WMAP 5-Year Results: Measurement of f_{NL}

Eiichiro Komatsu (Department of Astronomy, UT Austin) Non-Gaussianity From Inflation, Cambridge, September 8, 2008

Why is Non-Gaussianity Important?

- Because a detection of f_{NL} has a best chance of ruling out the largest class of early universe models.
- Namely, it will rule out inflation models based upon
 - a single scalar field with
 - the canonical kinetic term that
 - rolled down a smooth scalar potential slowly, and
 - was initially in the Banch-Davies vacuum.

Detection of non-Gaussianity would be a major breakthrough in cosmology.

We have r and n_s. Why Bother?

- While the current limit on the power-law index of the primordial power spectrum, \mathbf{n}_{s} , and the amplitude of gravitational waves, **r**, have ruled out many inflation models already, many still survive (which is a good thing!)
- A convincing detection of f_{NL} would rule out most of them **regardless of n_s or r**.
- f_{NL} offers more ways to test various early universe models!

Why Bispectrum?

- The bispectrum <u>vanishes</u> for Gaussian fluctuations with random phases.
- Any non-zero detection of the bispectrum indicates the presence of (some kind of) non-Gaussianity.
- A sensitive tool for finding non-Gaussianity.

Two fni's

There are more than two; I will come back to that later.

- Depending upon the shape of triangles, one can define various f_{NL}'s:
- "Local" form
 - which generates non-Gaussianity locally in position space via $\Phi(x) = \Phi_{gaus}(x) + f_{NL} \int [\Phi_{gaus}(x)]^2$
- "Equilateral" form <
 - space (e.g., k-inflation, DBI inflation)

which generates non-Gaussianity locally in momentum

Forms of b(k₁,k₂,k₃)

- Earlier work on the local form: Salopek&Bond (1990); Gangui et al. (1994); Verde et al. (2000); Wang&Kamionkowski (2000) • Local form (Komatsu & Spergel 2001)
 - $b^{\text{local}}(k_1,k_2,k_3) = 2[P(k_1)P(k_2)+cyc.]$
- Equilateral form (Babich, Creminelli & Zaldarriaga 2004)
 - $b^{equilateral}(k_1,k_2,k_3) = 6\{-[P(k_1)P(k_2)+cyc.] 2[P(k_1)P(k_2)P(k_3)]^{2/3} + [P(k_1)^{1/3}P(k_2)^{2/3}P(k_3)+cyc.]\}$

What if f_{NL} is detected?

- A single field, canonical kinetic term, slow-roll, and/or Banch-Davies vacuum, must be modified.
- Local Multi-field (curvaton);

Preheating (e.g., Chambers & Rajantie 2008)

- **Equil.** Non-canonical kinetic term (k-inflation, DBI)
 - Temporary fast roll (features in potential; Ekpyrotic fast roll)
- Folded/

Bump

+Osci.

- Departures from the Banch-Davies vacuum Flat
 - It will give us a lot of clues as to what the correct early universe models should look like. 7

Journal on f_{NL}

- $-3500 < f_{NL}^{local} < 2000 [COBE 4yr, I_{max}=20]$ Komatsu et al. (2002)
- $-58 < f_{NL}^{local} < 134 [WMAP lyr, l_{max}=265]$ Komatsu et al. (2003)
- $-54 < f_{NL}^{local} < 114 [WMAP 3yr, I_{max}=350]$ Spergel et al. (2007)
- -9 < f_{NL}^{local} < 111 [WMAP 5yr, I_{max} =500] Komatsu et al. (2008)
- Equilateral

Local

- $-366 < f_{NL}^{equil} < 238 [WMAP lyr, l_{max}=405]$ Creminelli et al. (2006)
- $-256 < f_{NL}^{equil} < 332 [WMAP 3yr, I_{max} = 475]$ Creminelli et al. (2007)
- -I5I < f_{NL}^{equil} < 253 [WMAP 5yr, Imax=700] 8 Komatsu et al. (2008)

Methodology

- A fast cubic statistics method developed over the years by: Komatsu, Spergel & Wandelt (2005); Creminelli et al. (2006); Yadav, Komatsu & Wandelt (2007)
 - Please read Appendix A of Komatsu et al., if you are interested in details.
 - Sub-optimal for f_{NL}^{local} in the noise dominated regime (I>500) if noise is inhomogeneous
 - Nearly optimal for $f_{NL}^{equilateral}$ and b_{src}
 - There is a room for improvement using the optimal C⁻¹ weighting (Smith & Zaldarriaga 2006)

Data Combination

- We mainly use V band (61 GHz) and W band (94 GHz) data.
 - The results from Q band (41 GHz) are discrepant, probably due to a stronger foreground contamination
- These are foreground-reduced maps, delivered on the LAMBDA archive.
 - We also give the results from the raw maps.

Mask

- We have upgraded the Galaxy masks for the 5-year analysis:
 - Iyr and 3yr release
 - "Kp0" mask for Gaussianity tests (76.5%)
 - "Kp2" mask for the C_I analysis (84.6%)
 - 5yr release
 - "KQ75" mask for Gaussianity tests (71.8%)
 - "KQ85" mask for the C_I analysis (81.7%)

Gold et al. (2008)

- What are the KQx masks?
 - The previous KpN masks identified the bright region mostly by the synchrotron emission, and masked them.
 - "p" stands for "plus," and N represents the brightness level above which the pixels are masked.
 - The new KQx masks identify the bright region in the K band minus the CMB map from Internal Linear Combination (the CMB picture that you always see), as well as the bright region in the Q band minus ILC.
 - Q band traces the free-free emission better than K.
 - x represents a fraction of the sky retained in K or Q. 12

Gold et al. (2008)

in the K band data (22 GHz), which are contaminated

Why KQ75?

- The KQ75 mask removes the pixels that are contaminated by the free-free region better than the Kp0 mask.
- CMB was absent when the mask was defined, as the maske was defined by the K (or Q) band map minus the CMB map from ILC.
- The final mask is a combination of the K mask (which retains 75% of the sky) and the Q mask (which also retains 75%). Since K and Q masks do not always overlap, the final KQ75 mask retains less than 75% of the sky. (It retains 71.8% of the sky for cosmology.)

Gold et al. (2008)

Kp0 (V band; Raw)

-0.30

Kp0-KQ75 (V band; Raw)

KQ75 (V band; Raw)

0.30

And a state of the state of the

Kp2 (V band; Raw)

-0.30

Kp2-KQ85 (V band; Raw)

KQ85 (V band; Raw)

0.30

Why Use KQ75?

- Because WE KNOW that Kp0 leaves some free-free emission unmasked.
- KQ75 is completely free from any potential contamination of CMB.
- Note that the mask was defined before Gaussianity tests.
- Drawback: KQ75 cuts more sky than Kp0.
 - Kp0 retains 76.5% of the sky for cosmological analysis, whereas KQ75 retains 71.8%.
 - 3% increase in the uncertainty of f_{NL} expected

Komatsu et al. (2008) Main Result (Local)

Band	Mask	l_{\max}	$f_{NL}^{\rm local}$	$\Delta f_{NL}^{\rm local}$	b_{src}
V+W	KQ85	400	50 ± 29	1 ± 2	0.26 ± 1.5
V+W	$K\dot{Q}85$	500	61 ± 26	2.5 ± 1.5	0.05 ± 0.50
V+W	KQ85	600	68 ± 31	3 ± 2	0.53 ± 0.28
V+W	KQ85	700	67 ± 31	3.5 ± 2	0.34 ± 0.20
V+W	Kp0	500	61 ± 26	2.5 ± 1.5	
V+W	$KQ75p1^{a}$	500	53 ± 28	4 ± 2	
V+W	KQ75	400	47 ± 32	3 ± 2	-0.50 ± 1.7
V+W	KQ75	500	55 ± 30	4 ± 2	0.15 ± 0.51
V+W	KQ75	600	61 ± 36	4 ± 2	0.53 ± 0.30
V+W	KQ75	700	58 ± 36	5 ± 2	0.38 ± 0.21

~ 2 sigma "hint": f_{NL}^{local} ~ 60 +/- 30 (68% CL)

1.8 sigma for KQ75; 2.3 sigma for KQ85 & Kp0 17

Komatsu et al. (2008) Main Result (Local)

Band	Mask	l_{\max}	$f_{NL}^{\rm local}$	$\Delta f_{NL}^{\rm local}$	b_{src}
V+W	KQ85	400	50 ± 29	1 ± 2	0.26 ± 1.5
V+W	KQ85	500	61 ± 26	2.5 ± 1.5	0.05 ± 0.50
V+W	KQ85	600	68 ± 31	3 ± 2	0.53 ± 0.28
V+W	KQ85	700	67 ± 31	3.5 ± 2	0.34 ± 0.20
V+W	Kp0	500	61 ± 26	2.5 ± 1.5	
V+W	$KQ75p1^{a}$	500	53 ± 28	4 ± 2	
V+W	KQ75	400	47 ± 32	3 ± 2	-0.50 ± 1.7
V+W	KQ75	500	55 ± 30	4 ± 2	0.15 ± 0.51
V+W	KQ75	600	61 ± 36	4 ± 2	0.53 ± 0.30
V+W	KQ75	700	58 ± 36	5 ± 2	0.38 ± 0.21

• The results are not sensitive to the maximum multipoles used in the analysis, I_{max}.

18

Komatsu et al. (2008) Main Result (Local)

Band	Mask	l_{\max}	$f_{NL}^{\rm local}$	$\Delta f_{NL}^{\rm local}$	b_{src}
V+W	KQ85	400	50 ± 29	1 ± 2	0.26 ± 1.5
V+W	$K\dot{Q}85$	500	61 ± 26	2.5 ± 1.5	0.05 ± 0.50
V+W	KQ85	600	68 ± 31	3 ± 2	0.53 ± 0.28
V+W	KQ85	700	67 ± 31	3.5 ± 2	0.34 ± 0.20
V+W	Kp0	500	61 ± 26	2.5 ± 1.5	
V+W	$KQ75p1^{a}$	500	53 ± 28	4 ± 2	
V+W	KQ75	400	47 ± 32	3 ± 2	-0.50 ± 1.7
V+W	KQ75	500	55 ± 30	4 ± 2	0.15 ± 0.51
V+W	KQ75	600	61 ± 36	4 ± 2	0.53 ± 0.30
V+W	KQ75	700	58 ± 36	5 ± 2	0.38 ± 0.21

• The estimated contamination from the point sources is small, if any. (Likely overestimated by a factor of \sim 2.) 19

Null Tests

Band	Foreground	Mask	$f_{NL}^{\rm local}$
$\begin{array}{c} \mathrm{Q}-\mathrm{W}\\ \mathrm{V}-\mathrm{W}\\ \mathrm{Q}-\mathrm{W}\\ \mathrm{V}-\mathrm{W} \end{array}$	Raw Raw Clean Clean	KQ75 KQ75 KQ75	$-0.53 \pm 0.22 \\ -0.31 \pm 0.23 \\ 0.10 \pm 0.22 \\ 0.06 \pm 0.23$

• No signal in the difference of cleaned maps.

Komatsu et al. (2008)

Komatsu et al. (2008)

 $f_{NL}^{\rm local}$ Mask KQ75 -42 ± 48 KQ75 41 ± 35 KQ75 46 ± 35 KQ75 10 ± 48 KQ75 50 ± 35 KQ75 62 ± 35

Komatsu et al. (2008) V+W: Raw vs Clean (I_{max}=500)

Band	Foreground	Mask	$f_{NL}^{\rm local}$
V+W	Raw	KQ85	9 ± 26
V+W	Raw	Kp0	48 ± 26
V+W	Raw	$KQ\bar{7}5p1$	41 ± 28
V+W	Raw	KQ75	43 ± 30

- Clean-map results:
 - KQ85; 61 +/- 26
 - Kp0; 61 +/- 26
 - KQ75pl; 53 +/- 28
 - KQ75; 55 +/- 30

Foreground contamination is not too severe.

The Kp0 and KQ85 results may be as clean as the KQ75 results.

22

Our Best Estimate

- Why not using Kp0 or KQ85 results, which have a higher statistical significance?
- Given the profound (i.e., game-chaning) implications and impact of non-zero f_{NL}^{local} , we have chosen a conservative limit from the KQ75 with the point source correction (Δf_{NL}^{local} =4, which is also conservative) as our best estimate.
 - The 68% limit: $f_{NL}^{local} = 51 + /-30$ [1.7 sigma]
 - The 95% limit: $-9 < f_{NL}^{local} < |||$

Komatsu et al. (2008)

Effect of Mask?

- The best-fitting value of f_{NL} shifted from 61 to 55 (for I_{max}=500) by changing KQ85 (81.7% retained) to KQ75 (71.8% retained). Is this shift expected?
- Monte Carlo simulations show that the r.m.s. difference in f_{NL} between these masks is $\Delta f_{NL} = 12$; thus, the observed change is consistent with a statistical fluctuation.
- The change for Kp0->KQ75 (f_{NL} =61 -> 55) is also consistent: $\Delta f_{NL} = 9.7$.

Yadav & Wandelt (2008) Comparison with Y&W • Yadav and Wandelt used the raw V+W map from the 3-

- year data.
 - 3yr: $f_{NL}^{local} = 68 + 30$ for $I_{max} = 450 \& Kp0$ mask
 - 3yr: $f_{NL}^{local} = 80 + 30$ for $l_{max} = 550 \& Kp0$ mask
- Our corresponding 5-year raw map estimate is
 - 5yr: $f_{NL}^{local} = 48 + 26$ for $I_{max} = 500 \& Kp0$ mask
 - C.f. clean-map estimate: $f_{NL}^{local} = 61 + -26$
- With more years of observations, the values have come down to a lower significance. 25

Main Result (Equilateral)

Band	Mask	l_{\max}	$f_{NL}^{ m equil}$	$\Delta f_{NL}^{\rm equil}$
V+W V+W V+W	KQ75 KQ75 KQ75	$400 \\ 500 \\ 600$	$77 \pm 146 \\ 78 \pm 125 \\ 71 \pm 108$	9 ± 7 14 ± 6 27 ± 5
V+W	KQ75	700	73 ± 101	22 ± 4

- The point-source correction is much larger for the equilateral configurations.
- Our best estimate from $I_{max}=700$:
 - The 68% limit: $f_{NL}^{equil} = 51 + / 101$

• The 95% limit: $-151 < f_{NL}^{equil} < 253$

26

Komatsu et al. (2008)

Forecasting 9-year Data

- The WMAP 5-year data do not show any evidence for the presence of f_{NL}^{equil} , but *do* show a (~2-sigma) hint for f_{NL}^{local} .
- Our best estimate is probably on the conservative side, but our analysis clearly indicates that more data are required to claim a firm evidence for $f_{NL}^{local} > 0$.
- The 9-year error on f_{NL}^{local} should reach $\Delta f_{NL}^{local} = 17$
 - If f_{NL}^{local}~50, we would see it at 3 sigma by 2011. (The WMAP 9-year survey, recently funded, will be complete in August 2010.)

Minkowski Functionals (MFs)

The number of hot spots minus cold spots.

Komatsu et al. (2008)

MFs from *WMAP* 5-Year Data (V+W)

Result from a single resolution (N_{side}=128; 28 arcmin pixel) [*analysis done by Al Kogut*]

$f_{NL}^{local} = -57 + -60 (68\% CL)$

-178 < f_{NL}^{local} < 64 (95% CL)

See Chiaki Hikage's Talk for an extended analysis of MFs from the 5-year data.

Summary

- The best estimates of primordial non-Gaussian parameters from the bispectrum analysis of the WMAP 5-year data are
 - $-9 < f_{NL}^{local} < 111 (95\% CL)$
 - $-151 < f_{NL}^{equil} < 253 (95\% CL)$
- 9-year data are required to test f_{NL}^{local} ~ 50!

Future Prospects

• Future is always bright, right?

Gaussianity vs Flatness: Future

- Flatness will never beat Gaussianity. -In 5-10 years, we will know flatness to 0.1% level. -In 5-10 years, we will know Gaussianity to 0.01% level (f_{NL}~10), or even to 0.005% level (f_{NL}~5), at 95% CL.
- However, a real potential of Gaussianity test is that we might detect something at this level (multi-field, curvaton, DBI, ghost cond., new ekpyrotic...) -Or, we might detect curvature first?
- -Is 0.1% curvature interesting/motivated?

Beyond Bispectrum: Trispectrum of Primordial Perturbations

- Trispectrum is the Fourier transform of four-point correlation function.
- Trispectrum(k_1, k_2, k_3, k_4) $= \langle \Phi(k_1) \Phi(k_2) \Phi(k_3) \Phi(k_4) \rangle$ which can be sensitive to the higher-order terms:
 - - $\Phi(\boldsymbol{x}) = \Phi_{\rm L}(\boldsymbol{x}) + f_{\rm NL} \left[\Phi_{\rm L}^2(\boldsymbol{x}) \right]$

$$-\left\langle \Phi_{
m L}^2(oldsymbol{x})
ight
angle
ight
angle +f_2\Phi_{
m L}^3(oldsymbol{x})$$

Measuring Trispectrum

 It's pretty painful to measure all the quadrilateral configurations.

–Measurements from the COBE 4-year data (Komatsu 2001; Kunz et al. 2001)

 Only limited configurations measured from the WMAP 3-year data

-Spergel et al. (2007)

 No evidence for non-Gaussianity, but f_{NL} has not been constrained by the trispectrum yet. (Work in progress: Dore, Smith & EK)

34

Trispectrum: Not useful for WMAP, but maybe useful for Planck, if f_{NL} is greater than ~50: Excellent Cross-check!

Kogo & Komatsu (2006) • Trispectrum (~ f_{NL}²) 13 12 3*10⁻¹¹*1 7*10-5*1

10000

∟max

More On Future Prospects

 CMB: Planck (temperature + polarization): Δf_{NL}(local)=6 (95%)

–Yadav, Komatsu & Wandelt (2007)

 Large-scale Structure: e.g., ADEPT, CIP: Δf_{NL} (local)=7 (95%); Δf_{NL} (equilateral)=90 (95%)

–Sefusatti & Komatsu (2007)

-This estimate is based upon the assumption of "local galaxy bias," which needs to be modified for $f_{NL}(local)$ according to the recent findings (Licia Verde's Talk)

 CMB and LSS are independent. By combining these two constraints, we get $\Delta f_{NL}(local)=4.5$.

New, Powerful Probe of f_{NL} s the galaxy bias with a

- f_{NL} modifies the galaxy bias with a unique scale dependence
 - -Dalal et al.; Matarrese & Verde
 - -McDonald; Afshordi & Tolley
- The statistical power of this method is promising:
 - –SDSS: -29 < f_{NL} < 70 (95%CL); Slosar et al.
 - –Comparable to the WMAP limit already (-9 < f_{NL} < 111)
 - -Combined limit (SDSS+WMAP):
 - •-1 < f_{NL} < 70 (95%CL)

Where Should We Be Going?

- Explore different statistics (both CMB and LSS) -Minkowski functionals, trispectrum, wavelets and others –Purpose: Checking for systematic errors
- Go for the large-scale structure -The large-scale structure of the Universe at high redshifts offers a <u>definitive</u> cross-check for the presence of primordial non-Gaussianity. -If CMB sees primoridial non-Gaussianity, the same non-Gaussianity must also be seen by the large-scale structure! 38