WMAP 5-Year Results: Implications for Inflation

Eiichiro Komatsu University of Texas at Austin "Novel Theories of the Early Universe" Perimeter Institute, March 5, 2008

WMAP 5-Year Papers

- Hinshaw et al., "Data Processing, Sky Maps, and Basic Results" 0803.0732
- Hill et al., "Beam Maps and Window Functions" 0803.0570
- Gold et al., "Galactic Foreground Emission" 0803.0715
- Wright et al., "Source Catalogue" 0803.0577
- Nolta et al., "Angular Power Spectra" 0803.0593
- **Dunkley et al.**, "Likelihoods and Parameters from the WMAP data" 0803.0586
- Komatsu et al., "Cosmological Interpretation" 0803.0547

WMAP 5-Year Science Team

- C.L. Bennett
- G. Hinshaw
- N. Jarosik
- S.S. Meyer
- L. Page
- D.N. Spergel
- E.L.Wright

- M.R. Greason
- M. Halpern
- R.S. Hill
- A. Kogut
- M. Limon
- N. Odegard
- G.S.Tucker

- J. L.Weiland
- E.Wollack
- J. Dunkley
- B. Gold
- E. Komatsu
- D. Larson
- M.R. Nolta

Special Thanks to WMAP Graduates!

- C. Barnes
- R. Bean
- O. Dore
- H.V. Peiris
- L.Verde

Some numbers to come...

- $n_s=0.960 (+ 0.014) (-0.013)$ for r=0
- $r < 0.20 (95\% CL); n_s = 0.968 (+/- 0.015)$
- $-0.0181 < \Omega_k < 0.0071$ (95% CL) for w=-1
- $-0.0175 < \Omega_k < 0.0085$ (95% CL) for w/=-1
- Entropy perturbation (axion) <8.6% (95% CL)
- Entropy perturbation (curvaton) <2.0% (95% CL)
- $-9 < f_{NL}(local) < 111 (95\% CL)$
- $-151 < f_{NL}(equilateral) < 253 (95% CL)$

Is Yours A Good Model? Check List

- Is the observable universe flat?
- Are the primordial fluctuations adiabatic?
- Are the primordial fluctuations nearly Gaussian?
- Is the power spectrum nearly scale invariant?
- Is the amplitude of gravitational waves reasonable?

WMAP 5-Year Data

-200

Hinshaw et al.

+200

+200

Improved Beam Model

- 5 years of the Jupiter data, combined with the extensive physical optics modeling, reduced the beam uncertainty by a factor of 2 to 4.
- Improved Calibration
 - Improved algorithm for the gain calibration from the CMB dipole reduced the calibration error from 0.5% to 0.2%
- More Polarization Data Usable for Cosmology
 - We use the polarization data in Ka band. (We only used Q and V bands for the 3-year analysis.)

Hill et al. New Beam

- The difference between the 5-year beam and the 3-year beam (shown in black) is within ~I sigma of the 3-year beam errors (shown in red)
- We use V and W bands to measure the temperature power spectrum, Cl
 - Power spectrum depends on the beam²
 - The 5-year C_l is ~2.5%
 larger than the 3-year C_l at l>200

The 5-Year C

Nolta et al.

The 5-Year C

Nolta et al.

Hinshaw et al.

Adding Polarization in Ka: Passed the Null Test

Hinshaw et al.

Adding Polarization in Ka: Passed the Null Test!!

1.0

8.0

0.6

0.4

0.2

0.0

0.00

-/L_{max}

- Optical Depth measured from the EE power spectrum:
- Tau(5yr)=0.087 +/- 0.017
- Tau(3yr)=0.089 +/- 0.030
 (Page et al.; QV only)
- 3-sigma to 5-sigma!
- Tau form the null map (Ka-QV) is consistent with zero

- With the 5-year determination of the optical depth $\Omega_b h^2$, rather than tau.
 - - 2.5-sigma away from $n_s=1$

• WMAP-alone: n_s=0.963 (+0.014) (-0.015) (Dunkley et al.)

(tau), the most dominant source of degeneracy is now

How Do We Test Early Universe Models?

- The WMAP data alone can put tight limits on most of the items in the check list. (For the WMAP-only limits, see Dunkley et al.)
- However, we can improve the limits on many of these measurements:
 - Luminosity Distances from Type la Supernovae (SN)
 - Angular Diameter Distances from the Baryon Acoustic Oscillations (BAO) in the distribution of galaxies

items by adding the extra information from the distance

- WMAP measures the angular diameter distance to the decoupling epoch at z=1090.
- The distance depends on curvature AND other things, like the energy content; thus, we need more than one distance indicators, in order to constrain, e.g., Ω_m and H_0

Type la Supernova (SN) Data

Dunkley et al.

From these measurements, we get the **relative** luminosity distances between Type la SNe. Since we marginalize over the absolute magnitude, the current SN data are insensitive to the absolute distances.

Dunkley et al. BAO in Galaxy Distribution

 BAO measured from SDSS (main samples and LRGs) and 2dFGRS (Percival et al. 2007)

• Just like the acoustic oscillations in CMB, the galaxy BAOs can be used to measure the **absolute** distances

• -0.0181 < Ω_k < 0.0071 (95% CL) for w=-1

- The constraint driven mostly by WMAP+BAO
- BAOs are more powerful than SNe in pinning down curvature, as they are **absolute** distance indicators.

- WMAP+BAO+SN -> Simultaneous limit
- WMAP+SN -> w

Komatsu et al. **BAO from SDSS-LRG** WMAP+HST WMAP+BAO WMAP+BAO WMAP+SN WMAP+SN WMAP+BAO+SN NMAP+BAO+SN -1.5 -1.0 -0.5 0 -2.0 -1.0 -0.5 \mathbf{O} ${\mathcal W}$ ${\mathcal W}$

• $-0.0175 < \Omega_k < 0.0085$; -0.11 < w < 0.14 (95% CL)

Fun Numbers to Quote...

- The curvature radius of the universe is given, by definition, by
 - $R_{curv} = 3h^{-1}Gpc / sqrt(\Omega_k)$
 - For negatively curved space $(\Omega_k > I): R > 33h^{-1}Gpc$
 - For positively curved space $(\Omega_k > I): R > 23h^{-1}Gpc$
- The particle horizon today is 9.7h⁻¹Gpc
 - The observable universe is pretty flat! (Fun to teach this in class)

Implications for Inflation?

- Details aside...
 - Q. How long should inflation have lasted to explain the observed flatness of the universe?
 - A. $N_{total} > 36 + ln(T_{reheating}/1 TeV)$
 - A factor of 10 improvement in Ω_k will raise this lower limit by 1.2.
 - Lower if the reheating temperature was < I TeV
- This is the check list #I

Check List #2:Adiabaticity

- The adiabatic relation between radiation and matter:
 - $3\delta\rho_{radiation}/(4\rho_{radiation}) = \delta\rho_{matter}/\rho_{matter}$
- Deviation from adiabaticity: A simple-minded quantification
 - Fractional deviation of A from B = (A-B) / [(A+B)/2]
 - $\delta_{adi} = [3\delta\rho_{radiation}/(4\rho_{radiation}) \delta\rho_{matter}/\rho_{matter}]/$ { $[3\delta\rho_{radiation}/(4\rho_{radiation}) + \delta\rho_{matter}/\rho_{matter}]/2$ }
 - Call this the "adiabaticity deviation parameter"
 - "Radiation and matter obey the adiabatic relation to $(100\delta_{adi})$ % level."

Nolta et al.

 The negative TE at I~100 is the distinctive signature of superhorizon adiabatic perturbations (Spergel & Zaldarriaga 1997)

 Non-adiabatic perturbations would fill in the trough, and shift the zeros.

Entropy and curvature perturbations

- Usually, we use the entropy perturbations and curvature perturbations when we talk about adiabaticity.
 - (Entropy Pert.) = $3\delta\rho_{radiation}/(4\rho_{radiation}) \delta\rho_{matter}/\rho_{matter}$
 - (Curvature Pert.) = $\delta \rho_{matter}/(3\rho_{matter}) = \delta \rho_{radiation}/(4\rho_{radiation})$
- Let's take the ratio, square it, and call it α :
 - $\alpha = (\text{Entropy})^2 / (\text{Curvature})^2 = 9\delta_{adi}^2$
 - This parameter, α , has often been used in the literature.

Two Scenarios

- To make the argument concrete, we take two concrete examples for entropy perturbations.
- (i) "Axion Type" Entropy perturbations and curvature perturbations are **uncorrelated**.
- (ii) "Curvaton Type" Entropy perturbations and curvature perturbations are anti-correlated. (or correlated, depending on the sign convention)
- In both scenarios, the entropy perturbation raises the temperature power spectrum at I<100
 - Therefore, <u>both contributions are degenerate with n_{s.}</u>
 How do we break the degeneracy? BAO&SN.

- $\alpha_{axion} < 0.16$ [WMAP-only; 95% CL]
- α_{axion} < 0.067 [WMAP+BAO+SN; 95% CL]
- CMB and axion-type dark matter are adiabatic to 8.6%

- $\alpha_{curvaton} < 0.011$ [WMAP-only; 95% CL]
- α_{curvaton} < 0.0037 [WMAP+BAO+SN; 95% CL]
- CMB and axion-type dark matter are adiabatic to **2.0%**

Check list #3: Gaussianity

- Since there is a workshop focused on non-Gaussianity immediately following this one, I would defer detailed discussions on non-Gaussianity to that workshop.
- Let me just present results here.

Angular Bispectrum

- Non-zero bispectrum means the detection of non-Gaussianity. It's always easy to look for deviations from zero
- There are many triangles to look for, but...
 - Will focus on two classes

I₁ Local

12

Eq

- "Squeezed" parameterized by f_{NL}local
- "Equilateral" parameterized by f_{NL}^{equil}

No Detection at >95%CL

- $-9 < f_{NL}(local) < 111 (95\% CL)$
- $-151 < f_{NL}(equilateral) < 253 (95% CL)$

- These numbers mean that the primordial curvature perturbations are Gaussian to 0.1% level!
- These numbers are based upon the new Galaxy mask (KQ75) and after correcting for the point-source contamination.

The other mask?

- The new mask, KQ75, cuts more sky than the masks used in the previous (I-yr and 3-yr) analysis. When we used the previous mask, Kp0, instead, we found:
- $6.5 < f_{NL}(local) < 110.5 (95\% CL) for Kp0 mask$
 - A "hint" for f_{NL}(local)>0 at 2.3 sigma. The error is smaller because Kp0 cuts less sky (76.5% retained) than KQ75 (71.8% retained)
 - To see if f_{NL}(local)>0 persists with KQ75, we definitely need more data. More years of WMAP observations are needed.
- For more information, please come to the next workshop...

Dunkley et al.; Komatsu et al. Check List #4: Scale Invariance

- For a power-law power spectrum (no dn_s/dlnk):
 - WMAP-only: $n_s = 0.963 (+0.014) (-0.015)$
 - WMAP+BAO+SN: $n_s = 0.960 (+0.014) (-0.013)$
 - 2.9 sigma away from $n_s = I$
 - No dramatic improvement from the WMAP-only result because neither BAO nor SN is sensitive to $\Omega_{\rm b}h^2$

Running Index?

- No significant running index is observed.
 - WMAP-only: $dn_s/dlnk = -0.037 + /- 0.028$
 - WMAP+BAO+SN: $dn_s/dlnk = -0.032 (+0.021) (-0.020)$
- A power-law spectrum is a good fit.
- Note that $dn_s/dlnk \sim O(0.001)$ is expected from simple inflation models (like $m^2 \phi^2$), but we are not there yet.

Dunkley et al.; Komatsu et al. Index?

Check List #5: Gravitational Waves

• How do WMAP data constrain the amplitude of primordial gravitational waves?

- Low-I polarization gives r<20 (95% CL)
- + high-l polarization gives r<2 (95% CL)
- + low-l temperature gives r<0.2 (95% CL)

Real Life: Killer Degeneracy

- strongly degenerate with n_s .
- The degeneracy can be broken partially by BAO&SN
 - r<0.43 (WMAP-only) -> r<0.20 (WMAP+BAO+SN)

Komatsu et al. $n_s > 1.0$ is Disfavored, Regardless of r

• The maximum n_s we find at 95% CL is $n_s = 1.005$ for r=0.16.

- $m^2 \phi^2$ is within 95% CL.
 - Future WMAP data would be able to push it to outside of 95% CL, if $m^2 \phi^2$ is not the right model.
- N-flation $m^2 \varphi^2$ (Easther&McAllister) is being pushed out
- PL inflation $[a(t) \sim t^{p}]$ with p<60 is out.
- A blue index $(n_s > I)$ region of hybrid inflation is disfavored

Komatsu et al. Lowering a "Limbo Bar • $\lambda \phi^4$ is totally out. (unless you invoke, e.g., non-minimal coupling, to suppress r...)

• Then of course, constraints are weakened... BAO&SN do not help much anymore.

Your Score Card?

- Flatness: -0.0175 < Ω_k < 0.0085 (not assuming w=-1!)
- Non-adiabaticity: <8.6% (axion DM); <2.0% (curvaton DM)
- Non-Gaussianity: -9 < Local < 111; -151 < Equilateral < 253</p>
- Tilt (for r=0): $n_s=0.960$ (+0.014) (-0.013) [68% CL]
- Running (for r=0): $-0.0728 < dn_s/dlnk < 0.0087$
- Gravitational waves: r < 0.20
 - $n_s = 0.968 (+/-0.015) [68\% CL]$
 - $n_s > 1$ disfavored at 95% CL

Looking Ahead...

- With more WMAP observations, exciting discoveries may be waiting for us. Two examples for which we might be seeing some hints from the 5-year data:
 - Non-Gaussianity: If f_{NL}~60, we will see it at the 3 sigma level with 9 years of data.
 - Gravitational waves (r) and tilt $(n_s) : m^2 \phi^2$ can be pushed out of the favorable parameter region
 - $n_s > 1$ will probably be ruled out regardless of r.

What else is there in the Interpretation Paper

- Not just inflation...
- Fun stuff about dark energy
 - User-friendly "WMAP distance priors"
- Cosmic parity violation (upper limits, of course)
 - Scientific use of the TB and EB correlations
 - Now implemented in the delivered likelihood code
- Neutrinos!