer Support Group	s, Mis o, SE c

79

LiteBIRD focal plane design

tri-chroic(140/195/280GHz)

LiteBIRD proposal milestones

- 2012 October 2014 March Feasibility studies & cost estimation with MELCO and NEC
- 2013 April 2014 April Review and recommendation from Science Council of Japan
- 2014 May White Paper (will be published in *Progress of Theoretical and* Experimental Physics (PTEP)
- 2014 June December Proposal and Mission Definition Review (MDR)
- 2015 ~ Phase A

Conclusion

- BICEP2's finding is ground-breaking, if confirmed
 - Current status: "There is no strong evidence that the detected B modes are not cosmological. However, there is no strong evidence that the detected B modes are cosmological, either."
- If confirmed, the next step is to measure the reionization bump at I<10 and measure the tensor tilt to O(0.01)