Critical Tests of Theory of the Early Universe using the CMB

Eiichiro Komatsu (MPA)

Colloquium, Leibniz-Institut für Astrophysik Potsdam March 15, 2014

Cosmology: The Questions

- How much do we understand our Universe?
 - How old is it?
 - How big is it?
 - What shape does it take?
 - What is it made of?
 - How did it begin?

The Breakthrough

• Now we can observe the physical condition of the Universe when it was very young.

Cosmic Microwave Background (CMB)

• Fossil light of the Big Bang!

How was CMB created?

- When the Universe was hot, it was a hot soup made of: • Protons, electrons, and helium nuclei

 - Photons and neutrinos
 - Dark matter (DM)
 - DM does not do much, except for providing a a gravitational potential because $\rho_{DM}/\rho_{H,He}$ ~5

Universe as a hot soup

- Free electrons can scatter photons efficiently.
- Photons cannot go very far.

Recombination and Decoupling

- I 500K
- **[recombination**] When the temperature falls below 3000 K, almost all electrons are captured by protons and helium nuclei.
 - [decoupling] Photons are no longer scattered. I.e., photons and electrons are no longer coupled. 8

CMB: The Farthest and Oldest Light That We Can Ever Hope To Observe Directly

1st Stars about 400 million yrs.

Big Bang Expansion

13.7 billion years

•When the Universe was 3000K (~380,000 years after the Big Bang), electrons and protons were combined to form neutral hydrogen. 9

Dark Energy Accelerated Expansion

Galaxies, Planets, etc. WMAP

WMAP Spacecraft **Radiative Cooling: No Cryogenic System**

upper omni antenna

COBE to WMAP (x35 better resolution)

COBE

1989

WMAP 2001

WMAP at Lagrange 2 (L2) Point

June 2001: WMAP launched!

February 2003: The first-year data release

March 2006: The three-year data release

March 2008: The five-year data release

January 2010: The seven-year data release

September 8, 2010: WMAP left L2

December 21, 2012: The final, nine-year data release

14

WMAP Science Team

- C.L. Bennett
- G. Hinshaw
- N. Jarosik
- S.S. Meyer
- L. Page
- D.N. Spergel
- E.L.Wright

- M.R. Greason
- M. Halpern
- R.S. Hill
- A. Kogut
- M. Limon
- N. Odegard
- G.S.Tucker

- J. L.Weiland
- E.Wollack
- J. Dunkley
- B. Gold
- E. Komatsu
- D. Larson
- M.R. Nolta

- K.M. Smith
- C. Barnes
- R. Bean
- O. Dore
- H.V. Peiris
- L.Verde

WMAP 9-Year Papers

- Bennett et al., "Final Maps and Results," ApJS, 208, 20
- Hinshaw et al., "Cosmological Parameter Results," ApJS, 208, 19

ults," ApJS, 208, 20 neter Results," ApJS, 208, 19

How many components?

- **I**.CMB: $T_v \sim v^0$
- **2.Synchrotron** (electrons going around magnetic fields): $T_{\nu} \sim \nu^{-3}$
- **3.Free-free** (electrons colliding with protons): $T_v \sim v^{-2}$
- **4.**Dust (heated dust emitting thermal emission): $T_v \sim v^2$
- **5.Spinning dust** (rapidly rotating tiny dust grains): T_v~complicated

You need at least five frequencies to separate them!

Galaxy-cleaned Map

Τ(μ**K**)

+200

-200

Analysis: 2-point Correlation

• $C(\theta) = (1/4\pi) \sum (2I+1) C_I P_I(\cos\theta)$

•How are temperatures on two points on the sky, separated by θ , are correlated?

• "Power Spectrum," CI

- How much fluctuation power do we have at a given angular scale?
- I~180 degrees / θ

COBE To WMAP

COBE is unable to resolve the structures below ~7 degrees
WMAP's resolving power is 35 times better than COBE.
What did WMAP see?

• "The Universe as a Miso soup"

• Main Ingredients: protons, helium nuclei, electrons, photons

• We measure the composition of the Universe by analyzing the wave form of the cosmic sound waves.

28

With CMB, we can measure:

• Amount of protons and helium nuclei; or anything that can interact with photons

- Amount of dark matter; or anything that can contribute to gravitational potential
 - ... at the time when the universe was at 3000 K.
 - No matter is left behind!

Total Matter Density from z=1090 Total Energy Density from the Distance to z=1090

Dark Energy Accelerated Expansion Galaxies, Planets, etc. WMAP

Angular Diameter Distance to z=1090 $=H_0^{-1} \int dz / \left[\Omega_m(1+z)^3 + \Omega_{\Lambda}\right]^{1/2}$ $\frac{\partial dz}{\partial dx} energy$ 31 NASA/WMAP Science Team

Parameter Nine-year Fit parameters $\Omega_b h^2$ 0.02264 ± 0.00050 $\Omega_c h^2$ 0.1138 ± 0.0045 Ω_{Λ} 0.721 ± 0.025 $10^9 \Delta_{\mathcal{R}}^2$ 2.41 ± 0.10 0.972 ± 0.013 n_s 0.089 ± 0.014 auDerived parameters t_0 (Gyr) 13.74 ± 0.11 $H_0 (\rm km/s/Mpc)$ 70.0 ± 2.2 0.821 ± 0.023 σ_8 Ω_b 0.0463 ± 0.0024 Ω_c 0.233 ± 0.023 10.6 ± 1.1 $z_{\rm reion}$

H&He: 4.6% Dark Matter: 23.3% Dark Energy: 72.1%

Age: 13.7 billion years H₀: 70 km/s/Mpc

Composition of the Univ.

ZERO

Origin of Fluctuations

- OK, back to the cosmic hot soup.
- The sound waves were created when we perturbed it.
- "We"? Who?
- Who actually perturbed the cosmic soup?
- Who generated the original (seed) ripples?
Theory of the Very Early Universe

- The leading theoretical idea about the primordial Universe, called "Cosmic Inflation," predicts: (Starobinsky 1980; Sato 1981; Guth 1981;
 - Linde 1982; Albrecht & Steinhardt 1982; Starobinsky 1980)
 - The expansion of our Universe *accelerated* in a tiny fraction of a second after its birth.
 - Just like Dark Energy accelerating today's expansion: the acceleration also happened at very, very early times!
- Inflation stretches "micro to macro"
 - In a tiny fraction of a second, the size of an atomic nucleus $(\sim 10^{-15} \text{m})$ would be stretched to 1 A.U. $(\sim 10^{11} \text{m})$, at least.

Cosmic Inflation = Very Early Dark Energy

The Early Universe Could Have Done This Instead

...or, This.

...or, This.

Theory Says...

- The leading theoretical idea about the primordial Universe, called "Cosmic Inflation," predicts:
 - The expansion of our Universe *accelerated* in a tiny fraction of a second after its birth.
 - the primordial ripples were created by quantum fluctuations during inflation, and
 - how the power is distributed over the scales is determined by the expansion history during cosmic inflation.
- Measurement of n_s gives us this remarkable information!

Stretching Micro to Macro

Macroscopic size at which gravity becomes important

Quantum fluctuations on microscopic scales

45 Quantum fluctuations cease to be quantum, and become observable!

NFLATION!

Quantum Fluctuations

Heisenberg's Uncertainty Principle

- You may borrow a lot of energy from vacuum if you promise to return it to the vacuum immediately.
- The amount of energy you can borrow is inversely proportional to the time for which you borrow the energy from the vacuum.

Mukhanov & Chibisov (1981); Guth & Pi (1982); Starobinsky (1982); Hawking (1982); Bardeen, Turner & Steinhardt (1983)

(Scalar) Quantum Fluctuations $\delta \phi = (Expansion Rate)/(2\pi)$ [in natural units]

- Why is this relevant?
- The cosmic inflation (probably) happened when the Universe was a tiny fraction of second old.
 - Something like 10⁻³⁶ second old
 - (Expansion Rate) ~ I/(Time)
 - which is a big number! ($\sim 10^{12}$ GeV)
 - Quantum fluctuations were important during inflation!

Inflation Offers a Magnifier for Microscopic World

 Using the power spectrum of primordial fluctuations imprinted in CMB, we can observe the quantum phenomena at the ultra high-energy scales that would never be reached by the particle accelerator.

 Measured value (WMAP 9-year data only): $n_s = 0.972 \pm 0.013$ (68%CL)

Planck Result!

Planck (2013)

Planck Result!

Planck (2013)

Starobinsky (1979) (Tensor) Quantum Fluctuations, a.k.a. Gravitational Waves

 $h = (Expansion Rate)/(2^{1/2}\pi M_{planck})$ [in natural units]

[h = "strain"]

- Quantum fluctuations also generate ripples in spacetime, i.e., gravitational waves, by the same mechanism.
- Primordial gravitational waves generate temperature anisotropy in CMB.

Gravitational waves are coming toward you...What do you do?

Gravitational waves stretch space, causing particles to move.

Two Polarization States of GW

This is great - this will automatically generate quadrupolar anisotropy around electrons!

From GW to temperature anisotropy

Electron

"Tensor-to-scalar Ratio," r

r = [Power in Gravitational Waves] / [Power in Gravitational Potential]

Inflation predicts r <~ I

Has inflation happened?

- If anyone asks you this question, your answer must always be:
 - "We don't know yet."
- Decisive evidence should come from polarization of CMB.

CMB Polarization

• CMB is (very weakly) polarized! 62

"Stokes Parameters"

E←

Q<0; U=0

Stokes Q

East

Stokes Q

Stokes Q

Stokes Q

Stokes Q

Stokes Q

How many components?

- **I.CMB**: $T_v \sim v^0$
- 2.Synchrotron (electrons going around magnetic fields): $T_{v} \sim v^{-3}$
 - **3.Free-free** (electrons colliding with protons): $T_v \sim v^{-2}$

 \checkmark

- **4.**Dust (heated dust emitting thermal emission): $T_v \sim v^2$
- **5.Spinning dust (rapidly rotating tiny dust grains):** -T_v~complicated

You need at least THREE frequencies to separate them!

Physics of CMB Polarization

CMB Polarization is created by a local temperature quadrupole anisotropy.

Stacking Analysis

 Stack polarization images around temperature hot and cold spots.

 Outside of the Galaxy mask (not shown), there are **II536** hot spots and 11752 cold spots.

Radial and Tangential Polarization Patterns around Temp. Spots

- All hot and cold spots are stacked
- "Compression phase" at θ=1.2 deg and "slow-down phase" at θ=0.6 deg are predicted to be there and we observe them!
- The 7-year overall significance level: 8σ

• The 9-year overall significance level: 100

Planck Collaboration I (2013) Planck Data!

- Gravitational potential can generate the Emode polarization, but not B-modes.
- Gravitational waves can generate both Eand B-modes!

Two Polarization States of GW

This is great - this will automatically generate quadrupolar anisotropy around electrons!

From GW to CMB Polarization

Electron

78

From GW to CMB Polarization

From GW to CMB Polarization

Gravitational waves can produce **both** E- and B-mode polarization

Polarization Power Spectrum

Multipole, I

B-mode is the next holy grail!

No detection of B-mode polarization yet.

LiteBIRD

- Next-generation polarization-sensitive microwave experiment. Target launch date: ~2020
- Led by Prof. Masashi Hazumi (KEK); a collaboration of ~60 scientists in Japan, USA, Canada, and Germany
- We aim at detecting signatures of gravitational waves in the cosmic microwave background, down to r~0.001

Summary

- WMAP has completed 9 years of observations
- We could determine the age, composition, expansion rate, etc., from CMB
- We could even push the boundary farther back in time, probing the origin of fluctuations in the very early Universe: inflationary epoch at ultra-high energies
 - $n_s = 0.96$ discovered with $> 5\sigma$
- Next Big Thing: Primordial gravitational waves