WMAP 5-Year Results: Measurement of f_{NL}

Eiichiro Komatsu University of Texas at Austin "Origins and Observations of Primordial Non-Gaussianity" Perimeter Institute, March 8, 2008

WMAP 5-Year Papers

- Hinshaw et al., "Data Processing, Sky Maps, and Basic Results" 0803.0732
- Hill et al., "Beam Maps and Window Functions" 0803.0570
- Gold et al., "Galactic Foreground Emission" 0803.0715
- Wright et al., "Source Catalogue" 0803.0577
- Nolta et al., "Angular Power Spectra" 0803.0593
- **Dunkley et al.**, "Likelihoods and Parameters from the WMAP data" 0803.0586
- Komatsu et al., "Cosmological Interpretation" 0803.0547

WMAP 5-Year Science Team

- C.L. Bennett
- G. Hinshaw
- N. Jarosik
- S.S. Meyer
- L. Page
- D.N. Spergel
- E.L.Wright

- M.R. Greason
- M. Halpern
- R.S. Hill
- A. Kogut
- M. Limon
- N. Odegard
- G.S.Tucker

- J. L.Weiland
- E.Wollack
- J. Dunkley
- B. Gold
- E. Komatsu
- D. Larson
- M.R. Nolta

Special Thanks to WMAP Graduates!

- C. Barnes
- R. Bean
- O. Dore
- H.V. Peiris
- L.Verde

What is f_{NL}?

- For a pedagogical introduction to f_{NL}, see Komatsu, astro-ph/0206039
- In one sentence: "f_{NL} is a quantitative measure of the magnitude of primordial non-Gaussianity in curvature perturbations.*"

* where a positive curvature perturbation gives a negative CMB anisotropy in the Sachs-Wolfe limit

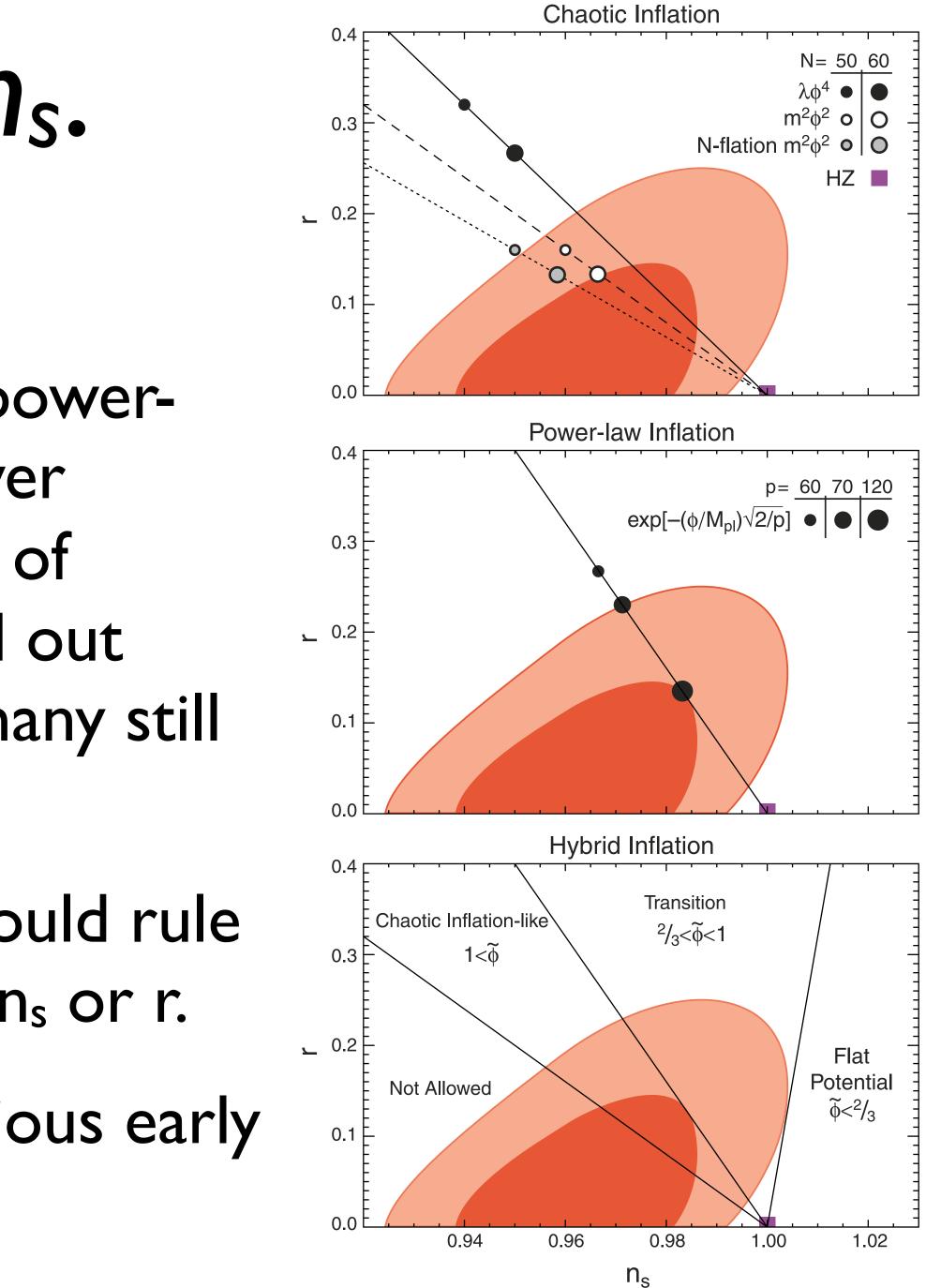
Why is Non-Gaussianity Important?

- Because a detection of f_{NL} has a best chance of ruling out the **largest** class of early universe models.
- Namely, it will rule out inflation models based upon
 - a single scalar field with
 - the canonical kinetic term that
 - rolled down a smooth scalar potential slowly, and
 - was initially in the Banch-Davies vacuum.

Detection of non-Gaussianity would be a major breakthrough in cosmology.

We have *r* and *n*_s. Why Bother?

- While the current limit on the powerlaw index of the primordial power spectrum, n_s, and the amplitude of gravitational waves, r, have ruled out many inflation models already, many still survive (which is a good thing!)
- A convincing detection of f_{NL} would rule out most of them regardless of n_s or r.
- f_{NL} offers more ways to test various early universe models!

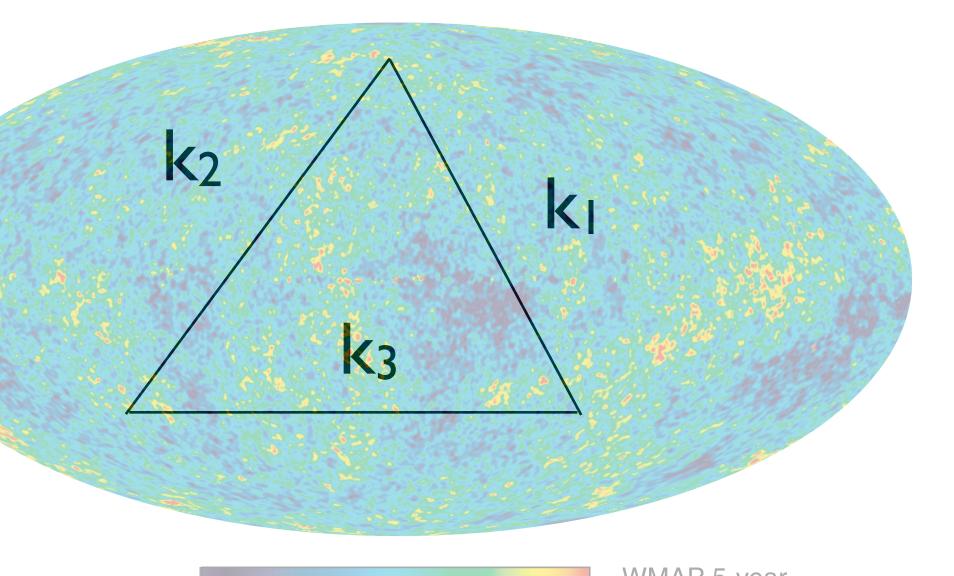


What if $f_{NL} = 0?$

- A single field, canonical kinetic term, slow-roll, and/or Banch-Davies vacuum, must be modified.
 - Multi-field (curvaton)
 - Non-canonical kinetic term (k-inflation, DBI) • Temporary fast roll (features in potential; Ekpyrotic
 - fast roll)
 - Departures from the Banch-Davies vacuum
- It will give us a lot of clues as to what the correct early universe models should look like.

So, what is f_{NL}?

- f_{NL} = the amplitude of three-point function, or also known as the "bispectrum," $B(k_1,k_2,k_3)$, which is
 - = $\langle \Phi(k_1) \Phi(k_2) \Phi(k_3) \rangle = \int_{NL} (2\pi)^2 \delta^3(k_1 + k_2 + k_3) b(k_1, k_2, k_3)$
 - where $\Phi(k)$ is the Fourier transform of the curvature perturbation, and $b(k_1,k_2,k_3)$ is a modeldependent function that defines the shape of triangles predicted by various models.



Why Bispectrum?

- The bispectrum vanishes for Gaussian random fluctuations.
- Any non-zero detection of the bispectrum indicates the presence of (some kind of) non-Gaussianity.
- A very sensitive tool for finding non-Gaussianity.

Komatsu & Spergel (2001); Babich, Creminelli & Zaldarriaga (2004) Two fnl's

- Depending upon the shape of triangles, one can define various f_{NL}'s:
- "Local" form
 - which generates non-Gaussianity locally (i.e., at the same location) via $\Phi(x) = \Phi_{gaus}(x) + f_{NL} [\Phi_{gaus}(x)]^2$
- "Equilateral" form
 - which generates non-Gaussianity in a different way (e.g., k-inflation, DBI inflation)

Earlier work on the local form: Salopek&Bond (1990); Gangui et al. (1994); Verde et al. (2000); Wang&Kamionkowski (2000)

Journal on f_{NL}

- $-3500 < f_{NL}^{local} < 2000 [COBE 4yr, I_{max}=20]$ Komatsu et al. (2002)
- $-58 < f_{NL}^{local} < 134 [WMAP lyr, l_{max}=265]$ Komatsu et al. (2003)
- $-54 < f_{NL}^{local} < 114 [WMAP 3yr, I_{max}=350]$ Spergel et al. (2007)
- $-9 < f_{NL}^{local} < ||| [WMAP 5yr, I_{max}=500]$ Komatsu et al. (2008)
- Equilateral

Local

- $-366 < f_{NL}^{equil} < 238 [WMAP lyr, l_{max}=405]$ Creminelli et al. (2006)
- $-256 < f_{NL}^{equil} < 332 [WMAP 3yr, I_{max} = 475]$ Creminelli et al. (2007)
- IST IST < f_{NL}^{equil} < 253 [WMAP 5yr, Imax=700]</p>

IAP 5yr, Imax=700] Komatsu et al. (2008)

Methodology

- I am not going to bother you too much with methodology...
 - Please read Appendix A of Komatsu et al., if you are interested in details.
- We use a well-established method developed over the years by: Komatsu, Spergel & Wandelt (2005); Creminelli et al. (2006); Yadav, Komatsu & Wandelt (2007)
 - There is still a room for improvement (Smith & Zaldarriaga 2006)

Data Combination

- We mainly use V band (61 GHz) and W band (94 GHz) data.
 - The results from Q band (41 GHz) are discrepant, probably due to a stronger foreground contamination
- These are foreground-reduced maps, delivered on the LAMBDA archive.
 - We also give the results from the raw maps.

Mask

- We have upgraded the Galaxy masks.
 - Iyr and 3yr release
 - "Kp0" mask for Gaussianity tests (76.5%)
 - "Kp2" mask for the C_I analysis (84.6%)
 - 5yr release
 - "KQ75" mask for Gaussianity tests (71.8%)
 - "KQ85" mask for the C_I analysis (81.7%)

Gold et al. (2008)

• What are the KQx masks?

- The previous KpN masks identified the bright region in the K band data, which are contaminated mostly by the synchrotron emission, and masked them.
 - "p" stands for "plus," and N represents the brightness level above which the pixels are masked.
- The new KQx masks identify the bright region in the K band minus the CMB map from Internal Linear Combination (the CMB picture that you always see), as well as the bright region in the Q band minus ILC.
- Q band traces the free-free emission better than K.
- x represents a fraction of the sky retained in K or Q.

Gold et al. (2008)

Why KQ75?

- The KQ75 mask removes the pixels that are contaminated by the free-free region better than the Kp0 mask.
- CMB was absent when the mask was defined, as the masked was defined by the K (or Q) band map minus the CMB map from ILC.
- The final mask is a combination of the K mask (which retains 75% of the sky) and the Q mask (which also retains 75%). Since Q masks the region that is not masked by K, the final KQ75 mask retains less than 75% of the sky. (It retains 71.8% of the sky for cosmology.)

Gold et al. (2008)

Kp0 (V band; Raw)

-0.30

Kp0-KQ75 (V band; Raw)

KQ75 (V band; Raw)

0.30

the second secon

Kp2 (V band; Raw)

-0.30

Kp2-KQ85 (V band; Raw)

KQ85 (V band; Raw)

0.30

Komatsu et al. (2008) Main Result (Local)

Band	Mask	l_{\max}	$f_{NL}^{\rm local}$	$\Delta f_{NL}^{\mathrm{local}}$	b_{src}
V+W	KQ85	400	50 ± 29	1 ± 2	0.26 ± 1.5
V+W	$K\dot{Q}85$	500	61 ± 26	2.5 ± 1.5	0.05 ± 0.50
V+W	KQ85	600	68 ± 31	3 ± 2	0.53 ± 0.28
V+W	KQ85	700	67 ± 31	3.5 ± 2	0.34 ± 0.20
V+W	Kp0	500	61 ± 26	2.5 ± 1.5	
V+W	$KQ75p1^{a}$	500	53 ± 28	4 ± 2	
V+W	KQ75	400	47 ± 32	3 ± 2	-0.50 ± 1.7
V+W	KQ75	500	55 ± 30	4 ± 2	0.15 ± 0.51
V+W	KQ75	600	61 ± 36	4 ± 2	0.53 ± 0.30
V+W	KQ75	700	58 ± 36	5 ± 2	0.38 ± 0.21

~ 2 sigma "hint": f_{NL}^{local} ~ 60 +/- 30 (68% CL)

1.8 sigma for KQ75; 2.3 sigma for KQ85 & Kp0

Komatsu et al. (2008) Main Result (Local)

Band	Mask	l_{\max}	$f_{NL}^{\rm local}$	$\Delta f_{NL}^{\rm local}$	b_{src}
V+W	KQ85	400	50 ± 29	1 ± 2	0.26 ± 1.5
V+W	$K\dot{Q}85$	500	61 ± 26	2.5 ± 1.5	0.05 ± 0.50
V+W	KQ85	600	68 ± 31	3 ± 2	0.53 ± 0.28
V+W	KQ85	700	67 ± 31	3.5 ± 2	0.34 ± 0.20
V+W	Kp0	500	61 ± 26	2.5 ± 1.5	
V+W	$KQ75p1^{a}$	500	53 ± 28	4 ± 2	
V+W	KQ75	400	47 ± 32	3 ± 2	-0.50 ± 1.7
V+W	KQ75	500	55 ± 30	4 ± 2	0.15 ± 0.51
V+W	KQ75	600	61 ± 36	4 ± 2	0.53 ± 0.30
V+W	KQ75	700	58 ± 36	5 ± 2	0.38 ± 0.21

• The results are not sensitive to the maximum multipoles used in the analysis, I_{max}.

Komatsu et al. (2008) Main Result (Local)

Band	Mask	l_{\max}	$f_{NL}^{\rm local}$	$\Delta f_{NL}^{\rm local}$	b_{src}
V+W	KQ85	400	50 ± 29	1 ± 2	0.26 ± 1.5
V+W	$K\dot{Q}85$	500	61 ± 26	2.5 ± 1.5	0.05 ± 0.50
V+W	KQ85	600	68 ± 31	3 ± 2	0.53 ± 0.28
V+W	KQ85	700	67 ± 31	3.5 ± 2	0.34 ± 0.20
V+W	Kp0	500	61 ± 26	2.5 ± 1.5	
V+W	$KQ75p1^{a}$	500	53 ± 28	4 ± 2	
V+W	KQ75	400	47 ± 32	3 ± 2	-0.50 ± 1.7
V+W	KQ75	500	55 ± 30	4 ± 2	0.15 ± 0.51
V+W	KQ75	600	61 ± 36	4 ± 2	0.53 ± 0.30
V+W	KQ75	700	58 ± 36	5 ± 2	0.38 ± 0.21

• The estimated contamination from the point sources is small, if any. (Likely overestimated by a factor of ~2.)

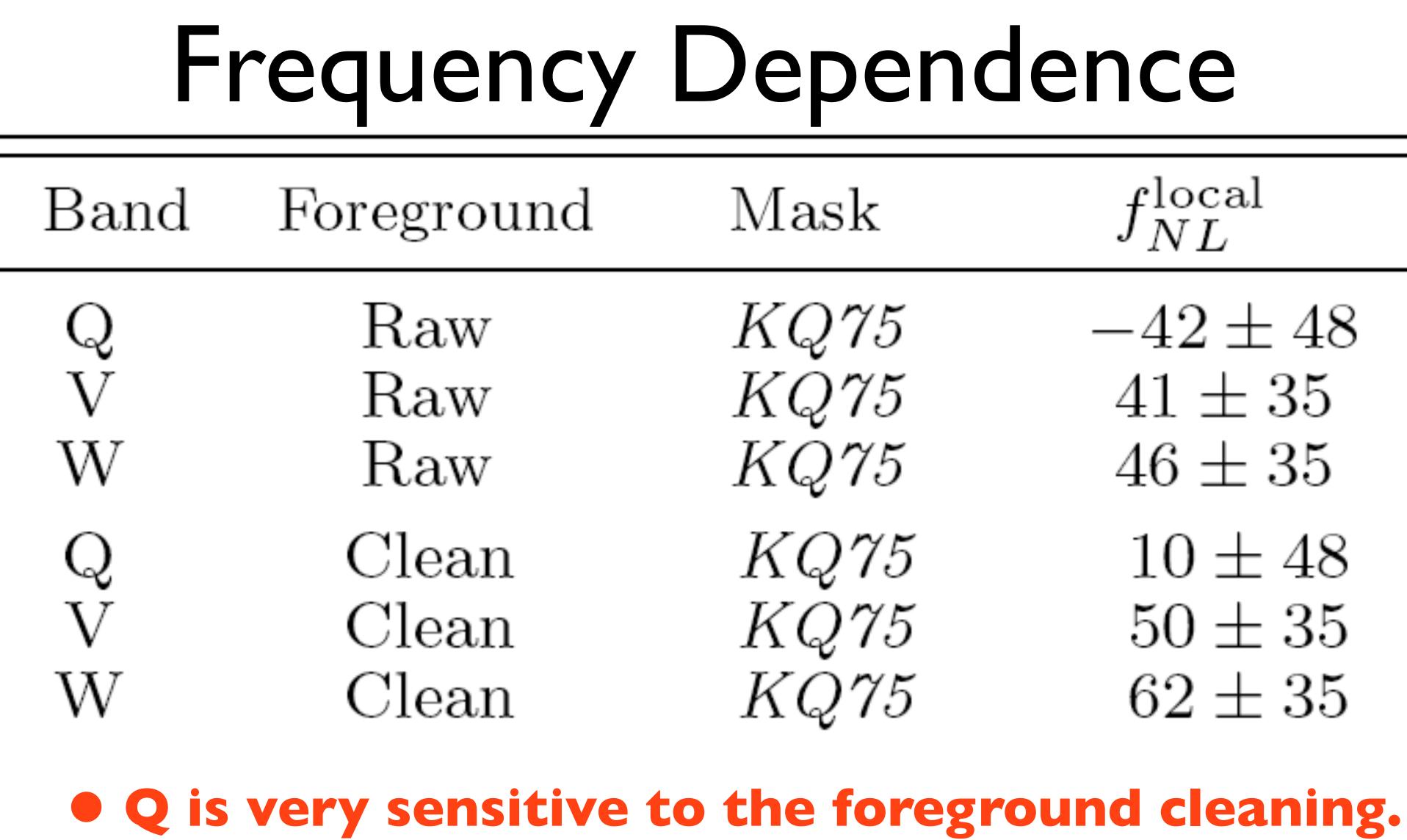
Null Tests

Band	Foreground]
Q-W	Raw]
$\tilde{V}-W$	Raw	l
Q-W	Clean	l
$\dot{\mathrm{V}}-\mathrm{W}$	Clean	ł

• No signal in the difference of cleaned maps.

Komatsu et al. (2008)

Mask f_{NL}^{local} KQ75 -0.53 ± 0.22 KQ75 -0.31 ± 0.23 KQ75 0.10 ± 0.22 KQ75 0.06 ± 0.23



Komatsu et al. (2008)

 $f_{NL}^{\rm local}$ Mask KQ75 -42 ± 48 KQ75 41 ± 35 KQ75 46 ± 35 KQ75 10 ± 48 KQ75 50 ± 35 KQ75 62 ± 35

Komatsu et al. (2008) V+W: Raw vs Clean (I_{max}=500)

Band	Foreground	Mask	$f_{NL}^{\rm local}$
V+W	Raw	KQ85	9 ± 26
V+W	Raw	Kp0	48 ± 26
V+W	Raw	$KQ\bar{7}5p1$	41 ± 28
V+W	Raw	KQ75	43 ± 30

- Clean-map results:
 - KQ85; 61 +/- 26
 - Kp0; 61 +/- 26
 - KQ75pl; 53 +/- 28
 - KQ75; 55 +/- 30

Foreground contamination is not too severe.

The Kp0 and KQ85 results may be as clean as the KQ75 results.

Our Best Estimate

- Why not using Kp0 or KQ85 results, which have a higher statistical significance?
- Given the profound implications and impact of nonzero f_{NL}^{local} , we have chosen a conservative limit from the KQ75 with the point source correction $(\Delta f_{NL}^{local}=4, which is also conservative)$ as our best estimate.
 - The 68% limit: $f_{NL}^{local} = 51 + /-30$ [1.7 sigma]
 - The 95% limit: $-9 < f_{NL}^{local} < |||$

Komatsu et al. (2008)

Yadav & Wandelt (2008) Comparison with Y&W • Yadav and Wandelt used the raw V+W map from the 3-

- year data.
 - 3yr: $f_{NL}^{local} = 68 + 30$ for $I_{max} = 450 \& Kp0$ mask
 - 3yr: $f_{NL}^{local} = 80 + -30$ for $I_{max} = 550 \& Kp0$ mask
- Our corresponding 5-year raw map estimate is
 - 5yr: $f_{NL}^{local} = 48 + 26$ for $I_{max} = 500 \& Kp0$ mask
 - C.f. clean-map estimate: $f_{NL}^{local} = 61 + -26$
- With more years of observations, the values have come down to a lower significance.

Main Result (Equilateral)

Band	Mask	l_{\max}	f
V+W	KQ75	400	77_{79}
V+W V+W	KQ75 $KQ75$	$\begin{array}{c} 500 \\ 600 \end{array}$	$\frac{78}{71}$
V+W	KQ75	700	73

- The point-source correction is much larger for the equilateral configurations.
- Our best estimate from $I_{max}=700$:
 - The 68% limit: $f_{NL}^{equil} = 51 + / 101$

• The 95% limit: $-151 < f_{NL}^{equil} < 253$

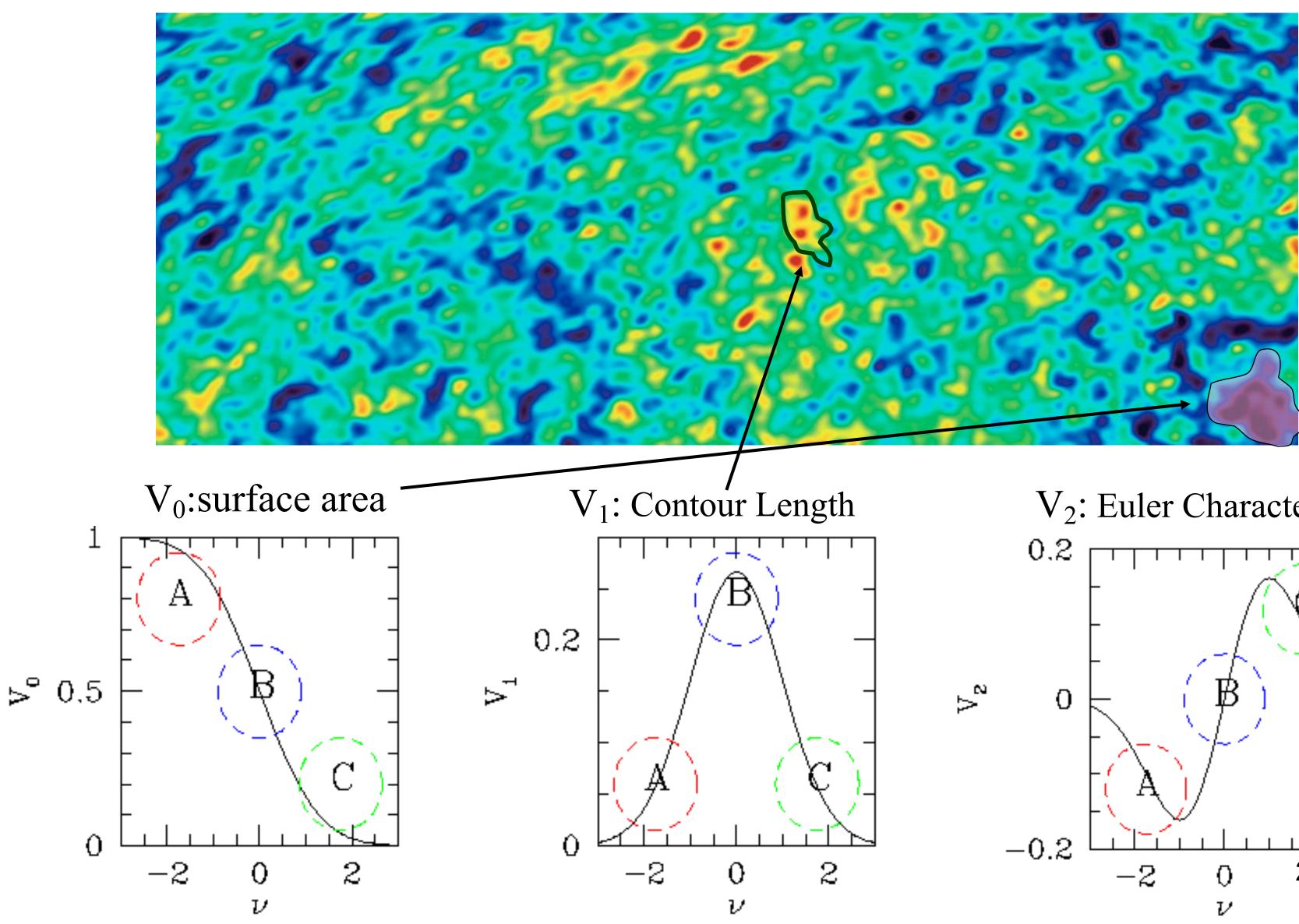
- $7 \pm 146 \qquad 9 \pm 7$ $3 \pm 125 \qquad 14 \pm 6$ $\pm 108 \quad 27 \pm 5$ $\pm 101 \quad 22 \pm 4$
- $\Delta f_{NL}^{\rm equil}$ $f_{NL}^{
 m equil}$

Komatsu et al. (2008)

Forecasting 9-year Data

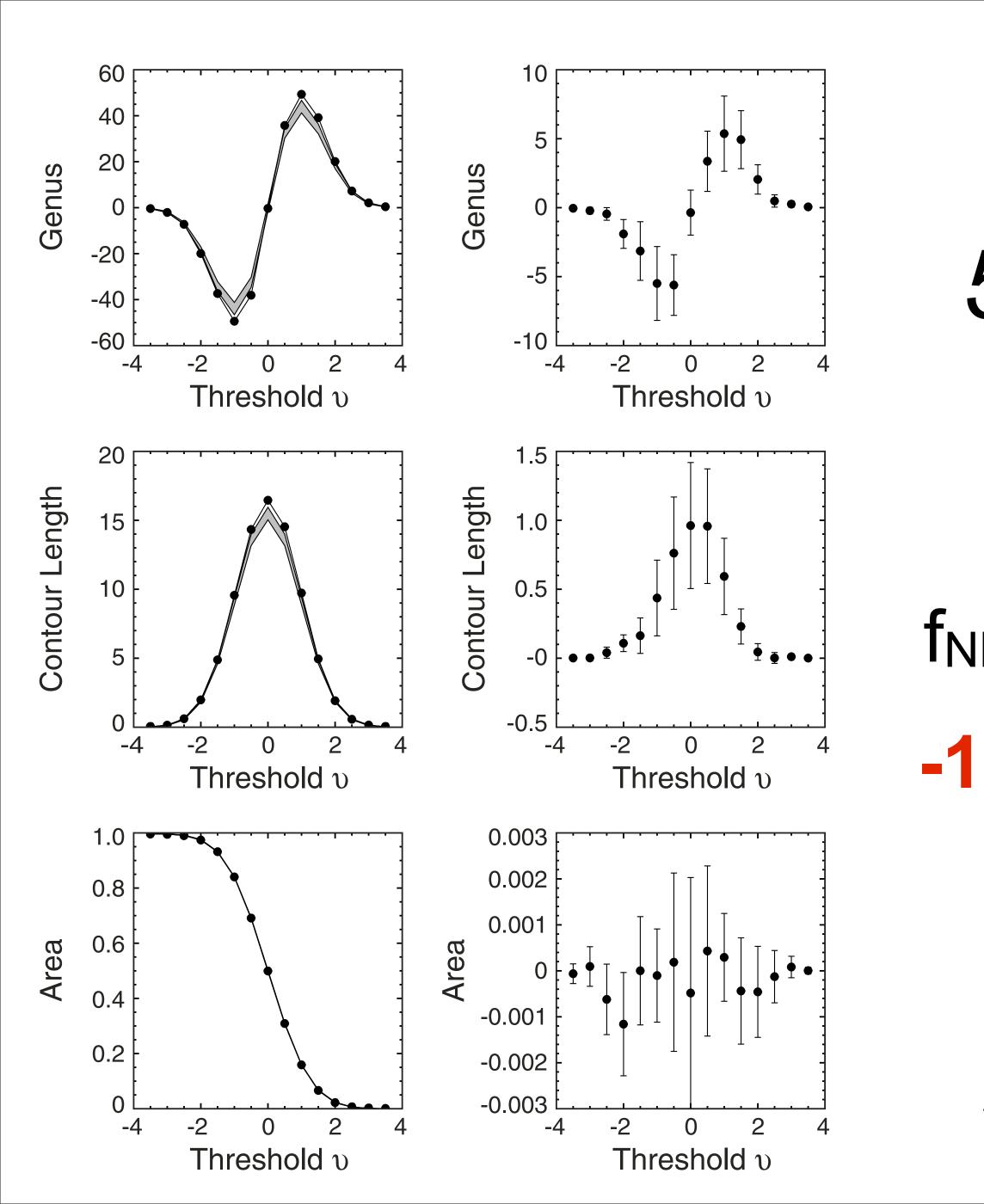
- The WMAP 5-year data do not show any evidence for the presence of f_{NL}^{equil} , but do show a (~2-sigma) hint for f_{NL}^{local} .
- Our best estimate is probably on the conservative side, but our analysis clearly indicates that more data are required to claim a firm evidence for $f_{NL}^{local} > 0$.
- The 9-year error on f_{NL}^{local} should reach $\Delta f_{NL}^{local} = 20$
 - If f_{NL}^{local}=50-60, we would see it at 2.5 to 3 sigma by 2011. (The WMAP 9-year survey will be complete in August 2010.)

Minkowski Functionals (MFs)



The number of hot spots minus cold spots.

V₂: Euler Characteristic 29



Komatsu et al. (2008)

MFs from *WMAP* 5-Year Data (V+W)

Result from a single resolution (N_{side}=128; 28 arcmin pixel) [*analysis done by Al Kogut*]

$f_{NL}^{local} = -57 + -60 (68\% CL)$

-178 < f_{NL}^{local} < 64 (95% CL)

Cf. Hikage et al. (2008) 3-year analysis using all the resolution: $f_{NL}^{local} = -22 +/-43 (68\% CL)$ $-108 < f_{NL}^{local} < 64 (95\% CL)$

"Tension?"

- It is premature to worry about this, but it is a little bit bothering to see that the bispectrum prefers a positive value, f_{NL}~60, whereas the Minkowski functionals prefer a negative value, $f_{NL} \sim -60$.
- These values are derived from the same data!
- What do the Minkowski functionals actually measure?

Hikage, Komatsu & Matsubara (2006) Analytical formulae of MFs

Perturbative formulae of MFs (Matsubara 2003)

$$V_{k}(\mathbf{v}) = \frac{1}{(2\pi)^{(k+1)/2}} \frac{\omega_{2}}{\omega_{2-k}\omega_{k}} \left(\frac{\sigma_{1}}{\sqrt{2}\sigma_{0}} \right)^{k} e^{-\mathbf{v}^{2}/2} \{H_{k-1}(\mathbf{v})\}$$
Gaussian term
$$(k = 0, 1, 2) + \left[\frac{1}{6} S^{(0)} H_{k+2}(\mathbf{v}) + \frac{k}{3} S^{(1)} H_{k}(\mathbf{v}) + \frac{k(k-1)}{6} S^{(2)} H_{k-2}(\mathbf{v}) \right] \sigma_{0} + O(\sigma_{0}^{2})$$

leading order of Non-Gaussian term smoothing kernel

$$\sigma_{j}^{2} = \frac{1}{4} \sum_{l} (2l+1) [l(l+1)] C_{l} W_{l}^{2} \qquad W_{l}^{2}$$

$$\omega_0 = 1, \omega_1 = 1, \omega_2 = \pi, \omega_3 = 4\pi/3$$
 $H_k : k$ - th Hermite polynomial $S^{(a)}$: skewness parameters (a = 0,1,2)

In weakly non-Gaussian fields ($\sigma_0 < <1$), the non-Gaussianity in MFs is characterized by three skewness parameters S^(a).

3 "Skewness Parameters"

Ordinary skewness

$$S^{(0)} \equiv \frac{\langle f^3 \rangle}{\sigma_0^4},$$

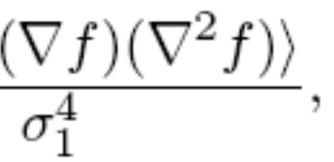
Second derivative

$$S^{(1)} \equiv -\frac{3}{4} \frac{\langle f^2(\nabla^2 f) \rangle}{\sigma_0^2 \sigma_1^2},$$

•(First derivative)² x Second derivative

$$S^{(2)} \equiv -\frac{3d}{2(d-1)} \frac{\langle (\nabla f) \cdot (\nabla f) \rangle \langle \nabla f \rangle}{2(d-1)} d \nabla f = -\frac{3d}{2(d-1)} \frac{\langle \nabla f \rangle \langle \nabla f \rangle}{d} d \nabla f = -\frac{3d}{2(d-1)} \frac{\langle \nabla f \rangle \langle \nabla f \rangle}{d} d \nabla f = -\frac{3d}{2(d-1)} \frac{\langle \nabla f \rangle \langle \nabla f \rangle}{d} d \nabla f = -\frac{3d}{2(d-1)} \frac{\langle \nabla f \rangle \langle \nabla f \rangle}{d} d \nabla f = -\frac{3d}{2(d-1)} \frac{\langle \nabla f \rangle \langle \nabla f \rangle}{d} d \nabla f = -\frac{3d}{2(d-1)} \frac{\langle \nabla f \rangle \langle \nabla f \rangle}{d} d \nabla f = -\frac{3d}{2(d-1)} \frac{\langle \nabla f \rangle \langle \nabla f \rangle}{d} d \nabla f = -\frac{3d}{2(d-1)} \frac{\langle \nabla f \rangle \langle \nabla f \rangle}{d} d \nabla f = -\frac{3d}{2(d-1)} \frac{\langle \nabla f \rangle \langle \nabla f \rangle}{d} d \nabla f = -\frac{3d}{2(d-1)} \frac{\langle \nabla f \rangle}{d} d \nabla f = -\frac{3d}{2(d-1)} \frac{\langle \nabla f \rangle}{d} d \nabla f = -\frac{3d}{2(d-1)} \frac{\langle \nabla f \rangle}{d} d \nabla f = -\frac{3d}{2(d-1)} \frac{\langle \nabla f \rangle}{d} d \nabla f = -\frac{3d}{2(d-1)} \frac{\langle \nabla f \rangle}{d} d \nabla f = -\frac{3d}{2(d-1)} \frac{\langle \nabla f \rangle}{d} d \nabla f = -\frac{3d}{2(d-1)} \frac{\langle \nabla f \rangle}{d} d \nabla f = -\frac{3d}{2(d-1)} \frac{\langle \nabla f \rangle}{d} d \nabla f = -\frac{3d}{2(d-1)} \frac{\langle \nabla f \rangle}{d} d \nabla f = -\frac{3d}{2(d-1)} \frac{\langle \nabla f \rangle}{d} d \nabla f = -\frac{3d}{2(d-1)} \frac{\langle \nabla f \rangle}{d} d \nabla f = -\frac{3d}{2(d-1)} \frac{\langle \nabla f \rangle}{d} d \nabla f = -\frac{3d}{2(d-1)} \frac{\langle \nabla f \rangle}{d} d \nabla f = -\frac{3d}{2(d-1)} \frac{\langle \nabla f \rangle}{d} d \nabla f = -\frac{3d}{2(d-1)} \frac{\langle \nabla f \rangle}{d} \nabla f = -\frac{3d}{2(d-1)} \frac{\langle \nabla f \rangle}{d} d \nabla f = -\frac{3d}{2(d-1)} \frac{\langle \nabla f \rangle}{d} d \nabla f = -\frac{3d}{2(d-1)} \frac{\langle \nabla f \rangle}{d} d \nabla f = -\frac{3d}{2(d-1)} \frac{\langle \nabla f \rangle}{d} d \nabla f = -\frac{3d}{2(d-1)} \frac{\langle \nabla f \rangle}{d} d \nabla f = -\frac{3d}{2(d-1)} \frac{\langle \nabla f \rangle}{d} d \nabla f = -\frac{3d}{2(d-1)} \frac{\langle \nabla f \rangle}{d} d \nabla f = -\frac{3d}{2(d-1)} \frac{\langle \nabla f \rangle}{d} d \nabla f = -\frac{3d}{2(d-1)} \frac{\langle \nabla f \rangle}{d} d \nabla f = -\frac{3d}{2(d-1)} \frac{\langle \nabla f \rangle}{d} d \nabla f = -\frac{3d}{2(d-1)} \frac{\langle \nabla f \rangle}{d} d \nabla f = -\frac{3d}{2(d-1)} \frac{\langle \nabla f \rangle}{d} d \nabla f = -\frac{3d}{2(d-1)} \frac{\langle \nabla f \rangle}{d} d \nabla f = -\frac{3d}{2(d-1)} \frac{\langle \nabla f \rangle}{d} d \nabla f = -\frac{3d}{2(d-1)} \frac{\langle \nabla f \rangle}{d} d \nabla f = -\frac{3d}{2(d-1)} \frac{\langle \nabla f \rangle}{d} d \nabla f = -\frac{3d}{2(d-1)} \frac{\langle \nabla f \rangle}{d} d \nabla f = -\frac{3d}{2(d-1)} \frac{\langle \nabla f \rangle}{d} \partial f = -\frac$$

Matsubara (2003)

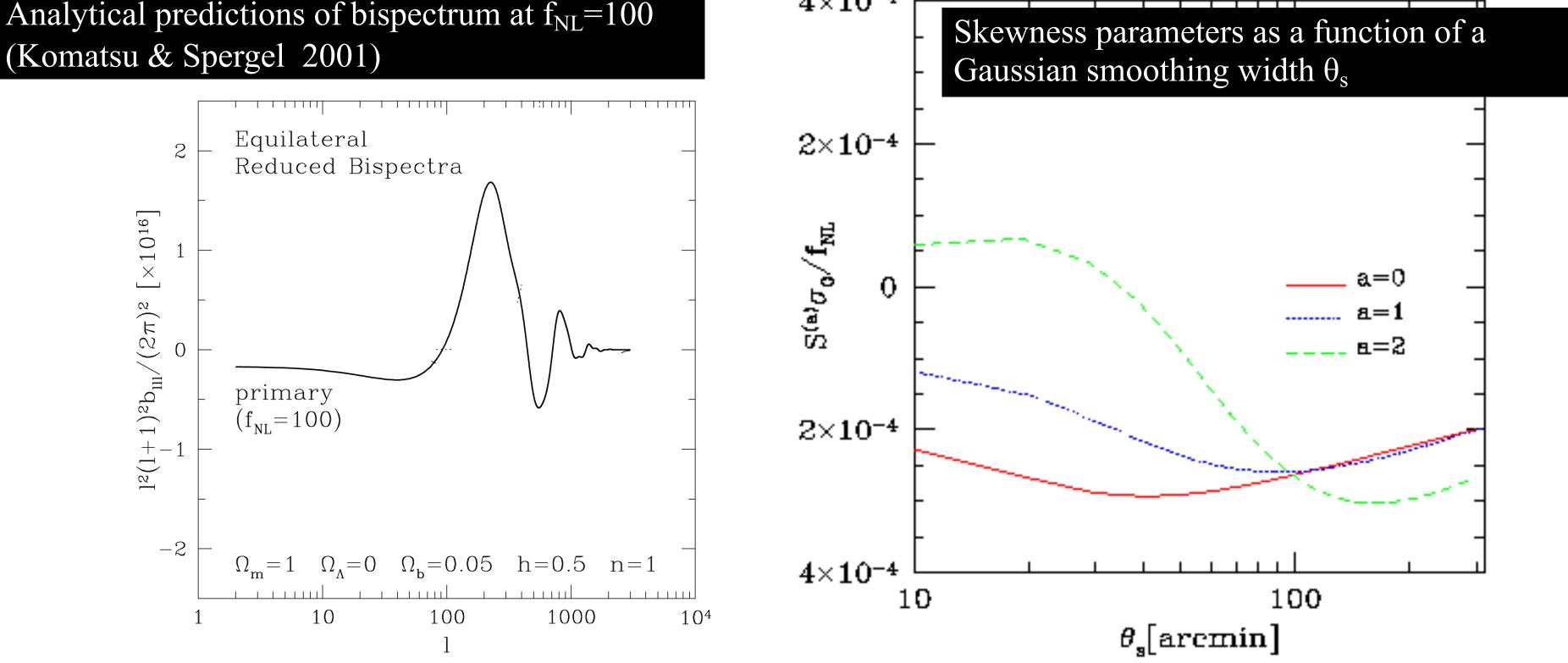


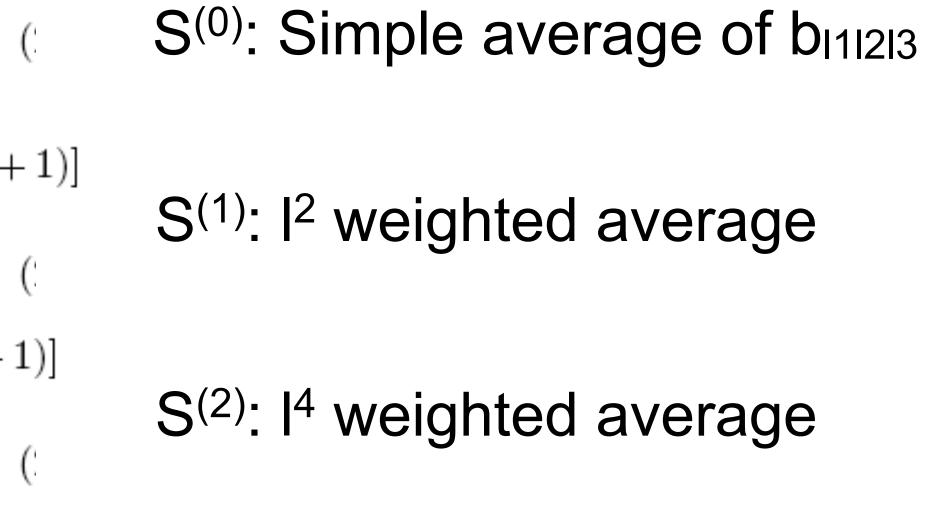
$$S^{(0)} = \frac{3}{2\pi\sigma_0^4} \sum_{2 \le l_1 \le l_2 \le l_3} I_{l_1 l_2 l_3}^2 b_{l_1 l_2 l_3} W_{l_1} W_{l_2} W_{l_3},$$

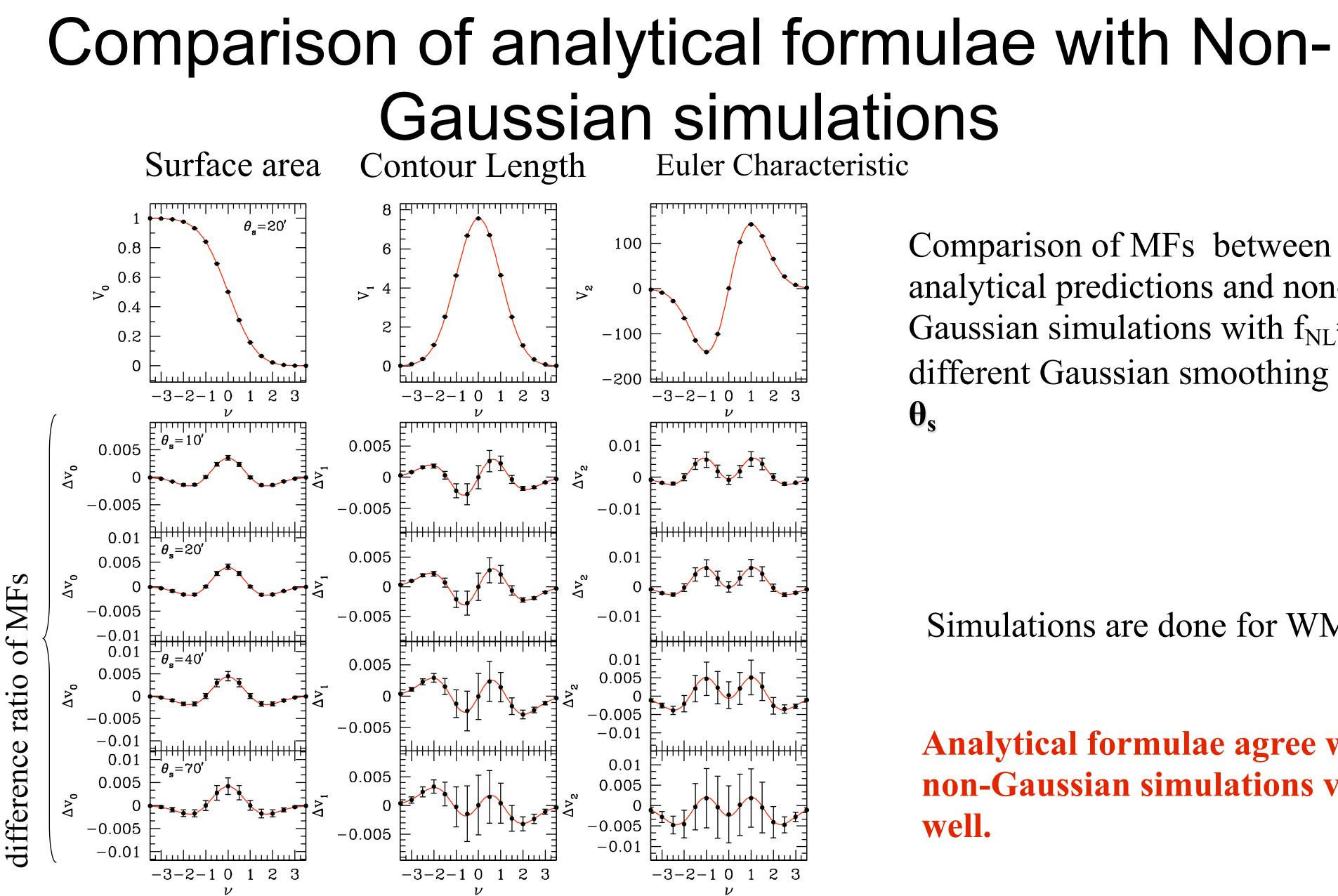
$$S^{(1)} = \frac{3}{8\pi\sigma_0^2 \sigma_1^2} \sum_{2 \le l_1 \le l_2 \le l_3} [l_1(l_1+1) + l_2(l_2+1) + l_3(l_3 - \frac{1}{2})]_{l_1 l_2 l_3} W_{l_1} W_{l_2} W_{l_3},$$

$$S^{(2)} = \frac{3}{4\pi\sigma_1^4} \sum_{2 \le l_1 \le l_2 \le l_3} \{[l_1(l_1+1) + l_2(l_2+1) - l_3(l_3 + \frac{1}{2})]_{l_1 l_2 l_3} b_{l_1 l_2 l_3} b_{l_1 l_2 l_3} W_{l_1} W_{l_2} W_{l_3},$$
which predictions of his pertrum at $f_{\rm H} = 100$

$$4 \times 10^{-4}$$







Hikage et al. (2008)

Comparison of MFs between analytical predictions and non-Gaussian simulations with $f_{NL}=100$ at different Gaussian smoothing scales, θ

Simulations are done for WMAP.

Analytical formulae agree with non-Gaussian simulations very well.

Application of the Minkowski Functionals

- The skewness parameters are the direct observables from the Minkowski functionals.
- The skewness parameters can be calculated directly from the bispectrum.
- It can be applied to any form of the bispectrum!

-Statistical power is weaker than the full bispectrum, but the application can be broader than the bispectrum estimator that is tailored for a very specific form of non-Gaussianity.

An Opportunity?

- This apparent "tension" should be taken as an opportunity to investigate the other statistical tools, such the Minkowski functionals, wavelets, etc., in the context of primordial non-Gaussianity.
- It is plausible that various statistical tools can be written in terms of the sum of the bispectrum with various weights, in the limit of weak non-Gaussianity.
- Different tools are sensitive to different forms of non-Gaussianity - this is an advantage.

Systematics!

- Why use different statistical tools, when we know that the bispectrum gives us the maximum sensitivity?
- Systematics! Systematics!! Systematics!!!
- I don't believe any detections, until different statistical tools give the same answer.
 - That's why it bothers me to see that the bispectrum and the Minkowski functionals give different answers at the moment.

Summary parameters from the bispectrum analysis of the WMAP

- The best estimates of primordial non-Gaussian 5-year data are
 - $-9 < f_{NL}^{local} < ||| (95\% CL)$
 - $-151 < f_{NL}^{equil} < 253 (95\% CL)$
- 9-year data are required to test f_{NL}^{local} ~ 60!
- The other statistical tools should be explored more.
 - E.g., estimate the skewness parameters directly from the Minkowski functionals to find the source of "tension"