The **7**-Year WMAP Observations: Cosmological Interpretation

Eiichiro Komatsu (Texas Cosmology Center, UT Austin) Astronomy Seminar, University of Pennsylvania, October 20, 2010

WMAP at Lagrange 2 (L2) Point

June 2001: WMAP launched!

February 2003: The first-year data release

March 2006: The three-year data release

March 2008: The five-year data release

January 2010: The seven-year data release

- WMAP leaves Earth, Moon, and Sun 2 behind it to avoid radiation from them

• L2 is a million miles from Earth

WMAP 7-Year Science Team

- C.L. Bennett
- G. Hinshaw
- N. Jarosik
- S.S. Meyer
- L. Page
- D.N. Spergel
- E.L.Wright

- M.R. Greason
- M. Halpern
- R.S. Hill
- A. Kogut
- M. Limon
- N. Odegard
- G.S.Tucker

- J. L.Weiland
- E.Wollack
- J. Dunkley
- B. Gold
- E. Komatsu
- D. Larson
- M.R. Nolta

- K.M. Smith
- C. Barnes
- R. Bean
- O. Dore
- H.V. Peiris
- L.Verde

WMAP 7-Year Papers

- Jarosik et al., "Sky Maps, Systematic Errors, and Basic Results" arXiv:1001.4744
- Gold et al., "Galactic Foreground Emission" arXiv:1001.4555
- Weiland et al., "Planets and Celestial Calibration Sources" arXiv:1001.4731
- Bennett et al., "Are There CMB Anomalies?" arXiv:1001.4758
 Larson et al. "Power Spectra and WAAP Derived Parameters"
- Larson et al., "Power Spectra and WMAP-Derived Parameters" arXiv:1001.4635
- Komatsu et al., "Cosmological Interpretation" arXiv:1001.4538

Talk Plan

- Since I was informed that some of you are interested in our results on clusters of galaxies, I will change the order of slides, and first talk about the cluster results, and then talk about the new cosmology results from the WMAP 7-year data.
- I will touch on my new thoughts on non-Gaussianity (four-point function) at the end of the talk (because some of you may be interested in this topic), but I may not have time. Either we can talk about it later, or please see arXiv: 1003.6097.

Zel'dovich & Sunyaev (1969); Sunyaev & Zel'dovich (1972) Sunyaev–Zel'dovich Effect

Hot gas with the electron temperature of $T_e >> T_{cmb}$

- y = (optical depth of gas) $k_B T_e/(m_e c^2)$ = $[\sigma_T/(m_ec^2)] \int n_e k_B T_e d(los)$ = $[\sigma_T/(m_ec^2)] \int (electron pressure) d(los)$
- •Decrement: $\Delta T < 0$ (v<217 GHz) •Increment: $\Delta T > 0$ (v>217 GHz)

 $g_{v} = -2 (v=0); -1.91, -1.81 \text{ and } -1.56 \text{ at } v=41, 61 \text{ and } 94 \text{ GHz}$

observer • $\Delta T/T_{cmb} = g_v y$

A New Result!

We find, for the first time in the Sunyaev-Zel'dovich (SZ) effect, a significant difference between relaxed and nonrelaxed clusters.

 Important when using the SZ effect of clusters of galaxies as a cosmological probe.

The SZ Effect: Decrement and Increment

•RXJ1347-1145

Left, SZ increment (350GHz, Komatsu et al. 1999)Right, SZ decrement (150GHz, Komatsu et al. 2001)

WMAP Temperature Map

-200

Where are clusters? Coma Virgo

$z \le 0.1; 0.1 \le z \le 0.2; 0.2 \le z \le 0.45$ Radius = $5\theta_{500}$

We find that the CMB fluctuation in the direction of Coma is $\approx -100 \text{uK}$. (This is a new result!)

 $y_{coma}(0) = (7\pm 2) \times 10^{-5}$ (68%CL)

A Question

- Are we detecting the **expected** amount of electron pressure, P_e , in the SZ effect?
 - Expected from X-ray observations?
 - Expected from theory?

Arnaud et al. Profile

• A fitting formula (motivated by hydrodynamical simulations) for the average electron pressure profile as a function of the cluster mass (M₅₀₀), derived from 33 nearby (z<0.2) clusters (REXCESS sample).

Arnaud et al. Profile

A significant scatter exists at R<0.2R₅₀₀, but a good convergence in the outer part.

The X-ray data (XMM) are provided by A. Finoguenov.

15

way too low.

Well...

- That's just one cluster. What about the other clusters?
 - We measure the SZ effect of a sample of well-studied nearby clusters compiled by Vikhlinin et al.

Coma (non-cooling flow) $M_{500} = 6.7 \times 10^{14} h^{-1} M_{sun}$ A2029 (cooling flow) Komatsu $M_{500} = 6.2 \times 10^{14} h^{-1} M_{sun}$ A754 (non-cooling flow) $M_{500} = 6.1 \times 10^{14} h^{-1} M_{sun}$ **Pt** <u>a</u>l. A3667 (non-cooling flow) 2010) $M_{500} = 5.3 \times 10^{14} h^{-1} M_{sun}$ A85 (cooling flow) $M_{500} = 4.3 \times 10^{14} h^{-1} M_{sun}$ ZwCl1215 (cooling flow) $M_{500} = 4.1 \times 10^{14} h^{-1} M_{sun}$ 0.2 0.4 0.6 0.8 1.2 1.4 1.0 θ/θ_{500}

-yeal \square as D lent

Low-SZ is seen in the WMAP

Mass Range ^a	# of clusters	X-ray Data	Model
$6 \le M_{500} < 9$	5	0.90 ± 0.16	0.73 ± 0.13
$4 \le M_{500} < 6$	6	0.73 ± 0.21	0.60 ± 0.17
$2 \le M_{500} < 4$	9	0.71 ± 0.31	0.53 ± 0.25
$1 \le M_{500} < 2$	9	-0.15 ± 0.55	-0.12 ± 0.47
$4 \le M_{500} < 9$	11	0.84 ± 0.13	0.68 ± 0.10
$1 \le M_{500} < 4$	18	0.50 ± 0.27	0.39 ± 0.22
$4 \le M_{500} < 9$			
cooling flow ^d	5	1.06 ± 0.18	0.89 ± 0.15
non-cooling flow ^e	6	0.61 ± 0.18	0.48 ± 0.15
$2 \le M_{500} < 9$	20	0.82 ± 0.12	0.660 ± 0.095
$1 \le M_{500} < 9$	29	0.78 ± 0.12	0.629 ± 0.094

^a In units of $10^{14} h^{-1} M_{\odot}$. Coma is not included. d:ALL of "cooling flow clusters" are relaxed clusters. e:ALL of "non-cooling flow clusters" are non-relaxed clusters. ¹⁸

Low-SZ: Signature of mergers?

Mass Range ^a	# of clusters
$6 \le M_{500} < 9$	5
$4 \leq M_{500} < 6$	6
$2 \le M_{500} < 4$	9
$1 \le M_{500} < 2$	9.
$4 \le M_{500} < 9$	11
$1 \le M_{500} < 4$	18
$4 \le M_{500} \le 9$	
cooling flow ^d	5
non-cooling flow ^e	6
$2 \le M_{500} < 9$	20
$1 \le M_{500} < 9$	29

^a In units of $10^{14} h^{-1} M_{\odot}$. Coma is not included. d:ALL of "cooling flow clusters" are relaxed clusters. e:ALL of "non-cooling flow clusters" are non-relaxed clusters. ¹⁹

 0.84 ± 0.13 0.50 ± 0.27

SZ: Main Results

- Arnaud et al. profile systematically overestimates the electron pressure! (Arnaud et al. profile is ruled out at 3.2σ).
- But, the X-ray data on the *individual* clusters agree well with the SZ measured by WMAP.
- Reason: Arnaud et al. did not distinguish between relaxed (CF) and non-relaxed (non-CF) clusters.
 - This will be important for the proper interpretation of the SZ effect when doing cosmology with it. 20

• In Arnaud et al., they reported that the cooling flow clusters have much steeper pressure profiles in the inner part.

• Taking a simple median gave a biased "universal" profile. 21

Summary on Cluster Results

- SZ effect: Coma's radial profile is measured, several massive clusters are detected, and the statistical detection reaches 6.5σ .
 - Evidence for lower-than-theoretically-expected gas pressure.
 - First detection, in the SZ effect, of the difference between relaxed and non-relaxed clusters.
 - The X-ray data are fine: we need to revise the existing models of the intracluster medium.

• Distinguishing relaxed and non-relaxed clusters is important!

Cosmology Update: 7-year

• Standard Model

- H&He = 4.58% (±0.16%)
- Dark Matter = 22.9% (±1.5%)
- Dark Energy = 72.5% (±1.6%)
- H₀=70.2±1.4 km/s/Mpc
- Age of the Universe = 13.76 billion years (±0.11 billion years)

How did we obtain these numbers?

Universal Stats

Age of the universe today 13.75 billion years

Age of the cosmos at time of reionization 457 million years

"ScienceNews" article on the WMAP 7-year results

• "The Universe as a Miso soup"

• Main Ingredients: protons, helium nuclei, electrons, photons

• We measure the composition of the Universe by analyzing the wave form of the cosmic sound waves.

- I-to-3: matter-to-radiation ratio (z_{EQ} : equality redshift)

Determining Baryon Density From CI

Determining Dark Matter Density From C_I

Effect of helium on C_I^{TT}

- We measure the baryon number density, n_b, from the 1stto-2nd peak ratio.
- As helium recombined at $z \sim 1800$, there were fewer electrons at the decoupling epoch (z=1090): $n_e=(1-Y_p)n_b$.
- More helium = Fewer electrons = Longer photon mean free path $I/(\sigma_T n_e)$ = Enhanced damping
- $Y_p = 0.33 \pm 0.08$ (68%CL)
 - Consistent with the standard value from the Big Bang nucleosynthesis theory: $Y_P=0.24$.

Another "3rd peak science": Number of Relativistic Species

And, the mass of neutrinos

 WMAP data combined with the local measurement of the expansion rate (H₀), we get $\sum m_v < 0.6 \text{ eV}$ (95%CL)

CMB Polarization

• CMB is (very weakly) polarized!

What Are We Seeing Here?

CMB Polarization On the Sky

Temperature HOT SPOT

Polarization

Solution: Leave Fourier space. Go back to real space.

37

Physics of CMB Polarization

 CMB Polarization is created by a local temperature quadrupole anisotropy.

Principle

• Polarization direction is parallel to "hot."

CMB Polarization on Large Angular Scales (>2 deg)

$\Delta T/T = (Newton's Gravitation Potential)/3$

How does the photon-baryon plasma move?

CMB Polarization Tells Us How Plasma Moves at z=1090 Zaldarriaga & Harari (1995)

• Plasma **falling into** the gravitational

potential well = **Radial** polarization pattern

Sachs-Wolfe: $\Delta T/T = \Phi/3$ Stuff flowing in

Velocity gradient

The left electron sees colder photons along the plane wave

Compression increases temperature Stuff flowing in

Pressure gradient slows down the flow

Velocity gradient

Hence, T-polarization Correlation (Coulson et al. 1994)

Peak Theory and Stacking Analysis

- Stack polarization images around temperature hot and cold spots.
- Outside of the Galaxy mask (not shown), there are 12387 hot spots and **12628 cold spots**.

• Peak theory gives: [Note the *l*² term! (Desjacques 2008)]

Analogy to Weak Lensing

• If you are familiar with weak lensing, this statistic is equivalent to the tangential shear: $\langle \overline{\gamma}_t^h \rangle(R, z_L) = \frac{\Delta \Sigma(R, z_L)}{\Sigma_c(z_L)}$

$$R, z_L)$$

$$\int \frac{kdk}{2\pi} P_m(k, z_L) J_2(kR)$$

However, all the formulae given in the literature use a scale-independent bias, b₁. This formula must be modified to include the k² term.

$$\gamma_2(oldsymbol{ heta})\sin(2\phi)$$
 46

Two-dimensional View

- All hot and cold spots are stacked (the threshold peak height, $\Delta T/\sigma$, is zero)
- "Compression phase" at $\theta = 1.2 \text{ deg and}$ "slow-down phase" at $\theta = 0.6 \text{ deg are}$ predicted to be there and we observe them!

 - The overall significance level: 8σ

- Gravitational potential can generate the Emode polarization, but not B-modes.
- Gravitational waves can generate both E- and B-modes!

Polarization Power Spectrum

Multipole, I

No detection of B-mode polarization yet. **B-mode is the next holy grail!**

Probing Inflation (2-point Function)

- Joint constraint on the primordial tilt, n_s, and the tensor-to-scalar ratio, r.
 - Not so different from the 5-year limit.
 - r < 0.24 (95%CL)
- Limit on the tilt of the power spectrum: n_s=0.968±0.012 (68%CL)

Probing Inflation (3-point Function)

- Inflation models predict that primordial fluctuations are very close to Gaussian.
 - In fact, ALL SINGLE-FIELD models predict a particular form of **3-point function** to have the amplitude of $f_{NL}=0.02$.
 - Detection of $f_{NL} > 1$ would rule out ALL single-field models!

Bispectrum

• Three-point function!

• $B_{\zeta}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3)$ = $\langle \zeta_{\mathbf{k}_1} \zeta_{\mathbf{k}_2} \zeta_{\mathbf{k}_3} \rangle$ = (amplitude) x $(2\pi)^3 \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) F(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3)$ model-dependent function

Primordial fluctuation

MOST IMPORTANT

Maldacena (2003); Seery & Lidsey (2005); Creminelli & Zaldarriaga (2004) Single-field Theorem (Consistency Relation)

- For **ANY** single-field models^{*}, the bispectrum in the squeezed limit is given by
 - $B_{\zeta}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) \approx (|-n_s|) \times (2\pi)^3 \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) \times P_{\zeta}(\mathbf{k}_1) P_{\zeta}(\mathbf{k}_3)$
 - Therefore, all single-field models predict $f_{NL} \approx (5/12)(1-n_s)$.
 - With the current limit $n_s=0.963$, f_{NL} is predicted to be <u>0.0</u>15.

* for which the single field is solely responsible for driving inflation and generating observed fluctuations. 55

Probing Inflation (3-point Function)

- No detection of 3-point functions of primordial curvature perturbations. The 95% CL limit is:
 - $-10 < f_{NL} < 74$
- The 68% CL limit: $f_{NL} = 32 \pm 21$
 - The WMAP data are consistent with the prediction of simple single-field inflation models: $I-n_s \approx r \approx f_{NL}$
- The Planck's expected 68% CL uncertainty: $\Delta f_{NL} = 5$

Trispectrum

• $T_{\zeta}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3, \mathbf{k}_4) = (2\pi)^3 \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3 + \mathbf{k}_4)$ $\{g_{NL}[(54/25)P_{\zeta}(k_1)P_{\zeta}(k_2)P_{\zeta}(k_3)+cyc.]$ +**TNL**[$P_{\zeta}(k_1)P_{\zeta}(k_2)(P_{\zeta}(|\mathbf{k}_1+\mathbf{k}_3|)+P_{\zeta}(|\mathbf{k}_1+\mathbf{k}_4|))+cyc.]$ }

> The local form consistency relation, $T_{NL}=(6/5)(f_{NL})^2$, may not be respected – additional test of multi-field inflation!

- The current limits from WMAP 7-year are consistent with single-field or multifield models.
- So, let's play around with the future.

No detection of anything after Planck. Single-field survived the test (for the moment: the future galaxy surveys can improve the limits by a factor of ten).

- f_{NL} is detected. Singlefield is dead.
- But, T_{NL} is also detected, in accordance with the Suyama-Yamaguchi inequality, as expected from most (if not all left unproven) of multifield models.

- f_{NL} is detected. Singlefield is dead.
- But, T_{NL} is **not** detected, inconsistent with the Suyama-Yamaguchi inequality.
- (With the caveat that this may not be completely general) **BOTH** the single-field and multi-field are gone. 61

CMB: Summary

- Primordial helium is detected by CMB alone, for the first time (combining WMAP+ACBAR+QUAD).
- N_{eff}~4? Planck will tell...
- Polarization map! Confirmation of the basic paradigm.
- $n_s = 0.968 \pm 0.012$ (68%CL); r<0.24 (95%CL)
- Next Big Thing: Primordial gravitational waves
- My favorite: Detection of f_{NL} to rule out singlefield inflation!

Planck Launched!

- The Planck satellite was successfully launched from French Guiana on May 14.
- Separation from the Herschell satellite was also successful.
- Planck has mapped the full sky already results expected to be released in December, 2012.

63

Planck: Expected C₁Temperature WMAP PLANCK

• WMAP: I~1000 => Planck: I~3000

64

Planck: Expected C₁Polarization

• (Left) B-modes (r=0.3)

E-mode

Potential

 $\Phi(\mathbf{k},\mathbf{x}) = \cos(\mathbf{k}\mathbf{x})$

Polarization Direction

• E-mode: the polarization directions are either parallel or tangential to the direction of the plane wave perturbation.

B-mode

$h(\mathbf{k},\mathbf{x}) = \cos(\mathbf{k}\mathbf{x})$

Polarization Direction

• **B-mode**: the polarization directions are tilted by 45 degrees relative to the direction of the plane wave perturbation.

Gravitational Waves and Quadrupole Gravitational waves stretch space with a quadrupole

pattern.

B-mode polarization generated by h_X

E-mode polarization generated by h+

